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P
> In this talk: D; = (X;, Y, Z) i.i.d. and Ho = {P: X 1. Y | Z}

A process S, = Sp(D"), n € N, is called e-process if

S, >0, neN, Ep[S;] <1 for all stopping times 7, P € Ho.

Implications:

» P(3n: S, >1/a) <aforall PeHy ac(0,1),

» pp,=1/(maxj=1,.,S;i), is an anytime-valid p-value.
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Let D; have density fy ; under the null hypothesis and f; ; under the
alternative. Under independence of (D;);en,

fl / I .
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We will need something more general:

If E,(D™) >0 and Ep[E,(D") | D"~1] < 1 for all n, then

Sp= H Ei(D') is an e-process.
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» Do they actually work?

Everything in the model-X setting (Candes et al., 2018).
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Model-X and conditional randomization test

"a glorified randomized experiment where we know the propensity score”

Assumptions: observations D, = (Xp, Y, Z,), n € N, are i.i.d. and
the distribution of X given Z is known,

X|Z=z ~ Q.

Conditional randomization test (CRT):

» T(X", Y" Z") a function such that T is large if X and Y are
conditionally dependent,

» simulate )N(J-” ~ Q%,, j=1,..., M, and define

L+ M T (X, yn, Zr) > T(X", Y™, Z")}
P= 1+ M '
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B h(X,Y,Z)
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Define the e-process

B o n h,‘(Xi; \/i7Zi)
Sn=5n(D") = ,1;[1 J hi(x, Yi, Z;) dQz(x)’

where h; may depend on D'~
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Sn is “growth rate optimal” (GRO) (Griinwald, de Heide, and
Koolen, 2022+) under the alternative hypothesis P if it

maximizes  Ez[log(5,)].
Result: If (X, Y,Z) admit a density f, then the GRO S, is
obtained for hi(x,y,z) = fy|x z(Yi | Xi, Z;), and

s _ ﬁ fyix,z(Yi | Xi, Zi)
i fz(Yil Z)
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> By rewriting,

s, _H fx,v1z(Xi, Yi | Z;)
L xiz(Xi | Zi)fyz(Yi | Zi)

Ef[log(Sn)] = nlf(X, Y | Z) (conditional mutual information),

» orin a “Wald-form",

Ly, z(Xi | i, Zi)

S =
,.1;[1 fx1z(Xi | Zi)

» The same test statistic, fy|x z, yields Neyman-Pearson
optimal CRT (Katsevich and Ramdas, 2020).
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» Construct estimator f\i/\x 7 based on data D', and set

n FisL (Y| Xi, Zi)

Y|X,Z
S = , ,
,1_11 fy& 2(Yi | x,Z;) dQz(x)

> or fc)"qy 7+ and with the density gx|7 of Q;, set

n fi (X | i, Zp)

5n—H X|Y,Z

1 axz(Xi | Z)
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Robustness

Like the CRT, the proposed tests are valid for any choice of the
functions h; or estimators fY|X 7

If the model-X assumption is violated and only approximations Q,
of @, are available, then

P(3n<N:Sy>1/a| YN, ZV) <o+ drv(Q, Q). NEN,
where drv is the total variation distance.

Same bound is known for the CRT (Berrett et al., 2020) without
sequential testing (no “In < N").
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Sanity check: logistic regression

Assume that Y € {0, 1} with probabilities

exp(y(BTX ++72))
p@(y ‘ sz)_ 1—|—exp(BTX—|—7TZ)’

with parameter vector 6 = (3,7).

Estimate 0 sequentially with maximum likelihood method.

» Result: if (X, Z) € RP x RY is subgaussian, then the
corresponding test has asymptotic power one if § # 0,

Sp=exp(nl(X;Y | Z)+nm), rn/n— 0 as.



Simulations:

» (X,Z) € R x R9~1 with multivariate normal distribution
> logistic model for Y

Other tests:
» Non-sequential CRT and likelihood ratio test
» Universal inference running maximum likelihood
(Wasserman, Ramdas, and Balakrishnan, 2020)
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