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Exponential family

Consider minimally represented and steep exponential family
E � tPθ |θ P Θu with canonical statistic t : X ÞÑ Rk and canonical
parameter θ:

ppx ;θq � exptxθ, tpxqy � Apθqu for θ P Θ � Rk ,

where νtx : xλ, tpxqy � cu � 0 if λ � 0.

The space of canonical parameters is

Θ :� int

"
θ P Rk :

»
X
exp

 xθ, tpxqy( νpdxq   8
*

and the cumulant function A : ΘÑ R is strictly convex and smooth with a
gradient tending to 8 at the boundary of Θ.
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Mixed parametrisation
The map µ between the canonical parameter θ P Θ and the mean parameter
µ P M satisfies

µpθq � ∇Apθq
and establishes a smooth bijection between Θ and M. The inverse map is
θ � θpµq.
Split canonical statistic into subvectors tpxq � pu, vq of dimension r , s
where r � s � k with θ � pθu,θv q, µ � pµu,µv q corresponding splits.

The pair pµu,θv q forms an alternative parametrization E called the mixed
parametrization with µu and θv variation independent (Barndorff-Nielsen,
1978, Theorem 8.4).

Thus we may without ambiguity write

E � tPθ |θ P Θu � tPµ |µ P Mu � tPpµu ,θv q |µu P Mu,θv P Θvu.
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Mixed convex exponential family

Definition

Fix a mixed parametrization pµu,θv q of the exponential family E . Consider
submodel E 1 � Eu X Ev � E , where
(i) Eu � tPµ |µ P Cuu where Cu � M is given by convex constraints on µu;

(ii) Ev � tPθ |θ P Cvu where Cv � Θ is given by convex constraints on θv

Then E 1 is called a mixed convex submodel of E and a mixed convex
exponential family.

It is important that the restrictions concern variation independent
components of the parameters associated with t.
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Locally associated Gaussian graphical models
For the multivariate Gaussian we have

tpxq � �xxT {2, θ � K , µ � �Σ{2, ApK q � �1

2
log detK .

Θ is the cone of positive definite matrices and M the cone of negative
definite matrices.

Example

Fix a graph G � pV ,E q and consider the family NV p0,Σq.
Split to u � p�xixj{2qijPE , and v � p�xixj{2qijRE . Include �x2i {2 in u.

Then µu � p�Σij{2qijPE and θv � pKijqijRE .
Mixed convex family given by µu ¤ 0 and θv � 0 is a locally associated
Gaussian graphical model (Lauritzen and Zwiernik, 2022).
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Association and positivity

Definition

A random vector X with values in Rd is associated if it holds for any pair
f , g : Rd ÞÑ R of functions that are non-decreasing in each coordinate that

Vpf pX q, gpX qq ¥ 0.

Association is easy to check in the Gaussian case:

Theorem (Pitt (1982))

Suppose X is a Gaussian vector with covariance Σ then

X is associated ðñ Σ ¥ 0.
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Relaxing the positivity
Although variants of positivity occur in many applications in finance, gene
expression, etc. it often appears too strong.

So consider an undirected graph G � pV ,E q. We define

Definition

A random vector X with values in RV is locally associated w.r.t. G if it holds
for every clique C P C and any pair f , g : RC ÞÑ R of non-decreasing
functions that

Vpf pXC q, gpXC qq ¥ 0.

We then clearly have from Pitt’s theorem:

Theorem

A Gaussian vector X is locally associated w.r.t. G if and only if σij ¥ 0 for all
edges ij P E .
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Locally associated Gaussian graphical models

Now combine the local association with conditional independence
restrictions. So let ApGq denote the Gaussian distributions that are locally
associated and MpGq denote those that are Markov w.r.t. G.

Definition

A locally associated Gaussian graphical model (laGGM) is determined by an
undirected graph G and the family of Gaussian distributions

M�pGq � ApGq XMpGq.
Thus clearly a mixed convex exponential family.
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Another mixed convex exponential family

Example

X and Y values in S � t0, 1, . . . , ku with pxy � PpX � x ,Y � yq ¡ 0

May be mixed parametrized with the marginals

µx� � px�, x P Szt0u, µ�y � p�y , y P Szt0u

and the interactions θxy � log
pxyp00
px0p0y

, x , y P Szt0u
Consider the hypothesis of marginal homogeneity

px� � p�x for all x P S (1)

in combination with the distribution being MTP2:

θxy � θx 1y 1 � θxy 1 � θx 1y ¥ 0 for all x ¥ x 1 and y ¥ y 1. (2)

The restriction (1) is convex (linear) in µ and (2) is convex in θ.
Steffen Lauritzen — Mixed Convex Exponential Families — Raitenhaslach October 2022

Slide 10/28



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

A small modification

Example

Another alternative would exploit that categories are ordered and for
example specify that pi� is stochastically smaller than p�i i.e.

j̧

x�0

px� ¤
j̧

y�0

p�y for all j P S,

yielding a convex restriction also on the mean parameters; see Agresti (1983)
and Agresti (2003) for further details of this model.

Note that without the result on variation independence of the mixed
parametrization, it is not so clear that MTP2 and the stochastic ordering are
variation independent restrictions.
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Likelihood and conjugate functions
Problem: Likelihood function may have multiple local maxima over E 1 as
the restrictions are not convex in θ and we consider another estimator.

Given a random sample X p1q, . . . ,X pnq of size n denote

t � tn �
ņ

i�1

tpX piqq{n

The log-likelihood function is strictly convex in θ and

ℓpθ; tq � xθ, ty � Apθq.
Since ∇ℓpθ; tq � t �∇Apθq � t � µpθq, the unique optimizer is θ � θptq.
The Fenchel conjugate of A is the strictly convex function

A�pµq � suptℓpθ;µq : θ P Rku.
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Dual likelihood function

For any fixed θ, the function

qℓpµ;θq :� xθ,µy � A�pµq

is strictly concave in µ and called the dual log-likelihood function.

Analogously to the log-likelihood function, qℓ satisfies

∇µ
qℓpµ;θq � θ �∇µA

�pµq � θ � θpµq.
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Kullback–Leibler divergence
Consider two distributions in E , one with the mean parameter µ1 and the
other with canonical parameter θ2.

The Kullback–Leibler divergence Dpf | gq � ³
logpf pxq{gpxqqf pxq dx between

these is
Kpµ1,θ2q � �xµ1,θ2y � A�pµ1q � Apθ2q.

The Kullback–Leibler divergence Kpµ1,θ2q is strictly convex both in µ1 and
in θ2. Also

∇µK pµ1,θ2q � �θ2 �∇A�pµ1q � θpµ1q � θ2
and

∇θK pµ1,θ2q � �µ1 �∇Apθ2q � µpθ2q � µ1
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The mixed dual estimator

We propose a two-step procedure to estimate the mixed parameter pµu,θv q
in the mixed convex family from data t:

(S1) First minimize Kpt,θq over θ P Cv � Θ. Denote the unique optimum,
assuming it exists, by pθ.

(S2) Then minimize Kpµ, pθq subject to µ P Cu � M. Denote the unique
optimum by qµ.

The resulting qµ is the mixed dual estimator (MDE) of µ.

Both steps (S1) and (S2) are convex optimization problems.

The optimum in (S1) is the MLE under the convex exponential family given
by θ P Cv .
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Fundamental properties

Proposition

If the optimum pθ in (S1) exists then it is unique and the optimum qµ in (S2)
exists and is unique too.

Theorem

Let t � pu, vq and suppose that pθ in step (S1) exists. Then,
µuppθq � u P Mu and in step (S2) we get that θv pqµq � pθv .
In particular, after steps (S1) and (S2), the optimum qµ lies in the mixed
convex family E 1.
Thus (S2) preserves constraints of (S1).
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Asymptotics

Let rµn be the MLE for n observations and qµn the MDE.

Theorem

The MDE and MLE are asymptotically equivalent, i.e.
?
npqµn � rµnq Ñ 0 in

probability,
?
npqµn � µ0q converges to the same limiting distribution as?

nprµn � µ0q.
The proof is technical but relies on the fact that ℓpψ, tq and ℓ̌pψ, tq have
the same Hessian at the MLE and the components of the MLE for the mixed
parameter are asymptotically independent.

Note that the asymptotic distribution involved may be quite complicated,
obtained by projecting the mixed parameters of the usual asymptotic normal
distribution onto the relevant convex sets.
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Estimation in a laGGM

Theorem

If the MDE qΣ of Σ under M�pG q � ApG q XMpG q exists, it is the unique positive

definite solution to the following where qK � qΣ�1 and pK � pΣ�1:

i) pΣij � Sij , ij P E pG q;

ii) pΣii � Sii , i P V pG q;

iii) pKij � 0, ij R E pG q; 0 � qKij , ij R E pG q;

iv) qΣij ¥ 0, ij P E pG q;

v) qKij ¤ pKij , ij P E pG q;

vi) qKii � pKii , i P V pG q;

vii) qΣijp pKij � qKijq � 0, ij P E pG q.
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Algorithms

Generally, the MDE leads to solving two convex optimization problems, and
good methods for solving these may have to be developed case by case.

For the case of laGGMs, Lauritzen and Zwiernik (2022) developed a simple
generic algorithm—the GOLAZO—for solving that particular problem and a
range of other relevant problems associated with Gaussian graphical models.
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The GOLAZO
Let L,U be two d � d matrices with entries in RY t�8,�8u satisfying

Lij ¤ 0 ¤ Uij for all i � j .

Denote
}K}LU :�

¸
i�j

maxtLijKij ,UijKiju.

The function }K}LU is convex, positively homogeneous, continuous, and
non-negative.

Although it is sublinear, that is

}K � K 1}LU ¤ }K}LU � }K 1}LU ,
it does not define a norm unless |Lij | � |Uij | for all i � j . We aim at solving
the following problem

minimize � ℓnpK q � }K}LU ,
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GOLAZO instances

minimize � ℓnpK q � }K}LU ,
where

}K}LU :�
¸
i�j

maxtLijKij ,UijKiju.

Graphical lasso |Lij | � |Uij | � ρ ¡ 0 for all i � j

Positive graphical lasso L � 0 and Uij � ρ for all i � j

MTP2 Gaussian L � 0 and Uij � �8 for all i � j (�8 � 0 � 0)

Gaussian graphical models To ensure Kij � 0, let Lij � �8, Uij � �8
Mixed dual estimate Replace K with Σ, S with K̂ , let Lij � �8 and

Uij � 0 for all i � j
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Exploiting duality
Note that

maxtLijKij ,UijKiju � sup
Lij¤Γij¤Uij

ΓijKij

and so
}K}LU � sup

L¤Γ¤U
trpΓK q

whereby the optimization may be written as

inf
K¡0

sup
L¤Γ¤U

 � log detK � trppS � ΓqK q (.
Swapping inf with sup and using that the infimum with respect to K of the
expression is attained as K � pS � Γq�1, we obtain the dual problem by
letting Σ � S � Γ:

maximize log detΣ� d subject to S � L ¤ Σ ¤ S � U.
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Description of the algorithm
For the j-th row we consider log detΣ as the function of Σj ,zj keeping the
other entries of Σ fixed. We have

log detΣ � log detΣzj � log detpΣjj � Σj ,zjpΣzjq�1Σzj ,jq.
Thus maximizing log detΣ with respect to y :� Σj ,zj is equivalent to

minimizing yT pΣzjq�1y under the linear conditions that
Sij � Lij ¤ yi ¤ Sij � Uij for every i P V ztju. This is an instance of a
quadratic program.

The starting point Σ0 of the algorithm needs to be chosen carefully so that
Σ0 is dually feasible. In this case, each iterate of the algorithm is guaranteed
to be dually feasible.

To solve the quadratic program in each iteration we use the quadprog
package in R.
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The GOLAZO algorithm

Data: Positive semidefinite matrix S , penalty matrices L ¤ 0 ¤ U.
Result: A maximizer of the dual problem.
Initialize: Σ � Σ0 (a dually feasible point);
while no convergence do

for j � 1, . . . , d do
Update Σj ,zj Ð ŷ , where

ŷ � argmin
y

!
yT pΣzjq�1y : Sj ,zj � Lj ,zj ¤ y ¤ Sj ,zj � Uj ,zj

)
.

end

end
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Convergence and starting point

To establish convergence we track the duality gap

trpSK q � d � }K}LU ,

which is non-negative for each step of the algorithm, decreases at each
iteration, and is zero at the optimum.

We stop the algorithm once this positive gap becomes sufficiently close to
zero.

We have methods for identifying a dually feasible starting point.

This implies that for the graphical lasso, the optimum always exists even
when the diagonal is not penalized. Generally this holds for the GOLAZO if
Lij   0   Uij .
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Positive co-expression gene network
Microarray expression data profiling umbilical cord (UC) tissue; cf. Costa
and Castelo (2016). Obtained from Robert Castelo in a normalized and
filtered version.

Set of 12,093 genes reduced to 704 with a role in the innate immune
response. Then further reduced by focusing on a subset of 136 upregulated
genes.

Vanilla implementation of GOLAZO (available on GitHub in package
golazo) less than a minute on a standard laptop.

Resulting positive graphical lasso estimate K̂ ρ for ρ � .5 (optimal using
EBIC) is very sparse with edge density 0.067. Still diameter of this graph is
very small, just 5.

Optimum K̂ ρ not an M-matrix. However, estimated distribution is locally
associated so second step of procedure is redundant.
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Partial correlations in gene network
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Positive partial correlations are indicated with green color and negative
partial correlations with red color. The thickness of edges is proportional to
their absolute size.
Steffen Lauritzen — Mixed Convex Exponential Families — Raitenhaslach October 2022

Slide 27/28



un i v er s i ty of copenhagen department of mathemat i ca l s c i ence s

References

Agresti, A. (1983). Testing marginal homogeneity for ordinal categorical variables. Biometrics, 39(2):505–510.

Agresti, A. (2003). Categorical data analysis, volume 482. John Wiley & Sons.

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families in Statistical Theory. John Wiley and Sons, New York.

Costa, D. and Castelo, R. (2016). Umbilical cord gene expression reveals the molecular architecture of the fetal inflammatory
response in extremely preterm newborns. Pediatric research, 79(3):473–481.

Dempster, A. P. (1972). Covariance selection. Biometrics, 28:157–175.
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