

Characteristic Imsets via Quasi-Independence Gluing¹

Irem Portakal 🤶, Joseph Johnson, Ben Hollering, Liam Solus

Technical University of Munich

ETH-UCPH-TUM Workshop on Graphical Models Raitenhaslach October 13, 2022

Irem Portakal (TU München) Toric Ideals of Characteristic Imsets Oct

¹arXiv:2209.01834

Causal Discovery and Markov Equivalence

- Directed acyclic graphical (DAG) models are widely used to model conditional independence and causal relationships.
- The causal discovery algorithms typically only recover the Markov equivalence class that best fits the data.
- Verma and Pearl $(1992)^2$ showed that two DAGs are Markov equivalent if and only if they have the same skeleton and *v*-structures (colliders).

Irem Portakal (TU München) Toric Ideals of Characteristic Imsets

 $^{^{2}}$ T. Verma and J. Pearl, An algorithm for deciding if a set of observed independencies has a causal explanation, 1992.

Characteristic Imsets

• Recently, a new geometric perspective on causal discovery algorithms has emerged which uses *characteristic imsets* (CIM) to embed DAGs in Euclidean space.³

Definition

Given a DAG $\mathcal{G} = ([n], E)$, the *characteristic imset* is a vector $c_{\mathcal{G}} \in \mathbb{R}^{2^n - n - 1}$ with entries indexed by $S \subseteq [n], |S| \ge 2$ such that

 $(c_{\mathcal{G}})_{S} := \begin{cases} 1 & \text{if there exists } i \in S \text{ such that } S \setminus \{i\} \subseteq \operatorname{pa}_{\mathcal{G}}(i), \\ 0 & \text{otherwise.} \end{cases}$

Theorem (Studený-Hemmecke-Lindner 2010)

The following are equivalent: • $\mathcal{G} = ([n], E)$ and $\mathcal{H} = ([n], E')$ are Markov equivalent, • $c_{\mathcal{G}} = c_{\mathcal{H}}$.

³M. Studený, R. Hemmecke, and S. Lindner, Characteristic imset: A simple algebraic representative of a bayesian network structure, 2010.

Example: The path graph P_3

• Consider the DAGs with the underlying path graph P_3 :

• For $S \subseteq [3]$ such that $|S| \ge 2$

$$(c_{\mathcal{G}})_S := \begin{cases} 1 & \text{if there exists } i \in S \text{ such that } S \setminus \{i\} \subseteq \mathrm{pa}_{\mathcal{G}}(i), \\ 0 & \text{otherwise.} \end{cases}$$

• Their characteristic imsets are

$$12 \ 13 \ 23 \ 123$$
$$c_{\mathcal{G}_1} = (1, \ 0, \ 1, \ 0)$$
$$c_{\mathcal{G}_2} = (1, \ 0, \ 1, \ 0)$$
$$c_{\mathcal{G}_3} = (1, \ 0, \ 1, \ 1)$$

The Characteristic Imset Polytope

• Characteristic imsets allow us to rephrase the problem of causal discovery as a linear programming problems over the polytope

$$\operatorname{CIM}_n := \operatorname{conv}(c_{\mathcal{G}} \in \mathbb{R}^{2^n - n - 1} \mid \mathcal{G} = ([n], E) \text{ a DAG})$$

which led to many new geometric perspectives on causal discovery.

- Linusson, Restadh, and Solus⁴ showed that the moves used in many classic causal discovery algorithms (e.g. GES, GIES, and MMHC algorithms) to move from one DAG to another correspond to edges of CIM_n .
- They also showed that the polytope

$$\operatorname{CIM}_G := \operatorname{conv}(c_{\mathcal{G}} \mid \mathcal{G} \text{ has skeleton } G)$$

is a face of CIM_n , where G is an undirected graph on n vertices.

 $^4\mathrm{S.}$ Linusson, P. Restadh, and L. Solus. Greedy causal discovery is geometric, 2022.

The Characteristic Imset Ideal

- Since CIM_G is a lattice polytope, it has an associated toric ideal I_G which we call the *characteristic imset ideal* of G.
- Let $\mathcal{G}_1, \ldots, \mathcal{G}_n$ be DAGs which represent the Markov equivalence classes of G.
- Then I_G is the kernel of the monomial map

$$\psi_G : \mathbb{R}[z_{\mathcal{G}_1}, \dots, z_{\mathcal{G}_n}] \to \mathbb{R}[t_S \mid S \subseteq [n], |S| \ge 2]$$
$$z_{\mathcal{G}_i} \mapsto t^{c_{\mathcal{G}_i}}$$

• Understanding the algebraic structure of I_G can help us understand the combinatorial structure of CIM_G .

Problem

Determine a Gröbner basis for the ideal I_G using the combinatorics of the underlying graph G.

 $\begin{aligned} z_{\mathcal{G}_1} &\mapsto t^{c_{\mathcal{G}_1}} = t_e & z_{\mathcal{G}_2} \mapsto t^{c_{\mathcal{G}_2}} = t_e t_{345} \\ z_{\mathcal{G}_5} &\mapsto t^{c_{\mathcal{G}_5}} = t_e t_{123} t_{345} & z_{\mathcal{G}_4} \mapsto t^{c_{\mathcal{G}_4}} = t_e t_{123} \end{aligned}$

Irem Portakal (TU München)

Example

• Consider the path graph P_5 . This ideal I_{P_5} in fact comes from a *quasi-independence model*:

Quasi-Independence Models

- Let X and Y be discrete random variables with states r and s. Quasi-independence models describe the situation in which some combinations of states of X and Y cannot occur together (structural zeros), but X and Y are otherwise independent of one another.
- Let $Q \subseteq [r] \times [s]$ be the subset of states that can occur together.
- The quasi-independence ideal associated to Q, denoted I_Q , is the kernel of the monomial map

$$\phi_Q : \mathbb{R}[z_{jk} \mid (j,k) \in Q] \to \mathbb{R}[x_j, y_k \mid j \in [r], k \in [s]]$$
$$z_{jk} \mapsto x_j y_k$$

$$I_G = \left\langle z_{\mathcal{G}_1} z_{\mathcal{G}_5} - z_{\mathcal{G}_2} z_{\mathcal{G}_4} \right\rangle$$

Quasi-Independence Gluing

- At first glance one might hope that the ideal I_T can be realized as a *toric fiber product* but no grading of the required form can exist.
- To get around this we developed a generalization of the toric fiber product which we call a *quasi-independence gluing*:

Definition

Let $Q \subseteq [r] \times [s]$ and $I \subseteq \mathbb{K}[x]$ and $J \subseteq \mathbb{K}[y]$ be homogeneous ideals. The *quasi-independence gluing* of I and J with respect to the set Q is

$$I \times_Q J := \phi_Q^{-1}(I+J)$$

where $I + J \subset \mathbb{K}[x, y]$ and

$$\phi_Q : \mathbb{K}[z_{jk} \mid (j,k) \in Q] \to \mathbb{K}[x_j, y_k \mid j \in [r], k \in [s]]$$
$$z_{jk} \mapsto x_j y_k$$

Characteristic Imset Ideals via Quasi-Independence Gluing

Theorem (Hollering - Johnson - 🔴 - Solus)

Let T = ([p], E) be a tree, e = u - v be a non-leaf edge of T. Then $I_T = I_{T_u} \times_Q I_{T_v}$ where Q is the set of partings of T.

Corollary (Hollering - Johnson - 🔴 - Solus)

Let T be a tree. Then there exists a Gröbner basis of I_T that consists of square-free quadratics (tetrads). Moreover, these quadratics can be explicitly constructed via iterated quasi-independence gluing.

Example: Quasi-independence gluing of P_3 and P_5

• Let P_3 and P_5 be the paths on 3 and 5 vertices

$$I_{P_3} = \langle 0 \rangle$$

$$I_{P_5} = \langle y_{\emptyset} y_{24} - y_2 y_4 \rangle$$

- Then $I_{P_6} = I_{P_3} \times_Q I_{P_5} = \phi_Q^{-1}(I_{P_3} + I_{P_5})$
- The quasi-independence ideal associated to this gluing has universal Gröbner basis H_Q generated by the polynomials

$$z_{\emptyset} z_{25} - z_2 z_5 z_{\emptyset} z_{35} - z_3 z_5 z_2 z_{35} - z_3 z_{25}$$

Example: Quasi-independence gluing of P_3 and P_5

• We can find a Gröbner basis for I_{P_6} by *lifting* the only nontrivial generator $y_{\emptyset}y_{24} - y_2y_4$ of I_{P_3} and I_{P_5} to

 $z_{\emptyset} z_{24} - z_2 z_4 \\ z_5 z_{24} - z_{25} z_4$

• The characteristic imset ideal (and also its Gröbner basis) of P_6 therefore can be constructed iteratively by quasi-independence gluing of smaller DAGS:

 $\langle z_{\emptyset}z_{24} - z_2z_4, z_5z_{24} - z_{25}z_4, z_{\emptyset}z_{25} - z_2z_5, z_{\emptyset}z_{35} - z_3z_5, z_2z_{35} - z_3z_{25} \rangle$

Summary

- Understanding the combinatorial structure of characteristic imset polytopes can lead to interesting new results in causal discovery.
- The algebraic structure of the associated toric ideal can help us better understand the combinatorial structure of the polytope.
- *Quasi-independence gluing* is a new operation which generalizes the toric fiber product and can be used to iteratively build larger ideals from smaller ones.
- Characteristic imset ideals of trees are iterated quasi-independence gluings and so we can use this operation to determine a Gröbner basis for I_T .

Question

Are there other families of models that arise from quasi-independence gluing?