Efficient representation adjustment

Alexander Mangulad Christgau

October 13, 2022
Ongoing work with Niels Richard Hansen
ETH-UCPH-TUM Workshop

Motivation

Interested in a treatment effect $T \longrightarrow Y$.

Motivation

Interested in a treatment effect $T \longrightarrow Y$.
Confounders are indirectly measured via \mathbf{W} :

Motivation: challenge 1

Medical record is difficult to model.

If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adiustment on embedding "Double ML^{1} with an extra step"

Medical record

Motivation: challenge 1

Medical record is difficult to model.
If \mathbf{W} is a text variable:

Medical record

Motivation: challenge 1

Medical record is difficult to model.
If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adjustment on embedding.
- "Double ML^{1} with an extra step"

Medical record

Motivation: challenge 1

Medical record is difficult to model.
If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adjustment on embedding.
- "Double ML ${ }^{1}$ with an extra step"

Motivation: challenge 1

Medical record is difficult to model.
If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adjustment on embedding.
- "Double ML ${ }^{1}$ with an extra step"

Embeddings need finetuning ${ }^{2}$
 - Is it valid io finetune embedding once for all prediction tasks?
 - Is there an "optimal" way to finetune the embedding?

[^0]
Motivation: challenge 1

Medical record is difficult to model.

If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adjustment on embedding.
- "Double ML ${ }^{1}$ with an extra step"

Embeddings need finetuning ${ }^{2}$.

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

[^1]
Motivation: challenge 1

Medical record is difficult to model.

If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adjustment on embedding.
- "Double ML ${ }^{1}$ with an extra step"

Embeddings need finetuning ${ }^{2}$.

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

[^2]
Motivation: challenge 1

Medical record is difficult to model.

If \mathbf{W} is a text variable:

- Use a pretrained text embedding.
- Do standard adjustment on embedding.
- "Double ML ${ }^{1}$ with an extra step"

Embeddings need finetuning ${ }^{2}$.

- Is it valid to finetune embedding once for all prediction tasks?
- Is there an "optimal" way to finetune the embedding?

[^3]
Motivation: challenge 2

Medical record is highly predictive of treatment assignment

- Problematic for inverse propensity weighting.
- Sunnose that confounding traits can categorized

- Can we formally distinguish information in W?
- Can we 'everage the existence of 'over-adjustments'?

Motivation: challenge 2

Medical record is highly predictive of treatment assignment

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized

- Can we formally distinguish information in \mathbf{W} ?
- Can we leverage the existence of 'over-adiustment's'?

Motivation: challenge 2

Medical record is highly predictive of treatment assignment

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in W?
- Can we leverage the existence of 'over-adjustments'?

Motivation: challenge 2

Medical record is highly predictive of treatment assignment

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in W?
- Can we leverage the existence of 'over-adjustments'?

Motivation: challenge 2

Medical record is highly predictive of treatment assignment

- Problematic for inverse propensity weighting.
- Suppose that confounding traits can categorized:

- Can we formally distinguish information in W?
- Can we leverage the existence of 'over-adjustments'?

Motivation: synthesis

It can be natural to adjust for a transformation of \mathbf{W} rather than W itself:

- For challenge 1: An embedding.
- For challenge 2: A projection onto a subset.

Objective: Formulate a general theory for adjustment that
accomodates both settings.

Motivation: synthesis

It can be natural to adjust for a transformation of \mathbf{W} rather than W itself:

- For challenge 1: An embedding.
- For challenge 2: A projection onto a subset.

Objective: Formulate a general theory for adjustment that accomodates both settings.

Adjusting for representations

Let $(T, \mathbf{W}, Y) \sim P$ for some $P \in \mathcal{P}$.

- A representation of W is just a transformation $\mathrm{Z}=\varphi(\mathrm{W})$.
- Adjusting for \mathbf{Z} means computing $\chi_{t}(\mathbf{Z} ; P)$ where:

$$
\begin{aligned}
& \chi_{t}(\mathbb{Z} ; P)=\mathbb{T}_{P}\left[b_{t}(\mathbf{Z} ; P)\right] \\
& b_{t}(Z ; P):=\mathbb{E}_{P}[Y \mid T=t, Z] .
\end{aligned}
$$

- Assume that $\mathbb{E}_{P}[Y \mid \operatorname{do}(T=t)]=\chi_{t}(\mathbf{W} ; P)$
- We want \mathbf{Z} such that $\chi_{+}(\mathbf{W}: P)=\chi_{+}(\mathbf{Z}: P)$

Adjusting for representations

Let $(T, \mathbf{W}, Y) \sim P$ for some $P \in \mathcal{P}$.

- A representation of \mathbf{W} is just a transformation $\mathbf{Z}=\varphi(\mathbf{W})$.
- Adjusting for \mathbf{Z} means computing $\chi_{t}(\mathbf{Z} ; P)$ where:

$$
\begin{aligned}
\chi_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}\left[b_{t}(\mathbf{Z} ; P)\right], \\
b_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}[Y \mid T=t, \mathbf{Z}] .
\end{aligned}
$$

- Assume that $\mathbb{E}_{P}[Y \mid \operatorname{do}(T=t)]=\chi_{t}(\mathbf{W} ; P)$
- We want \mathbf{Z} such that $\chi_{+}(\mathbf{W}: P)=\chi_{+}(\mathbf{Z}: P)$

Adjusting for representations

Let $(T, \mathbf{W}, Y) \sim P$ for some $P \in \mathcal{P}$.

- A representation of \mathbf{W} is just a transformation $\mathbf{Z}=\varphi(\mathbf{W})$.
- Adjusting for \mathbf{Z} means computing $\chi_{t}(\mathbf{Z} ; P)$ where:

$$
\begin{aligned}
\chi_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}\left[b_{t}(\mathbf{Z} ; P)\right], \\
b_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}[Y \mid T=t, \mathbf{Z}] .
\end{aligned}
$$

- Assume that $\mathbb{E}_{P}[Y \mid \operatorname{do}(T=t)]=\chi_{t}(\mathbf{W} ; P)$
- We want \mathbf{Z} such that $\chi_{+}(\mathbf{W}: P)=\chi_{+}(\mathbf{Z}: P)$.

Adjusting for representations

Let $(T, \mathbf{W}, Y) \sim P$ for some $P \in \mathcal{P}$.

- A representation of \mathbf{W} is just a transformation $\mathbf{Z}=\varphi(\mathbf{W})$.
- Adjusting for \mathbf{Z} means computing $\chi_{t}(\mathbf{Z} ; P)$ where:

$$
\begin{aligned}
\chi_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}\left[b_{t}(\mathbf{Z} ; P)\right], \\
b_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}[Y \mid T=t, \mathbf{Z}] .
\end{aligned}
$$

- Assume that $\mathbb{E}_{P}[Y \mid \operatorname{do}(T=t)]=\chi_{t}(\mathbf{W} ; P)$.
- We want \mathbf{Z} such that $\chi_{t}(\mathbf{W} ; P)=\chi_{t}(\mathbf{Z} ; P)$.

Adjusting for representations

Let $(T, \mathbf{W}, Y) \sim P$ for some $P \in \mathcal{P}$.

- A representation of \mathbf{W} is just a transformation $\mathbf{Z}=\varphi(\mathbf{W})$.
- Adjusting for \mathbf{Z} means computing $\chi_{t}(\mathbf{Z} ; P)$ where:

$$
\begin{aligned}
\chi_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}\left[b_{t}(\mathbf{Z} ; P)\right], \\
b_{t}(\mathbf{Z} ; P) & :=\mathbb{E}_{P}[Y \mid T=t, \mathbf{Z}] .
\end{aligned}
$$

- Assume that $\mathbb{E}_{P}[Y \mid \operatorname{do}(T=t)]=\chi_{t}(\mathbf{W} ; P)$.
- We want \mathbf{Z} such that $\chi_{t}(\mathbf{W} ; P)=\chi_{t}(\mathbf{Z} ; P)$.

Observation

- Adjusting for \mathbf{Z} is theoretically equivalent to adjusting for any bimeasurable transformation of \mathbf{Z}.
- Adjustment depends only on information $\sigma(\mathbf{Z})$

Observation

- Adjusting for \mathbf{Z} is theoretically equivalent to adjusting for any bimeasurable transformation of \mathbf{Z}.
- Adjustment depends only on information $\sigma(\mathbf{Z})$.

General adjustment

Definition

Let $\mathcal{Z} \subseteq \sigma(\mathbf{W})$ be a σ-algebra.
We say \mathcal{Z} is \mathcal{P}-valid if

$$
\chi_{t}(\mathcal{Z} ; P)=\chi_{t}(\mathbf{W} ; P), \quad \text { for all } t \text { and } P
$$

We say \mathcal{Z} is \mathcal{P}-COS if

$$
b_{t}(\mathcal{Z} ; P)=b_{t}(\mathbf{W} ; P), \quad P \text {-a.s. for all } t \text { and } P .
$$

If there exists a representation $\mathbf{Z}=\varphi(\mathbf{W})$ such that $\mathcal{Z}=\sigma(\mathbf{Z})$, then \mathcal{Z} is called a description of \mathbf{W}.

Relation to adjustment sets

Example

Suppose $\mathbf{W} \in \mathbb{R}^{k}$ and let \mathcal{D} be a DAG on the nodes (T, \mathbf{W}, Y). Assume $\mathcal{P}=\mathcal{M}(\mathcal{D})$ is the set of distributions that are Markovian with respect to \mathcal{D}.

Relation to adjustment sets

Example

Suppose $\mathbf{W} \in \mathbb{R}^{k}$ and let \mathcal{D} be a DAG on the nodes (T, \mathbf{W}, Y). Assume $\mathcal{P}=\mathcal{M}(\mathcal{D})$ is the set of distributions that are Markovian with respect to \mathcal{D}.
Then:

- For any $\mathbf{Z} \subseteq \mathbf{W}$, the σ-algebra $\sigma(\mathbf{Z})$ is a description of \mathbf{W}.
- \mathbf{Z} is a valid adjustment set if and only if $\sigma(\mathbf{Z})$ is \mathcal{P}-valid.

Relation to adjustment sets

Example

Suppose $\mathbf{W} \in \mathbb{R}^{k}$ and let \mathcal{D} be a DAG on the nodes (T, \mathbf{W}, Y). Assume $\mathcal{P}=\mathcal{M}(\mathcal{D})$ is the set of distributions that are Markovian with respect to \mathcal{D}.
Then:

- For any $\mathbf{Z} \subseteq \mathbf{W}$, the σ-algebra $\sigma(\mathbf{Z})$ is a description of \mathbf{W}.
- \mathbf{Z} is a valid adjustment set if and only if $\sigma(\mathbf{Z})$ is \mathcal{P}-valid.

Non-graphical example

Example

Assume $\mathbf{W} \in \mathbb{R}^{k}$ and

$$
Y=\alpha T+g(\|\mathbf{W}\|)+\varepsilon_{Y}, \quad \mathbb{E}\left[\varepsilon_{Y} \mid T, \mathbf{W}\right]=0
$$

where $\alpha \in \mathbb{R}$ and $g \in C^{1}\left(\mathbb{R}_{\geq 0}\right)$. Then

- \mathbf{W} is the only valid adjustment set for (T, Y).
- $\sigma(\|\mathbf{W}\|)$ is a $\mathcal{P}-C O S$ description of \mathbf{W}.

Non-graphical example

Example

Assume $\mathbf{W} \in \mathbb{R}^{k}$ and

$$
Y=\alpha T+g(\|\mathbf{W}\|)+\varepsilon_{Y}, \quad \mathbb{E}\left[\varepsilon_{Y} \mid T, \mathbf{W}\right]=0
$$

where $\alpha \in \mathbb{R}$ and $g \in C^{1}\left(\mathbb{R}_{\geq 0}\right)$. Then

- \mathbf{W} is the only valid adjustment set for (T, Y).
- $\sigma(\|\mathbf{W}\|)$ is a \mathcal{P}-COS description of \mathbf{W}.

Efficiency

Semiparametric efficiency bound: If \mathcal{P} is sufficiently dense, all "reasonable" estimators of $\chi_{t}(\mathbf{W} ; P)$ will have asymptotic variance of at least $\mathbb{V}_{t}(\mathbf{W} ; P):=$ *expression* (Hahn, 1998).

- We can improve the bound for $\mathcal{P}=\mathcal{M}(\mathcal{D})!^{3}$
- If \mathcal{Z} is a \mathcal{P}-valid description of \mathbf{W}, then the efficiency bound
is at most $\mathbb{V}_{t}(\mathcal{Z} ; P)$

Efficiency

Semiparametric efficiency bound: If \mathcal{P} is sufficiently dense, all "reasonable" estimators of $\chi_{t}(\mathbf{W} ; P)$ will have asymptotic variance of at least $\mathbb{V}_{t}(\mathbf{W} ; P):=$ *expression* (Hahn, 1998).

- We can improve the bound for $\mathcal{P}=\mathcal{M}(\mathcal{D})!?^{3}$
- If \mathcal{Z} is a \mathcal{P}-valid description of \mathbf{W}, then the efficiency bound is at most $\mathbb{V}_{t}(\mathcal{Z} ; P)$

[^4]
Efficiency

Semiparametric efficiency bound: If \mathcal{P} is sufficiently dense, all "reasonable" estimators of $\chi_{t}(\mathbf{W} ; P)$ will have asymptotic variance of at least $\mathbb{V}_{t}(\mathbf{W} ; P):=$ *expression* (Hahn, 1998).

- We can improve the bound for $\mathcal{P}=\mathcal{M}(\mathcal{D})!?^{3}$
- If \mathcal{Z} is a \mathcal{P}-valid description of \mathbf{W}, then the efficiency bound is at most $\mathbb{V}_{t}(\mathcal{Z} ; P)$.

The conditional outcome algebra

The information in $\sigma(\mathbf{W})$ that is "minimally sufficient" for prediction of $Y \mid T=t$ should be more efficient than \mathbf{W} for adjustment.

The conditional outcome algebra

Theorem

For each $P \in \mathcal{P}$ define $\mathcal{Q}_{P}=\sigma\left(b_{0}(\mathbf{W} ; P), b_{1}(\mathbf{W} ; P)\right)$ and let

$$
\mathcal{Q}:=\bigvee_{P \in \mathcal{P}} \mathcal{Q}_{P}
$$

A description \mathcal{Z} is \mathcal{P}-COS if and only if \mathcal{Z} contains \mathcal{Q}. Under additive noise on Y, it holds that

$$
\mathbb{V}_{t}(\mathcal{Z} ; P)-\mathbb{V}_{t}(\mathcal{Q} ; P)=(\ldots) \geq 0
$$

for all \mathcal{P}-COS descriptions \mathcal{Z}. In particular, the formula holds with $\mathcal{Z}=\sigma(\mathbf{W})$.
*Technical details about nullsets removed from theorem.

Summary

- There can be good reasons to transform a covariate \mathbf{W} before adjustment:
(1) Embed \mathbf{W} into euclidean space (practical)
(2) Remove overadjustment and redundant information (efficient)
- σ-algebras are an abstraction that account for equivalent representations.
- Many ideas for adjustment in DAGs generalize to similar non-graphical situations.

Some other topics (ongoing):

- General efficiency comparsion for descriptions.
- "Differentiable adjustment selection".
- Estimation algorithms and asymptotic analysis.

References

References

Chernozhukov，V．，Chetverikov，D．，Demirer，M．，Duflo，E．，Hansen，C．，Newey，W．，\＆ Robins，J．（2018）．Double／debiased machine learning for treatment and structural parameters．The Econometrics Journal，21（1），C1－C68．
https：／／doi．org／10．1111／ectj． 12097
Hahn，J．（1998）．On the role of the propensity score in efficient semiparametric estimation of average treatment effects．Econometrica，315－331．
Henckel，L．，Perković，E．，\＆Maathuis，M．H．（2022）．Graphical criteria for efficient total effect estimation via adjustment in causal linear models．Journal of the Royal Statistical Society：Series B（Statistical Methodology），84（2），579－599． https：／／doi．org／https：／／doi．org／10．1111／rssb． 12451
Rotnitzky，A．，\＆Smucler，E．（2020）．Efficient adjustment sets for population average causal treatment effect estimation in graphical models．．J．Mach．Learn．Res．，21（188），1－86．

Smucler，E．，Sapienza，F．，\＆Rotnitzky，A．（2022）．Efficient adjustment sets in causal graphical models with hidden variables．Biometrika，109（1），49－65．
國 Veitch，V．，Sridhar，D．，\＆Blei，D．（2020）．Adapting text embeddings for causal inference． Conference on Uncertainty in Artificial Intelligence，919－928．
－Veitch，V．，Wang，Y．，\＆Blei，D．（2019）．Using embeddings to correct for unobserved confounding in networks．Advances in Neural Information Processing Systems， 32.

Comparison lemmas

Generalizations from Henckel et al. (2022) and Rotnitzky and Smucler (2020).

Lemma (Deletion of overadjustment)

Fix a $P \in \mathcal{P}$ and let $\mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \subseteq \sigma(\mathbf{W})$ be σ-algebras such that $Y \Perp_{P} \mathcal{Z}_{2} \mid T, \mathcal{Z}_{1}$. Then \mathcal{Z}_{1} is P-valid if and only if \mathcal{Z}_{2} is P-valid. In any case,

$$
\mathbb{V}_{t}\left(\mathcal{Z}_{2} ; P\right)-\mathbb{V}_{t}\left(\mathcal{Z}_{1} ; P\right)=(\ldots) \geq 0
$$

Lemma (Supplementation with precision)

Fix $P \in \mathcal{P}$ and let $\mathcal{Z}_{1} \subseteq \mathcal{Z}_{2} \subseteq \sigma(\mathbf{W})$ be σ-algebras such that $T \Perp_{P} \mathcal{Z}_{2} \mid \mathcal{Z}_{1}$. Then \mathcal{Z}_{1} is P-valid if and only if \mathcal{Z}_{2} is P-valid. In any case,

$$
\mathbb{V}_{t}\left(\mathcal{Z}_{1} ; P\right)-\mathbb{V}_{t}\left(\mathcal{Z}_{2} ; P\right)=(\ldots) \geq 0
$$

[^0]: ${ }^{1}$ Chernozhukov et al. (2018)

[^1]: ${ }^{1}$ Chernozhukov et al. (2018)
 ${ }^{2}$ Veitch et al. (2020), Veitch et al. (2019)

[^2]: ${ }^{1}$ Chernozhukov et al. (2018)
 ${ }^{2}$ Veitch et al. (2020), Veitch et al. (2019)

[^3]: ${ }^{1}$ Chernozhukov et al. (2018)
 ${ }^{2}$ Veitch et al. (2020), Veitch et al. (2019)

[^4]: ${ }^{3}$ See e.g. Smucler et al. (2022).

