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Exponential family

Consider minimally represented and steep exponential family
& = {Py |6 € ©} with canonical statistic t : X —> R¥ and canonical
parameter 6:

p(x;0) = exp{(0,t(x))— A(0)} for 6 € © < R,

where v{x : (\ t(x)) =c} =0if A #0.
The space of canonical parameters is

O —int {oeRk:Lexp{G) E(x))} v( }

and the cumulant function A: © — R is strictly convex and smooth with a
gradient tending to oo at the boundary of ©.
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Mixed parametrisation
The map p between the canonical parameter 8 € © and the mean parameter
€ M satisfies

() = VA(6)
and establishes a smooth bijection between © and M. The inverse map is
0 = 0(p).
Split canonical statistic into subvectors t(x) = (u, v) of dimension r,s
where r + s = k with 8 = (0,,0,), p = (u,, i) corresponding splits.
The pair (p,,,0,) forms an alternative parametrization £ called the mixed
parametrization with p,, and 6, variation independent (Barndorff-Nielsen,
1978, Theorem 8.4).
Thus we may without ambiguity write

52{P9|‘9€@}Z{PMWGM}Z{P(uu,ov)muEMu,evG@v}-
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Mixed convex exponential family

Definition

Fix a mixed parametrization (p,,, 0,) of the exponential family £. Consider
submodel & =&, n &, € &, where

(i) €&y ={Pu|pme Cy} where C, < M is given by convex constraints on p,,;
(i) & = {Pg |0 € C,} where C, < © is given by convex constraints on 6,
Then &’ is called a mixed convex submodel of £ and a mixed convex

exponential family.

It is important that the restrictions concern variation independent
components of the parameters associated with t.
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Locally associated Gaussian graphical models

For the multivariate Gaussian we have
1
t(x) = —xx7/2, 0 = K, p= ~%/2, A(K) = — logdet K.

© is the cone of positive definite matrices and M the cone of negative
definite matrices.

Example

Fix a graph G = (V, E) and consider the family Ny (0, X).

Split to u = (—x;xj/2)jjcE, and v = (—x;x;/2)j¢e. Include —x?/2 in u.
Then p, = (=%;/2)jiee and 8, = (Kjj)j¢E.

Mixed convex family given by p, < 0 and 8, = 0 is a locally associated
Gaussian graphical model (Lauritzen and Zwiernik, 2022).
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Association and positivity

Definition
A random vector X with values in R is associated if it holds for any pair
f,g : RY — R of functions that are non-decreasing in each coordinate that

V(f(X),g(X)) = 0.

Association is easy to check in the Gaussian case:

Theorem (Pitt (1982))
Suppose X is a Gaussian vector with covariance . then

X is associated <+<— X = 0.
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Relaxing the positivity
Although variants of positivity occur in many applications in finance, gene
expression, etc. it often appears too strong.

So consider an undirected graph G = (V, E). We define

Definition
A random vector X with values in RY is locally associated w.r.t. G if it holds
for every clique C € C and any pair f,g : R¢ — R of non-decreasing

functions that
V(f(Xc),g(Xc)) = 0.

We then clearly have from Pitt’s theorem:

Theorem
A Gaussian vector X is locally associated w.r.t. G if and only if oj; = 0 for all
edges ij € E.
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Locally associated Gaussian graphical models

Now combine the local association with conditional independence
restrictions. So let A(G) denote the Gaussian distributions that are locally
associated and M(G) denote those that are Markov w.r.t. G.

Definition
A locally associated Gaussian graphical model (1aGGM) is determined by an
undirected graph G and the family of Gaussian distributions

M, (G) = A(G) A M(G).

Thus clearly a mixed convex exponential family.
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Another mixed convex exponential family

Example
X and Y values in § ={0,1,...,k} with p,, =P(X =x,Y =y) >0
May be mixed parametrized with the marginals

Px+ = Px+, X € S\{0},  p4y = piy, y € S\{0}

and the interactions 0, = log 2222, x,y € S\{0}
<0 Poy

Consider the hypothesis of marginal homogeneity

Px+ = p4x forall xe S (1)
in combination with the distribution being MTP5:
Ouy + Oxryr — Oy — Oy, =0 forall x> x"and y > y'. (2)

The restriction (1) is convex (linear) in p and (2) is convex in 6.
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A small modification

Example

Another alternative would exploit that categories are ordered and for
example specify that p;, is stochastically smaller than p.; i.e.

J J
Z Pt < Z pyy forall j€ S,
x=0 y=0

yielding a convex restriction also on the mean parameters; see Agresti (1983)
and Agresti (2003) for further details of this model.

Note that without the result on variation independence of the mixed
parametrization, it is not so clear that MTP> and the stochastic ordering are
variation independent restrictions.
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Likelihood and conjugate functions

Problem: Likelihood function may have multiple local maxima over £’ as
the restrictions are not convex in @ and we consider another estimator.

Given a random sample XU, ..., X(" of size n denote
t=t,= > t(XD)/n
i=1

The log-likelihood function is strictly convex in 8 and

00;t) = (0,t)— A(0).
Since V/(0;t) =t — VA(0) = t — 1(0), the unique optimizer is @ = 0(t).
The Fenchel conjugate of A is the strictly convex function

A*(p) = sup{l(0; ) : 0 € R}.
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Dual likelihood function

For any fixed 6, the function

~

U(p; ) = (0, ) — A*(u)
is strictly concave in p and called the dual log-likelihood function.

Analogously to the log-likelihood function, 7 satisfies

~

Vul(1i6) = 6~ VA" () = 0—6(u).
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Kullback—Leibler divergence
Consider two distributions in £, one with the mean parameter p; and the
other with canonical parameter 5.

The Kullback—Leibler divergence D(f | g) = {log(f(x)/g(x))f(x) dx between
these is
K(py,02) = —(py, 02) + A" (py) + A(62).

The Kullback—Leibler divergence K(p,0>) is strictly convex both in pq and
in 8>. Also

VuK(py,62) = =62 + VA (1) = 0(py) — 62

and
VoK(u1,02) = —py + VA(O2) = p(02) —

Steffen Lauritzen — Mixed Convex Exponential Families — Raitenhaslach October 2022
Slide 14/28




UNIVERSITY OF COPENHAGEN DEPARTMENT OF MATHEMATICAL SCIENCES

The mixed dual estimator

We propose a two-step procedure to estimate the mixed parameter (p,,,6,)
in the mixed convex family from data t:

(S1) First minimize K(t,8) over 6 € C, < ©. Denote the unique optimum,
assuming it exists, by 6.

(S2) Then minimize K(p, @) subject to p € C, < M. Denote the unique
optimum by fi.

The resulting f1 is the mixed dual estimator (MDE) of p.

Both steps (S1) and (S2) are convex optimization problems.

The optimum in (S1) is the MLE under the convex exponential family given
by 8 € C,.
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Fundamental properties

If the optimum @ in (S1) exists then it is unique and the optimum Ji in (S2)
exists and is unique too.

Theorem

Let t = (u,v) and suppose that 6 in step (S1) exists. Then,

wy(0) = ue My, and in step (S2) we get that 0, (1) = 0,.

In particular, after steps (S1) and (S2), the optimum i lies in the mixed
convex family &’.

Thus (52) preserves constraints of (S1).
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Asymptotics

Let fi,, be the MLE for n observations and fi,, the MDE.

Theorem

The MDE and MLE are asymptotically equivalent, i.e. \/n(ft, — fi,) — 0 in
probability, \/n(fi,, — pg) converges to the same limiting distribution as

ﬁ(ﬁ'n - “0)'

The proof is technical but relies on the fact that £(¢, t) and #(1, t) have
the same Hessian at the MLE and the components of the MLE for the mixed
parameter are asymptotically independent.

Note that the asymptotic distribution involved may be quite complicated,

obtained by projecting the mixed parameters of the usual asymptotic normal
distribution onto the relevant convex sets.
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Estimation in a laGGM

If the MDE ¥ of ¥ under M, (G) = A(G) n M(G) exists, it is the unique positive
definite solution to the following where K = >~ and K = ¥ 1:

= Sj, ij € E(G);
i=Si, 1eV(G);
. ¢EG); 0=Kyj ij¢E(G)
, ijeE(G);
i, i€ E(G);
i i, 1€V(G);

M M
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vii) ¥5(Kj — Kj) =0, ije E(G).
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Algorithms

Generally, the MDE leads to solving two convex optimization problems, and
good methods for solving these may have to be developed case by case.

For the case of laGGMs, Lauritzen and Zwiernik (2022) developed a simple
generic algorithm—the GOLAZO—for solving that particular problem and a
range of other relevant problems associated with Gaussian graphical models.
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The GOLAZO

Let L, U be two d x d matrices with entries in R U {—c0, +o0} satisfying
Li <0< Ujforall i # .

Denote
HKHLU = Z max{L,-jK,-j, U,JK,J}
i#j
The function | K|y is convex, positively homogeneous, continuous, and
non-negative.

Although it is sublinear, that is
|K + K'lu < K[ + 1K Lu,

it does not define a norm unless |L;| = |Uj| for all i # j. We aim at solving
the following problem
minimize — (,(K) + | K] Lu,
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GOLAZO instances

minimize — £,(K) + | K] v,

where
HKHLU = 2 max{L,-jK,-j,U,'jK,-j}.
i#j

Graphical lasso |Lj| = |Uj| = p > 0 forall i # j

Positive graphical lasso L =0 and Uj; = p for all i #

MTP; Gaussian L =0 and U = +oo for all i # j (o0 -0 = 0)

Gaussian graphical models To ensure Kj; =0, let Ljj = —00, Ujj = +00

Mixed dual estimate Replace K with ¥, S with k, let Ljj = —o0 and
Uj=0foralli#j
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Exploiting duality

Note that
max{L,-J-K,-j, UUKU} = sup I',-J-K,--
and so

|K|iv = sup tr(FK)
L<r<U

whereby the optimization may be written as

inf sup {—logdetK +tr((S+NK) }.
K>0 1 <r<u

Swapping inf with sup and using that the infimum with respect to K of the
expression is attained as K = (S + )™, we obtain the dual problem by
letting X = S + T

maximize logdetY +d subjectto S+L<E<<S+U.
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Description of the algorithm

For the j-th row we consider logdet ¥ as the function of ¥;,; keeping the
other entries of ¥ fixed. We have

logdet T = logdet ¥\; + logdet(Z; — L;\;(Ty;) ')

Thus maximizing log det > with respect to y := % ;\; is equivalent to
minimizing y 7 (X;) 'y under the linear conditions that

Sij + Ljj < yi < Sjj + Ujj for every i € V\{j}. This is an instance of a
quadratic program.

The starting point ¥0 of the algorithm needs to be chosen carefully so that
¥ 9 is dually feasible. In this case, each iterate of the algorithm is guaranteed
to be dually feasible.

To solve the quadratic program in each iteration we use the quadprog
package in R.
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The GOLAZO algorithm

Data: Positive semidefinite matrix S, penalty matrices L < 0 < U.
Result: A maximizer of the dual problem.
Initialize: ¥ = X9 (a dually feasible point);
while no convergence do
forj=1,...,d do
Update ¥;\; < ¥, where

y = argmin (TE) Yy S+ Ly <y <Sy+ U b

end
end
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Convergence and starting point
To establish convergence we track the duality gap
tr(SK) —d+ HK”Lu,

which is non-negative for each step of the algorithm, decreases at each
iteration, and is zero at the optimum.

We stop the algorithm once this positive gap becomes sufficiently close to
zero.

We have methods for identifying a dually feasible starting point.

This implies that for the graphical lasso, the optimum always exists even
when the diagonal is not penalized. Generally this holds for the GOLAZO if
L,‘j <0< U,J
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Positive co-expression gene network

Microarray expression data profiling umbilical cord (UC) tissue; cf. Costa
and Castelo (2016). Obtained from Robert Castelo in a normalized and
filtered version.

Set of 12,093 genes reduced to 704 with a role in the innate immune
response. Then further reduced by focusing on a subset of 136 upregulated
genes.

Vanilla implementation of GOLAZO (available on GitHub in package
golazo) less than a minute on a standard laptop.

Resulting positive graphical lasso estimate K? for p = .5 (optimal using
EBIC) is very sparse with edge density 0.067. Still diameter of this graph is
very small, just 5.

Optimum K? not an M-matrix. However, estimated distribution is locally
associated so second step of procedure is redundant.
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Partial correlations in gene network

Positive partial correlations are indicated with green color and negative
partial correlations with red color. The thickness of edges is proportional to

their absolute size.
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