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How to find hidden groups in data in a
probabilistic framework?

3-dimensional scatter plots of simulated data on x-scale with 2
groups and 500 observations per group
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Outline

1. Mixture models

2. Vine copulas

3. Vine copula mixture models (VCMM)

4. Model-based clustering with VCMM
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Mixture models

Formalize the notion of clusters (groups, components)
through their probability distribution,
An observation xi = (xi ,1, . . . , xi ,d )> → realization of a
d-dimensional random vector X = (X1, . . . ,Xd )>,
Data → d-dimensional n observations coming from k hidden
components,
πj → mixture weight of the jth component (for j = 1, . . . , k,

πj ∈ (0, 1),
k∑
j
πj = 1),

gj(. ;ψj) → density of the jth component for j = 1, . . . , k,
The density of a finite mixture model for
X = (X1, . . . ,Xd )> at x = (x1, . . . , xd )>:

g(x;η) =
k∑

j=1
πj · gj(x;ψj). (1)
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How to select densities of each component?
Previous works

The density of a finite mixture model for X = (X1, . . . ,Xd )> at
x = (x1, . . . , xd )>:

g(x;η) =
k∑

j=1
πj · gj(x;ψj). (2)

gj(. ;ψj)→ multivariate Gaussian distribution, multivariate t
distribution, their skewed formulations, copulas.

not flexible enough in representing different asymmetric
or/and tail dependencies for different pairs of variables
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Need a flexible framework to represent
different asymmetric and tail dependencies
for pairs of variables: vine copulas

The R packages to fit models: mclust [Scrucca et al., 2016] and mixsmsn [Prates et al., 2013].

Özge Sahin Vine copula mixture models and clustering for non-Gaussian data 5 / 16



Sklar’s Theorem:the density of a
d-dimensional distribution can be decomposed
into the product of its univariate marginal
densities and the associated copula density

X = (X1, . . . ,Xd )> ∈ Rd ,
the joint cumulative distribution function (cdf) F ,
the univariate marginal distributions F1, . . .Fd (absolutely
continuous) and densities f1, . . . , fd ,
a copula density c of the random vector
F =

(
F1(X1), . . .Fd (XD)

)> ∈ [0, 1]d ,
Thanks to Sklar’s theorem [Sklar, 1959], the d dimensional joint
density g can be written as:

g(x) = c
(
F1(x1), . . . ,Fd (xd )

)
· f1(x1) · · · fd (xd ), x ∈ Rd . (3)
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Vine copulas can be considered as a
generalization of multivariate Gaussian
distributions parametrized in terms of d − 1
correlations and (d−1)(d−2)

2 partial correlations

Avoid the constraint of positive definiteness with an alternative
parametrization of the correlation matrix by sequences of
correlations and partial correlations being algebraically independent
[Joe, 2014], e.g., for d = 3,

(ρ12, ρ13, ρ23;1) ∈ (−1, 1)3,
(ρ12, ρ23, ρ13;2) ∈ (−1, 1)3,
(ρ13, ρ23, ρ12;3) ∈ (−1, 1)3.
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Vine copulas’ building plan is given
by a vine tree structure and uses bivariate
copulas that are algebraically independent
glued together by conditioning

Example of a 3-dimensional vine tree structure that can represent
the correlation matrix of a 3-dimensional Gaussian distribution
with (ρ13, ρ23, ρ12;3) ∈ (−1, 1)3

1 3 2
1,3 2,3

1,3 2,3
1,2;3
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Vine copulas can approximate many
multivariate distributions

Thanks to Sklar’s theorem [Sklar, 1959], the d dimensional joint
density g can be written as:

g(x) = c
(
F1(x1), . . . ,Fd (xd )

)
· f1(x1) · · · fd (xd ), x ∈ Rd . (4)

1 3 2
1,3 2,3

1,3 2,3
1,2;3

g(x1, x2, x3;ψ) =c1,3
(

F1(x1; γ1),F3(x3; γ3); θ1,3
)
· c2,3

(
F2(x2; γ2),F3(x3; γ3); θ2,3

)
· c1,2;3

(
F1|3(x1|x3; γ1, γ3, θ1,3),F2|3(x2|x3; γ2, γ3, θ2,3); θ1,2;3, x3

)
· f1(x1; γ1) · f2(x2; γ2) · f3(x3; γ3).

(5)
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Use vine copulas to have flexible component
densities for continuous data

The density of a finite mixture model for X = (X1, . . . ,Xd )> at
x = (x1, . . . , xd )>:

g(x;η) =
k∑

j=1
πj · gj(x;ψj). (6)

gj(. ;ψj) → simplified vine copula with parametric marginal
distributions and pair copulas
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Many selection problems exist
in vine copula mixture models

g(x1, x2, x3;ψ) =c1,3
(

F1(x1; γ1), F3(x3; γ3); θ1,3
)

· c2,3
(

F2(x2; γ2), F3(x3; γ3); θ2,3
)

· c1,2;3
(

F1|3(x1|x3; γ1, γ3, θ1,3), F2|3(x2|x3; γ2, γ3, θ2,3); θ1,2;3
)

· f1(x1; γ1) · f2(x2; γ2) · f3(x3; γ3).

The total number of components k hidden in the data → known

Selection problems for each component j = 1, . . . , k:
1. The marginal distributions Fj = {F1(j), . . . ,Fd(j)},
2. The vine tree structure Vj ,
3. The pair copula families Bj(Vj).
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Many parameter estimation problems exist
in vine copula mixture models

g(x1, x2, x3;ψ) =c1,3
(

F1(x1; γ1), F3(x3; γ3); θ1,3
)

· c2,3
(

F2(x2; γ2), F3(x3; γ3); θ2,3
)

· c1,2;3
(

F1|3(x1|x3; γ1, γ3, θ1,3), F2|3(x2|x3; γ2, γ3, θ2,3); θ1,2;3
)

· f1(x1; γ1) · f2(x2; γ2) · f3(x3; γ3).

Parameter estimation problems for each component j =
1, . . . , k:

4. The marginal parameters γj(Fj),
5. The pair copula parameters θj(Bj(Vj)).
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Follow a data-driven approach –
more in the paper: [Sahin and Czado, 2022]

1. Marginal distribution selection via BIC
2. Vine tree structure and pair copula families selection via a

greedy algorithm
3. Estimate the parameters with ECM algorithm

[Meng and Rubin, 1993]
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Different DGPs and real data sets are used
for clustering benchmarking

Assign the observations to the clusters (components) with the
final posterior probabilities:
xi ∈ Cj∗ ⇐⇒ j∗ = arg max

j=1,...,k
r (s+1)
i ,j for i = 1, . . . , n.

Clustering quality comparison based on the BIC and
misclassification rate,
the VCMM’s sensitivity, stability, and computational cost,
4 DGPs: three variables, two clusters with known labels, 100
or 500 observations in each cluster, replicate 100 times,
3 real data sets,
the R package vineclust [Sahin, 2021].
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Real data set 3: the VCMM’s optimal
number of component selection is not stable
based on the BIC

Sachs Protein data analyzed by [Sachs et al., 2005],
Continuous logarithmized levels of 11 phosphorylated proteins
and phospholipids in 6161 individual cells, subjected to
general and specific molecular interventions,
[Zhang and Shi, 2017] work with the two-component
Gaussian mixture copula Bayesian network.

(a) VCMM with k-means (b) VCMM with hierarchical clustering
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Summary
A vine copula mixture model, called VCMM, for continuous
data allowing all types of vine tree structures, parametric pair
copulas and margins.
Assuming the number of components in the data is known, a
data-driven approach for remaining selection problems and a
modification of the ECM algorithm for parameter estimation.
A new model-based clustering algorithm that incorporates
realistic interdependence structures of clusters and shows how
the dependence structure varies within clusters of the data.
Clustering benchmarking analyses with the VCMM.
The R package vineclust to run simulations and the
model-based clustering algorithm,.
Future research for the number of component selection,
variable selection, parsimonious VCMM, stable initial
partition, and the inclusion of discrete variables.

Özge Sahin Vine copula mixture models and clustering for non-Gaussian data 16 / 16



Thank you for your attention!

Özge Sahin Vine copula mixture models and clustering for non-Gaussian data 16 / 16



References
Joe, H. (2014).
Dependence modeling with copulas.
CRC press.

Meng, X.-L. and Rubin, D. B. (1993).
Maximum Likelihood Estimation via the ECM Algorithm: A General Framework.
Biometrika, 80(2):267–278.

Prates, M. O., Cabral, C. R. B., and Lachos, V. H. (2013).
mixsmsn: Fitting finite mixture of scale mixture of skew-normal distributions.
Journal of Statistical Software, 54(12):1–20.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., and Nolan, G. P. (2005).
Causal protein-signaling networks derived from multiparameter single-cell data.
Science, 308(5721):523–529.
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