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Anytime-valid inference

It would be nice to have statistical tests which. . .

▶ . . . allow to stop an experiment early as soon as there is
enough evidence against the null hypothesis,

→ optional stopping

▶ . . . allow to continue accumulating evidence if the results so
far are inconclusive,

→ optional continuation

▶ . . . are valid even if the sample size is dependent on the data
in some way.

→ anytime-valid inference
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Let (Dn)n∈N be a data stream and Dn = (D1, . . . ,Dn).

H0 is a set of distributions for (Dn)n∈N, the null hypothesis.

▶ In this talk: Di = (Xi ,Yi ,Zi ) i.i.d. and H0 = {P : X
P
⊥⊥ Y | Z}

A process Sn = Sn(D
n), n ∈ N, is called e-process if

Sn ≥ 0, n ∈ N, EP [Sτ ] ≤ 1 for all stopping times τ, P ∈ H0.

Implications:

▶ P(∃n : Sn ≥ 1/α) ≤ α for all P ∈ H0, α ∈ (0, 1),

▶ pn = 1/(maxi=1,...,n Si ), is an anytime-valid p-value.
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Wald’s (1947) sequential probability ratio test is anytime-valid:

Let Di have density f0,i under the null hypothesis and f1,i under the
alternative. Under independence of (Di )i∈N,

Sn =
n∏

i=1

f1,i (Di )

f0,i (Di )
is an e-process.

We will need something more general:

If En(D
n) ≥ 0 and EP [En(D

n) | Dn−1] ≤ 1 for all n, then

Sn =
n∏

i=1

Ei (D
i ) is an e-process.
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Questions

▶ How to construct e-processes for testing conditional
independence in a general setting?

▶ What are “good” e-processes for this problem?

▶ Do they actually work?

Everything in the model-X setting (Candès et al., 2018).
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Model-X and conditional randomization test
”a glorified randomized experiment where we know the propensity score”

Assumptions: observations Dn = (Xn,Yn,Zn), n ∈ N, are i.i.d. and
the distribution of X given Z is known,

X | Z = z ∼ Qz .

Conditional randomization test (CRT):

▶ T (X n,Y n,Zn) a function such that T is large if X and Y are
conditionally dependent,

▶ simulate X̃ n
j ∼ Qn

Zn , j = 1, . . . ,M, and define

p =
1 +

∑M
j=1 1{T (X̃ n

j ,Y
n,Zn) ≥ T (X n,Y n,Zn)}

1 +M
.
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Anytime-valid tests of conditional independence

For a single D = (X ,Y ,Z ) and any function h > 0,

Eh(D) =
h(X ,Y ,Z )∫

h(x ,Y ,Z ) dQZ (x)

satisfies EP [E ] = 1 for all P ∈ H0.

Define the e-process

Sn = Sn(D
n) =

n∏
i=1

hi (Xi ,Yi ,Zi )∫
hi (x ,Yi ,Zi ) dQZi

(x)
,

where hi may depend on D i−1.
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How to choose hi?

Sn is “growth rate optimal” (GRO) (Grünwald, de Heide, and
Koolen, 2022+) under the alternative hypothesis P̃ if it

maximizes EP̃ [log(Sn)].

Result: If (X ,Y ,Z ) admit a density f , then the GRO Sn is
obtained for hi (x , y , z) = fY |X ,Z (Yi | Xi ,Zi ), and

Sn =
n∏

i=1

fY |X ,Z (Yi | Xi ,Zi )

fY |Z (Yi | Zi )
.
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▶ By rewriting,

Sn =
n∏

i=1

fX ,Y |Z (Xi ,Yi | Zi )

fX |Z (Xi | Zi )fY |Z (Yi | Zi )

Ef [log(Sn)] = nIf (X ;Y | Z ) (conditional mutual information),

▶ or in a “Wald-form”,

Sn =
n∏

i=1

fX |Y ,Z (Xi | Yi ,Zi )

fX |Z (Xi | Zi )
.

▶ The same test statistic, fY |X ,Z , yields Neyman-Pearson
optimal CRT (Katsevich and Ramdas, 2020).
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In practice, f is estimated sequentially.

▶ Construct estimator f̂ iY |X ,Z based on data D i , and set

Sn =
n∏

i=1

f̂ i−1
Y |X ,Z (Yi | Xi ,Zi )∫

f̂ i−1
Y |X ,Z (Yi | x ,Zi ) dQZi

(x)
,

▶ or f̂ iX |Y ,Z , and with the density qX |Z of Qz , set

Sn =
n∏

i=1

f̂ i−1
X |Y ,Z (Xi | Yi ,Zi )

qX |Z (Xi | Zi )
.
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Robustness

Like the CRT, the proposed tests are valid for any choice of the
functions hi or estimators f̂ iY |X ,Z .

If the model-X assumption is violated and only approximations Q̂z

of Qz are available, then

P
(
∃ n ≤ N : Sn ≥ 1/α

∣∣∣Y N ,ZN
)
≤ α+ dTV(Q

N
ZN , Q̂

N
ZN ), N ∈ N,

where dTV is the total variation distance.

Same bound is known for the CRT (Berrett et al., 2020) without
sequential testing (no “∃ n ≤ N”).
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Sanity check: logistic regression

Assume that Y ∈ {0, 1} with probabilities

pθ(y | X ,Z ) =
exp(y(β⊤X + γ⊤Z ))

1 + exp(β⊤X + γ⊤Z )
,

with parameter vector θ = (β, γ).

Estimate θ sequentially with maximum likelihood method.

▶ Result: if (X ,Z ) ∈ Rp × Rq is subgaussian, then the
corresponding test has asymptotic power one if β ̸= 0,

Sn = exp (nI (X ;Y | Z ) + rn) , rn/n → 0 a.s.
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Simulations:

▶ (X ,Z ) ∈ R× Rq−1 with multivariate normal distribution

▶ logistic model for Y

Other tests:

▶ Non-sequential CRT and likelihood ratio test

▶ Universal inference running maximum likelihood

(Wasserman, Ramdas, and Balakrishnan, 2020)
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