UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE

Efficient representation adjustment

Alexander Mangulad Christgau

October 13, 2022

Ongoing work with Niels Richard Hansen ETH-UCPH-TUM Workshop

Interested in a treatment effect $T \longrightarrow Y$.

Interested in a treatment effect $T \longrightarrow Y$. Confounders are indirectly measured via W:

Motivation: challenge 1

Medical record is difficult to model.

If W is a text variable:

- Use a pretrained *text embedding*.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need finetuning².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

If \mathbf{W} is a text variable:

- Use a pretrained *text embedding*.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need finetuning².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

If \mathbf{W} is a text variable:

- Use a pretrained *text embedding*.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need finetuning².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need finetuning².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

If \mathbf{W} is a text variable:

- Use a pretrained *text embedding*.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need *finetuning*².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

If \mathbf{W} is a text variable:

- Use a pretrained *text embedding*.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need finetuning².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

If \mathbf{W} is a text variable:

- Use a pretrained *text embedding*.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need *finetuning*².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

If \mathbf{W} is a text variable:

- Use a pretrained *text embedding*.
- Do standard adjustment on embedding.
- "Double ML¹ with an extra step"

Embeddings need *finetuning*².

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in W?
- Can we leverage the existence of 'over-adjustments'?

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in W?
- Can we leverage the existence of 'over-adjustments'?

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in W?
- Can we leverage the existence of 'over-adjustments'?

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in $\mathbf{W}?$
- Can we leverage the existence of 'over-adjustments'?

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in $\mathbf{W}?$
- Can we leverage the existence of 'over-adjustments'?

It can be natural to adjust for a transformation of ${\bf W}$ rather than ${\bf W}$ itself:

- For challenge 1: An embedding.
- For challenge 2: A projection onto a subset.

Objective: Formulate a general theory for adjustment that accomodates both settings.

It can be natural to adjust for a transformation of ${\bf W}$ rather than ${\bf W}$ itself:

- For challenge 1: An embedding.
- For challenge 2: A projection onto a subset.

Objective: Formulate a general theory for adjustment that accomodates both settings.

- A representation of ${f W}$ is just a transformation ${f Z}=arphi({f W}).$
- Adjusting for **Z** means computing $\chi_t(\mathbf{Z}; P)$ where:

$$\chi_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[b_t(\mathbf{Z}; P)],$$

$$b_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[Y|T = t, \mathbf{Z}]$$

- Assume that $\mathbb{E}_P[Y|\operatorname{do}(T=t)] = \chi_t(\mathbf{W}; P).$
- We want **Z** such that $\chi_t(\mathbf{W}; P) = \chi_t(\mathbf{Z}; P)$.

- A representation of ${\bf W}$ is just a transformation ${\bf Z}=\varphi({\bf W}).$
- Adjusting for **Z** means computing $\chi_t(\mathbf{Z}; P)$ where:

$$\chi_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[b_t(\mathbf{Z}; P)],$$
$$b_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[Y|T = t, \mathbf{Z}]$$

- Assume that $\mathbb{E}_P[Y|\operatorname{do}(T=t)] = \chi_t(\mathbf{W}; P).$
- We want **Z** such that $\chi_t(\mathbf{W}; P) = \chi_t(\mathbf{Z}; P)$.

- A representation of W is just a transformation $\mathbf{Z} = \varphi(\mathbf{W})$.
- Adjusting for Z means computing $\chi_t(\mathbf{Z}; P)$ where:

$$\chi_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[b_t(\mathbf{Z}; P)],$$

$$b_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[Y|T = t, \mathbf{Z}]$$

- Assume that $\mathbb{E}_P[Y|\operatorname{do}(T=t)] = \chi_t(\mathbf{W}; P).$
- We want **Z** such that $\chi_t(\mathbf{W}; P) = \chi_t(\mathbf{Z}; P)$.

- A representation of ${\bf W}$ is just a transformation ${\bf Z}=\varphi({\bf W}).$
- Adjusting for Z means computing $\chi_t(\mathbf{Z}; P)$ where:

$$\chi_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[b_t(\mathbf{Z}; P)],$$

$$b_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[Y|T = t, \mathbf{Z}]$$

- Assume that $\mathbb{E}_P[Y|\operatorname{do}(T=t)] = \chi_t(\mathbf{W}; P).$
- We want **Z** such that $\chi_t(\mathbf{W}; P) = \chi_t(\mathbf{Z}; P)$.

- A representation of W is just a transformation $\mathbf{Z} = \varphi(\mathbf{W})$.
- Adjusting for Z means computing $\chi_t(\mathbf{Z}; P)$ where:

$$\chi_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[b_t(\mathbf{Z}; P)],$$

$$b_t(\mathbf{Z}; P) \coloneqq \mathbb{E}_P[Y|T = t, \mathbf{Z}]$$

- Assume that $\mathbb{E}_P[Y|\operatorname{do}(T=t)] = \chi_t(\mathbf{W}; P).$
- We want \mathbf{Z} such that $\chi_t(\mathbf{W}; P) = \chi_t(\mathbf{Z}; P)$.

- Adjusting for Z is theoretically equivalent to adjusting for any bimeasurable transformation of Z.
- Adjustment depends only on information $\sigma(\mathbf{Z})$.

- Adjusting for Z is theoretically equivalent to adjusting for any bimeasurable transformation of Z.
- Adjustment depends only on information $\sigma(\mathbf{Z})$.

Definition

Let $\mathcal{Z} \subseteq \sigma(\mathbf{W})$ be a σ -algebra. We say \mathcal{Z} is \mathcal{P} -valid if

 $\chi_t(\mathcal{Z}; P) = \chi_t(\mathbf{W}; P),$ for all t and P.

We say \mathcal{Z} is \mathcal{P} -COS if

 $b_t(\mathcal{Z}; P) = b_t(\mathbf{W}; P),$ *P-a.s.* for all *t* and *P*.

If there exists a representation $\mathbf{Z} = \varphi(\mathbf{W})$ such that $\mathcal{Z} = \sigma(\mathbf{Z})$, then \mathcal{Z} is called a *description* of \mathbf{W} .

Suppose $\mathbf{W} \in \mathbb{R}^k$ and let \mathcal{D} be a DAG on the nodes (T, \mathbf{W}, Y) . Assume $\mathcal{P} = \mathcal{M}(\mathcal{D})$ is the set of distributions that are Markovian with respect to \mathcal{D} .

Then:

- For any $\mathbf{Z} \subseteq \mathbf{W}$, the σ -algebra $\sigma(\mathbf{Z})$ is a description of \mathbf{W} .
- **Z** is a *valid adjustment* set if and only if $\sigma(\mathbf{Z})$ is \mathcal{P} -valid.

Suppose $\mathbf{W} \in \mathbb{R}^k$ and let \mathcal{D} be a DAG on the nodes (T, \mathbf{W}, Y) . Assume $\mathcal{P} = \mathcal{M}(\mathcal{D})$ is the set of distributions that are Markovian with respect to \mathcal{D} .

Then:

- For any $\mathbf{Z} \subseteq \mathbf{W}$, the σ -algebra $\sigma(\mathbf{Z})$ is a description of \mathbf{W} .
- **Z** is a *valid adjustment* set if and only if $\sigma(\mathbf{Z})$ is \mathcal{P} -valid.

Suppose $\mathbf{W} \in \mathbb{R}^k$ and let \mathcal{D} be a DAG on the nodes (T, \mathbf{W}, Y) . Assume $\mathcal{P} = \mathcal{M}(\mathcal{D})$ is the set of distributions that are Markovian with respect to \mathcal{D} .

Then:

- For any $\mathbf{Z} \subseteq \mathbf{W}$, the σ -algebra $\sigma(\mathbf{Z})$ is a description of \mathbf{W} .
- **Z** is a *valid adjustment* set if and only if $\sigma(\mathbf{Z})$ is \mathcal{P} -valid.

Assume $\mathbf{W} \in \mathbb{R}^k$ and

$$Y = \alpha T + g(\|\mathbf{W}\|) + \varepsilon_Y, \qquad \mathbb{E}[\varepsilon_Y | T, \mathbf{W}] = 0,$$

where $\alpha \in \mathbb{R}$ and $g \in C^1(\mathbb{R}_{\geq 0})$. Then

- W is the only valid adjustment set for (T, Y).
- $\sigma(||\mathbf{W}||)$ is a \mathcal{P} -COS description of \mathbf{W} .

Assume $\mathbf{W} \in \mathbb{R}^k$ and

$$Y = \alpha T + g(\|\mathbf{W}\|) + \varepsilon_Y, \qquad \mathbb{E}[\varepsilon_Y|T, \mathbf{W}] = 0,$$

where $\alpha \in \mathbb{R}$ and $g \in C^1(\mathbb{R}_{\geq 0})$. Then

- W is the only valid adjustment set for (T, Y).
- $\sigma(||\mathbf{W}||)$ is a \mathcal{P} -COS description of \mathbf{W} .

Semiparametric efficiency bound: If \mathcal{P} is sufficiently dense, all "reasonable" estimators of $\chi_t(\mathbf{W}; P)$ will have asymptotic variance of at least $\mathbb{V}_t(\mathbf{W}; P) := \text{*expression*}$ (Hahn, 1998).

- We can improve the bound for $\mathcal{P} = \mathcal{M}(\mathcal{D})$?
- If Z is a P-valid description of W, then the efficiency bound is at most V_t(Z; P).

³See e.g. Smucler et al. (2022).

Semiparametric efficiency bound: If \mathcal{P} is sufficiently dense, all "reasonable" estimators of $\chi_t(\mathbf{W}; P)$ will have asymptotic variance of at least $\mathbb{V}_t(\mathbf{W}; P) := \text{*expression*}$ (Hahn, 1998).

- We can improve the bound for $\mathcal{P} = \mathcal{M}(\mathcal{D})!?^3$
- If Z is a P-valid description of W, then the efficiency bound is at most V_t(Z; P).

³See e.g. Smucler et al. (2022).

Semiparametric efficiency bound: If \mathcal{P} is sufficiently dense, all "reasonable" estimators of $\chi_t(\mathbf{W}; P)$ will have asymptotic variance of at least $\mathbb{V}_t(\mathbf{W}; P) := \text{*expression*}$ (Hahn, 1998).

- We can improve the bound for $\mathcal{P} = \mathcal{M}(\mathcal{D})!?^3$
- If Z is a P-valid description of W, then the efficiency bound is at most V_t(Z; P).

³See e.g. Smucler et al. (2022).

The conditional outcome algebra

The information in $\sigma(\mathbf{W})$ that is "minimally sufficient" for prediction of Y|T = t should be more efficient than \mathbf{W} for adjustment.

Theorem

For each $P \in \mathcal{P}$ define $\mathcal{Q}_P = \sigma(b_0(\mathbf{W}; P), b_1(\mathbf{W}; P))$ and let

$$\mathcal{Q} \coloneqq \bigvee_{P \in \mathcal{P}} \mathcal{Q}_P.$$

A description Z is P-COS if and only if Z contains Q. Under additive noise on Y, it holds that

$$\mathbb{V}_t(\mathcal{Z}; P) - \mathbb{V}_t(\mathcal{Q}; P) = (\ldots) \ge 0,$$

for all \mathcal{P} -COS descriptions \mathcal{Z} . In particular, the formula holds with $\mathcal{Z} = \sigma(\mathbf{W})$.

*Technical details about nullsets removed from theorem.

Summary

- There can be good reasons to transform a covariate W before adjustment:
 - **1** Embed W into euclidean space (practical)
 - 2 Remove overadjustment and redundant information (efficient)
- σ -algebras are an abstraction that account for equivalent representations.
- Many ideas for adjustment in DAGs generalize to similar non-graphical situations.

Some other topics (ongoing):

- General efficiency comparsion for descriptions.
- "Differentiable adjustment selection".
- Estimation algorithms and asymptotic analysis.

References

- Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., & Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, *21*(1), C1–C68. https://doi.org/10.1111/ectj.12097
- Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment effects. *Econometrica*, 315–331.
- Henckel, L., Perković, E., & Maathuis, M. H. (2022). Graphical criteria for efficient total effect estimation via adjustment in causal linear models. *Journal of the Royal Statistical Society: Series B (Statistical Methodology), 84*(2), 579–599. https://doi.org/10.1111/rssb.12451
- Rotnitzky, A., & Smucler, E. (2020). Efficient adjustment sets for population average causal treatment effect estimation in graphical models.. J. Mach. Learn. Res., 21(188), 1–86.
- Smucler, E., Sapienza, F., & Rotnitzky, A. (2022). Efficient adjustment sets in causal graphical models with hidden variables. *Biometrika*, 109(1), 49–65.
- Veitch, V., Sridhar, D., & Blei, D. (2020). Adapting text embeddings for causal inference. Conference on Uncertainty in Artificial Intelligence, 919–928.
- Veitch, V., Wang, Y., & Blei, D. (2019). Using embeddings to correct for unobserved confounding in networks. Advances in Neural Information Processing Systems, 32.

Comparison lemmas

Generalizations from Henckel et al. (2022) and Rotnitzky and Smucler (2020).

Lemma (Deletion of overadjustment)

Fix a $P \in \mathcal{P}$ and let $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \subseteq \sigma(\mathbf{W})$ be σ -algebras such that $Y \perp \mathcal{I}_P \mathcal{Z}_2 \mid T, \mathcal{Z}_1$. Then \mathcal{Z}_1 is P-valid if and only if \mathcal{Z}_2 is P-valid. In any case,

$$\mathbb{V}_t(\mathcal{Z}_2; P) - \mathbb{V}_t(\mathcal{Z}_1; P) = (\ldots) \ge 0.$$

Lemma (Supplementation with precision)

Fix $P \in \mathcal{P}$ and let $\mathcal{Z}_1 \subseteq \mathcal{Z}_2 \subseteq \sigma(\mathbf{W})$ be σ -algebras such that $T \perp \mathcal{I}_P \mathcal{Z}_2 \mid \mathcal{Z}_1$. Then \mathcal{Z}_1 is P-valid if and only if \mathcal{Z}_2 is P-valid. In any case,

 $\mathbb{V}_t(\mathcal{Z}_1; P) - \mathbb{V}_t(\mathcal{Z}_2; P) = (\ldots) \ge 0.$