Vine copula structural equation models

Claudia Czado

Applied Mathematical Statistics Department of Mathematics
Technical University of Munich
Oct. 2022

Outline

1 Motivation

2 Pair-copula constructions (PCC) of vine distributions

3 Vine copula based quantile regression models
4 D-vine based structural equation models

5 Analysis of the Sachs Data

6 Summary and outlook

How to allow for non Gaussian behavior in graphical models? (I)

Consider statistical models on directed acyclic graphs (DAG’s) or Bayesian networks (Pearl 1988; Lauritzen 1996)
\square For a DAG with Markov properties X_{1}, \ldots, X_{d} has density

$$
\begin{equation*}
f\left(x_{1}, \ldots x_{d}\right)=\prod_{j=1}^{d} f\left(x_{j} \mid \pi\left(X_{j}\right)=\pi\left(x_{j}\right)\right) \tag{1}
\end{equation*}
$$

where $\pi\left(X_{j}\right)$ is parent set of $X_{j}\left(\boldsymbol{\pi}\left(X_{j}\right)=\left\{X_{k}: X_{k} \rightarrow X_{j}\right\}\right)$.
\square Standard graphical models of the form (1) for continuous variables assume joint Gaussianity.

- However some data sets are not easily transformed to joint normality, therefore we want to construct non Gaussian graphical models.

How to allow for non Gaussian

behavior in graphical models? (II)

\square We can choose in (1) the conditional densities arbitrary and still get a joint density.
■ However this does not guarantee a compatible joint distribution (Wang and Ip 2008). But Varin and Vidoni (2005) showed that the conditional specified model (1) minimizes the Kullback-Leibler distances to the conditional distributions.

- So one approach to extend standard Gaussian DAG's is to use other conditional densities.
- Here we will use D-vine regression densities and illustrate it using an experiment from the Sachs data (Sachs et al. 2005).
- Comparison of the D-vine approach will be made to a generalized additive model (GAM) approach.

Structural equation models (SEM) for graphical random variables

- The standard Gaussian DAG model is a linear structural equation model (SEM).
\square Assume graph \mathcal{G} with nodes $V=\left\{X_{1}, \ldots X_{d}\right\}$, edge set E and directed weight adjacency matrix A, i.e. $A_{i, j} \neq 0$ if and only if $(i, j) \in E$.
\square Let $\boldsymbol{\epsilon} \sim N_{d}(\mathbf{0}, \Omega)$, then the linear SEM for $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right)^{\top}$

$$
\begin{equation*}
\boldsymbol{X}=A^{\top} \boldsymbol{X}+\epsilon \tag{2}
\end{equation*}
$$

- This implies that $\boldsymbol{X} \sim N_{d}\left(\mathbf{0},(I-A) \Omega^{-1}(I-A)^{\top}\right)$, i.e. $X_{j} \mid \pi\left(X_{j}\right)=\pi\left(x_{j}\right)$ is univariate normal.
- Such a factorization is equivalent to the Markov assumption with respect to the graph \mathcal{G} (Lauritzen 1996, Theorem 3.27).

Generalized additive SEM for graphs

- Voorman et al. (2014) assume that

$$
\begin{equation*}
X_{j} \mid\left\{X_{k}, k \neq j\right\}=\sum_{k \neq j} g_{j k}\left(X_{k}\right)+\epsilon_{j} \tag{3}
\end{equation*}
$$

for zero mean error term ϵ_{j} and $g_{j k}\left(\boldsymbol{x}_{k}\right)=\Psi_{j k} \boldsymbol{\beta}_{j k}$ where columns of matrix $\Psi_{j, k} \in \mathbb{R}^{n \times d}$ are basis functions.
■ Estimation uses a penality approach: Minimize over $\beta_{j k}, 1 \leq j, k \leq d, k \prec j$ (topological order)

$$
\begin{equation*}
\frac{1}{2 n}\left\|\boldsymbol{x}_{j}-\sum_{k \prec j} \Psi_{j k} \boldsymbol{\beta}_{j k}\right\|^{2}+\lambda \sum_{k \prec j}\left\|\Psi_{j k} \beta_{j k}\right\|^{2} \tag{4}
\end{equation*}
$$

- Penalization parameter λ is chosen to minimize BIC with an appropriately defined degree of freedom (Voorman et al. 2014).

Sachs data

- The Sachs data contains flow cytometry measurements on 11 variables (pip3, plc, pip2, pkc, pka, p38, jnk, raf, mek, erk, akt in topological order) under 14 experimental conditions.
- Concentrate on experiment cd3cd28_aktinhib ($\mathrm{n}=911$)
- Consent graph (20 edges) based on all 14 experiments:

More general multivariate models

\square Multivariate normal distribution is often the base model.

- However multivariate data exhibit often complex dependency patterns, such as asymmetry and dependence in the extremes not covered by the multivariate normal distribution.
- The copula approach allows separate models for the margins and the dependence.
- Standard classes of multivariate copulas such as Gaussian, Student t and Archimedean copulas are too restrictive
- Vine copulas allow for flexible modeling of (conditional) pairs of variables.
- They can accommodate asymmetric tail behavior and symmetric behavior of variables in a single model.

Outline

11 Motivation

2 Pair-copula constructions (PCC) of vine distributions

3 Vine copula based quantile regression models
4 D-vine based structural equation models
5 Analysis of the Sachs Data
6. Summary and outlook

What are copulas?

- Copula: A d-dimensional copula C is a multivariate distribution on $[0,1]^{d}$ with uniformly distributed marginals.
\square Copula density function: $c\left(u_{1}, \ldots, u_{d}\right):=\frac{\partial^{d}}{\partial u_{1} \ldots \partial u_{d}} C\left(u_{1}, \ldots, u_{d}\right)$
- Theorem (Sklar 1959):

$$
\begin{aligned}
F\left(x_{1}, \ldots, x_{d}\right) & =C\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) \\
f\left(x_{1}, \ldots, x_{d}\right) & =c\left(F_{1}\left(x_{1}\right), \ldots, F_{d}\left(x_{d}\right)\right) f_{1}\left(x_{1}\right) \ldots f_{d}\left(x_{d}\right)
\end{aligned}
$$

for some d-dimensional copula C.

- Conditional density in $d=2$

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \\
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) & =c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) f_{2}\left(x_{2}\right)
\end{aligned}
$$

What are these vine copulas?

- Multivariate vine copulas are copulas built out of bivariate copulas.
- A pair copula construction (PCC) is possible through conditioning. Joe (1996) gave a first example.
- Many PCC's are feasible. Bedford and Cooke (2002) introduced a graphical structure to organize them.
- Gaussian vines were analyzed in Kurowicka and Cooke (2006) while ML estimation for Non Gaussian ones started with Aas et al. (2009).

Vine copula resources

■ Books:

\square Kurowicka and Joe (eds, 2011): Dependence modeling Handbook on Vine Copulas
\square Joe (2014): Dependence modeling with copulas
\square Czado (2019): Analyzing dependent data with vine copulas: a practical guide with R
■ Reviews:
\square Aas (2016): Pair-copula constructions for financial applications: A review
\square Czado and Nagler (2022): Vine copula based modeling

- Web Resources
\square vine-copula.org
\square en.wikipedia.org/wiki/Vine_copula

How does this work in 3 dimensions? TII

Recursion

$$
f\left(x_{1}, x_{2}, x_{3}\right)=f_{3 \mid 12}\left(x_{3} \mid x_{1}, x_{2}\right) f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) f_{1}\left(x_{1}\right)
$$

Using Sklar for $f\left(x_{1}, x_{2}\right), f\left(x_{2}, x_{3}\right)$ and $f_{13 \mid 2}\left(x_{1}, x_{3} \mid x_{2}\right)$ implies

$$
\begin{aligned}
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) & =c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) f_{2}\left(x_{2}\right) \\
f_{3 \mid 12}\left(x_{3} \mid x_{1}, x_{2}\right) & =c_{13 ; 2}\left(F_{1 \mid 2}\left(x_{1} \mid x_{2}\right), F_{3 \mid 2}\left(x_{3} \mid x_{2}\right)\right) f_{3 \mid 2}\left(x_{3} \mid x_{2}\right) \\
& =c_{13 ; 2}\left(F_{1 \mid 2}\left(x_{1} \mid x_{2}\right), F_{3 \mid 2}\left(x_{3} \mid x_{2}\right)\right) c_{23}\left(F_{2}\left(x_{2}\right), F_{3}\left(x_{3}\right)\right) f_{3}\left(x_{3}\right)
\end{aligned}
$$

Three dimensional pair copula construction

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right) & =c_{13 ; 2}\left(F_{1 \mid 2}\left(x_{1} \mid x_{2}\right), F_{3 \mid 2}\left(x_{3} \mid x_{2}\right)\right) c_{23}\left(F_{2}\left(x_{2}\right), F_{3}\left(x_{3}\right)\right) \\
& \times c_{12}\left(F_{1}\left(x_{1}\right), F_{2}\left(x_{2}\right)\right) \times f_{3}\left(x_{3}\right) f_{2}\left(x_{2}\right) f_{1}\left(x_{1}\right)
\end{aligned}
$$

The copula corresponding to the distribution of $\left(X_{1}, X_{3}\right)$ given $X_{2}=x_{2}$ is denoted by $c_{13 ; 2}$. Only bivariate copulas and univariate conditional cdf's are used. Can be generalized to d dimensions.

Three data scales

■ x-scale (original i.i.d data vectors): $\left(x_{i 1}, \ldots x_{i d}\right)$
\square u-scale (copula data):

$$
\left(u_{i 1}, \ldots u_{i d}\right), \text { where } u_{i j}=F_{j}\left(x_{i j}\right) i=1, \ldots, n ; j=1, \ldots, d
$$

is the probability integral transform.
■ z-scale (marginal normalized data):

$$
\left(z_{i 1}, \ldots z_{i d}\right), \text { where } z_{i j}=\Phi^{-1}\left(u_{i j}\right) i=1, \ldots, n ; j=1, \ldots, d
$$

and Φ^{-1} quantile function of $N(0,1)$

Bivariate elliptical copula families

Gaussian copula
(left $\tau=.25$, right: $\tau=.75$) symmetric dependence

t-copula with $d f=3$
(left $\tau=.25$, right: $\tau=.75$)
symmetric dependence

Bivariate Archimedean copula families

Gumbel copula

(left $\tau=.25$, right: $\tau=.75$) upper tail dependent

Clayton copula
(left $\tau=.25$, right: $\tau=.75$)
lower tail dependent

How do vines work in higher dimensions?

■ Which pairs of variables are needed?

- What are the conditioning variables?

How do vines work in higher dimensions?

- Which pairs of variables are needed?
- What are the conditioning variables?

Components of a regular vine $R(\mathcal{V}, \mathcal{C}, \boldsymbol{\theta})$ distribution

1. Tree structure \mathcal{V} of linked trees identifies the pairs of variables and conditioning variables.
2. Parametric bivariate copulas $\mathcal{C}=\mathcal{C}(\mathcal{V})$ for each edge in the tree structure
3. Corresponding parameter value $\theta=\boldsymbol{\theta}(\mathcal{C}(\mathcal{V}))$

- Recursion for conditional distribution functions (Joe 1996):

$$
\text { If } \boldsymbol{v}=\left(v_{j}, \boldsymbol{v}_{-j}\right) \text { then } F(x \mid \boldsymbol{v})=\frac{\partial C_{x v_{j} ; \boldsymbol{v}_{-j}}\left(F\left(x \mid \boldsymbol{v}_{-j}\right), F\left(v_{j} \mid \boldsymbol{v}_{-j}\right)\right)}{\partial F\left(v_{j} \mid \boldsymbol{v}_{-j}\right)} .
$$

Can we see an example of a tree structure?

Density

$$
f=f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4} \cdot f_{5}
$$

$$
\cdot c_{14} \cdot c_{15} \cdot c_{24} \cdot c_{34}
$$

- $c_{12 ; 4} \cdot c_{13 ; 4} \cdot c_{45 ; 1}$
- $C_{23 ; 14} \cdot C_{35 ; 14}$
- $c_{25 ; 134}$

Special regular vines: C and D -vines IT

C-vine: each tree has unique node connected to $d-j$ edges

$$
f_{1234}=\left[\prod_{\substack{i=1 \\ 4}} f_{i}\right] \cdot c_{12} \cdot c_{13} \cdot c_{14}
$$

D-vine: no node is con-

 nected to more than 2 edges$$
f_{1234}=\left[\prod_{\substack{i=1}}^{4} f_{i}\right] \cdot c_{12} \cdot c_{23} \cdot c_{34}
$$

tree 1
tree 2
tree 3

useful for temporal ordering
useful for ordering by importance

How can we estimate and select PCCs?

Three tasks (Czado et al. (2013))

1. How to estimate the pair copula parameters for a given vine tree structure and pair copula families for each edge?
2. How to choose the pair copula families and estimate the corresponding parameters for a given vine tree structure?
3. How to select and estimate all components of a regular vine?

Task 1: Sequential and ML estimation

Parameters: $\Theta=\left(\theta_{12}, \theta_{23}, \theta_{13 ; 2}\right)$
Observations: $\left\{\left(x_{t 1}, x_{t 2}, x_{t 3}\right), t=1, \cdots, T\right\}$

Sequential estimates:

\square Estimate θ_{12} from $\left\{\left(x_{t 1}, x_{t 2}\right), t=1, \cdots, T\right\}$
■ Estimate θ_{23} from $\left\{\left(x_{t 2}, x_{t 3}\right), t=1, \cdots, T\right\}$.

- Define pseudo observations

$$
\hat{v}_{1 \mid 2 t}:=F\left(x_{t 1} \mid x_{t 2}, \hat{\theta}_{12}\right) \text { and } \hat{v}_{3 \mid 2 t}:=F\left(x_{t 3} \mid x_{t 2}, \hat{\theta}_{23}\right)
$$

Finally estimate $\theta_{13 ; 2}$ from $\left\{\left(\hat{v}_{1 \mid 2 t}, \hat{v}_{3 \mid 2 t}\right), t=1, \cdots, T\right\}$.

Maximum likelihood

$$
\begin{aligned}
L(\Theta \mid x) & =\sum_{t=1}^{1}\left[\log c_{12}\left(x_{t 1}, x_{t 2} \mid \theta_{12}\right)+\log c_{23}\left(x_{t 2}, x_{t 3} \mid \theta_{23}\right)\right. \\
& \left.+\log c_{13 ; 2}\left(F\left(x_{t 1} \mid x_{t 2}, \theta_{12}\right), F\left(x_{t 3} \mid x_{t 2}, \theta_{23}\right) \mid \theta_{13 ; 2}\right)\right]
\end{aligned}
$$

Task 2: Joint estimation of pair copula

families and parameters

- Restrict to a set of bivariate pair copula families and use AIC or Vuong test to select family
- Check for truncation (Brechmann et al. (2012), Nagler et al. (2019)) by using independence copulas in higher trees

Task 3: Sequential treewise selection

- Capture strong pairwise dependencies first.
- Select trees sequentially.

■ Give weights to every edge possible and select tree which maximizes the sum of weights.
■ Details in Dißmann et al. (2013).

Software/Simulation for vines

■ Software: rvinecopulib (Nagler and Vatter 2021)

- Simulation of vine copulas:
\square Rosenblatt transform: A sample u_{1}, \ldots, u_{d} from $C_{1, \ldots, d}$ is obtained as follows:

First: Sample $w_{j} \stackrel{\text { i.i.d. }}{\sim} U[0 ; 1], \quad j=1, \ldots, d$
Then: $u_{1}:=w_{1}$

$$
\begin{aligned}
& u_{2}:=C_{2 \mid 1}^{-1}\left(w_{2} \mid u_{1}\right) \\
& \vdots \\
& u_{d}:=C_{d \mid d-1, \ldots, 1}^{-1}\left(w_{d} \mid u_{d-1}, \ldots, u_{1}\right) .
\end{aligned}
$$

\square So we need conditional distributions associated with d dimensional vine copulas

h functions and univariate cond. copula cdf's
 ll

Indices: $r: s:=(r, r+1, \ldots, s)$, sets: $\mathbf{x}_{r: s}=\left(x_{r}, \ldots, x_{s}\right)$ h functions:

$$
\begin{aligned}
h_{1 \mid d ; 2:(d-1)}\left(u_{1} \mid v_{d}\right) & :=\frac{\partial}{\partial v_{d}} C_{1 d ; 2:(d-1)}\left(u_{1}, v_{d}\right) \\
h_{d \mid 1 ; 2:(d-1)}\left(u_{d} \mid v_{1}\right) & :=\frac{\partial}{\partial v_{1}} C_{1 d ; 2:(d-1)}\left(v_{1}, u_{d}\right)
\end{aligned}
$$

Recursion for univariate conditional copula cdf's

$$
\begin{aligned}
& C_{1 \mid 2: d}\left(u_{1} \mid \mathbf{u}_{2: d}\right)=h_{1 \mid d ; 2:(d-1)}\left(C_{1 \mid 2:(d-1)}\left(u_{1} \mid \mathbf{u}_{2:(d-1)}\right) \mid C_{d \mid 2:(d-1)}\left(u_{d} \mid \mathbf{u}_{2:(d-1)}\right)\right) \\
& C_{d \mid 2:(d-1)}\left(u_{d} \mid \mathbf{u}_{2:(d-1)}\right)=h_{d \mid 2 ; 3:(d-1)}\left(C_{d \mid 3:(d-1)}\left(u_{d} \mid \mathbf{u}_{3:(d-1)}\right) \mid C_{2 \mid 3:(d-1)}\left(u_{2} \mid \mathbf{u}_{3:(d-1)}\right)\right)
\end{aligned}
$$

Univariate conditional distributions

of D-vine copulas

Restrict to D-vine copulas, but extension to R-vines possible

Univariate conditional copula cdf of first node
$C_{1 \mid 2: 4}\left(u_{1} \mid \mathbf{u}_{2: 4}\right)=$
$h_{1 \mid 4 ; 2,3}\left(h_{1 \mid 3 ; 2}\left(h_{1 \mid 2}\left(u_{1} \mid u_{2}\right) \mid h_{3 \mid 2}\left(u_{3} \mid u_{2}\right)\right) \mid h_{4 \mid 2 ; 3}\left(h_{4 \mid 3}\left(u_{4} \mid u_{3}\right) \mid h_{2 \mid 3}\left(u_{2} \mid u_{3}\right)\right)\right)$
where $h_{i \mid j ; D}(u \mid v):=\partial C_{i j ; D}(u, v) / \partial v$.

Outline

1 Motivation

2 Pair-copula constructions (PCC) of vine distributions

3 Vine copula based quantile regression models
4 D-vine based structural equation models
5 Analysis of the Sachs Data
6 Summary and outlook

Vine copula based (quantile) regression

■ Paper: Kraus, D., and Czado, C. (2017). D-vine copula based quantile regression. Computational Statistics \& Data Analysis, 110, 1-18.
■ Software: Nagler. T. (2022). vinereg: D-Vine Quantile Regression. R package version 0.8.1.
https://CRAN.R-project.org/package=vineregNagler

Conditional quantiles in a D-vine copula

■ Express the univariate conditional copula $\operatorname{cdf} C_{v \mid 1: m}\left(\cdot \mid \mathbf{u}_{1: m}\right)$ for fixed conditioning values $\mathbf{u}_{1: m}$ using h functions.
■ Denote by $Q_{v \mid 1: m}\left(\mid \mathbf{u}_{1: m}\right)$ the quantile function corresponding to $C_{v \mid 1: m}\left(\cdot \mid \mathbf{u}_{1: m}\right)$ for fixed $\mathbf{u}_{1: m}$.

- For continuous pair copulas we have

Conditional quantiles

$$
Q_{v \mid 1: m}\left(\alpha \mid \mathbf{u}_{1: m}\right):=C_{v \mid 1: m}^{-1}\left(\alpha \mid \mathbf{u}_{1: m}\right) \text { for } \alpha \in(0,1) .
$$

- Use the inverses of the h function to recursively invert the univariate conditional cdf $C_{v \mid 1: m}\left(\cdot \mid \mathbf{u}_{1: m}\right)$ to obtain the corresponding conditional quantile $Q_{v \mid 1: m}\left(\alpha \mid \mathbf{u}_{1: m}\right)$.

Copula quantile regression

Original scale Copula scale

Node variable
Parent variables $\mathrm{S}=\left(S_{1}, \ldots, S_{m}\right)$
$X \sim F_{X}$
$V:=F_{X}(X)$
$\mathrm{U}:=\left(U_{1}, \ldots, U_{m}\right)$
where $U_{k}:=F_{S_{k}}\left(S_{k}\right)$

Copula quantile regression:

$$
F_{X \mid S_{1}, \ldots S_{m}}^{-1}(\alpha \mid \mathbf{s})=F_{X}^{-1}\left(C_{V \mid U_{1}, \ldots U_{m}}^{-1}\left(\alpha \mid u_{1}, \ldots u_{m}\right)\right)
$$

For DAG context:

- X corresponds to a particular node
- $S_{1}, \ldots S_{m}$ corresponds to parent variables of that node.

■ Conditional quantiles $C_{V \mid U_{1}, \ldots U_{m}}^{-1}$ are based on a D-vine copula.

Linear and copula quantile regression

Linear quantile regression

$$
F_{X \mid S}^{-1}(\alpha \mid \mathbf{s})=\beta_{0}(\alpha)+\sum_{k=1}^{m} \beta_{k}(\alpha) s_{k}
$$

- Linearity assumption often violated \rightarrow quantile crossing

- Linear quantiles only occur with Gaussian dependence (Bernard and Czado 2015).
- No quantile crossing occurs in copula quantile regression

D-vine copula quantile regression estimation

(Kraus and Czado 2017)
■ Given i.i.d. data $\left(\mathbf{x}, \mathbf{s}=\left(\mathbf{s}_{1}, \ldots, \mathbf{s}_{m}\right)\right)$ of sample size n

- Create pseudo copula data $\left(\hat{\mathbf{v}}, \hat{\mathbf{u}}=\left(\hat{\mathbf{u}}_{1}, \ldots, \hat{\mathbf{u}}_{m}\right)\right)$ by estimating univariate cdf's and applying the probability integral transform
- We use kernel smoothing estimators for the cdf of all variables since we need $\hat{F}_{x}^{-1}(\alpha)$ later.
- Over all D-vines \mathcal{D} with D -vine ordering \mathcal{V}, pair copula families $\mathcal{B}(\mathcal{V})$, parameter set $\Theta(\mathcal{B}(\mathcal{V}))$ and i th pseudo copula values $\left(\hat{v}_{i}, \hat{\mathbf{u}}^{2}\right)$ maximize

conditional log-likelihood based on D-vine \mathcal{D}

$$
\operatorname{cll}(\hat{\mathbf{v}}, \hat{\mathbf{u}} ; \mathcal{D}):=\sum_{i=1}^{n} \ln \left(c_{v \mid u_{1}, \ldots u_{m}}\left(\hat{v}_{i} \mid \hat{u}_{i 1}, \ldots \hat{u}_{i m} ; \mathcal{D}\right)\right)
$$

- conditional copula density $c_{v \mid u_{1}, \ldots, u_{m}}$ is analytically available.

Selection of D-Vine copula quantile

regression models (Kraus and Czado 2017)

■ There are m ! possible D-vine orderings, these are too many.

- So we follow a forward selection of the parent nodes:
\square Start with the parent node, which has the largest cll value, call this variable 1, so we have ordering $v \leftrightarrow 1$ with $c l_{\max }$ and pair copula family $c_{v 1}$ and parameter $\theta_{v 1}$.
\square For each remaining parent node w, determine $\operatorname{cll}(w)$ based on D-vine ordering $v \leftrightarrow 1 \leftrightarrow w$, families and parameters, choose the one with largest $\operatorname{cll}(w)$.
\square If $\operatorname{cll}(w)>c l l_{\max }$ then call w variable 2 and consider ordering $v \leftrightarrow 1 \leftrightarrow 2$ with cll $_{\text {max }}$, otherwise stop.
\square Continue until cll $_{\max }$ cannot be improved.
- This gives a ranking of the parent nodes by importance.

Outline

1 Motivation

2 Pair-copula constructions (PCC) of vine distributions

3 Vine copula based quantile regression models
4 D-vine based structural equation models
5 Analysis of the Sachs Data
6 Summary and outlook

- Assume that a DAG for data at hand is given.
\square Use a D-vine regression model for each $f\left(x_{j} \mid \boldsymbol{\pi}\left(X_{j}\right)=\boldsymbol{\pi}\left(x_{j}\right)\right)$
\square Since this involves a forward selection of the parent nodes, the starting DAG can be reduced if parent nodes are not selected.
- This D-vine SEM is approximately compatible with the specified conditional distributions for each node as long as selected pair copulas are a good approximation for the integral of certain conditional pair copulas.

Outline

1 Motivation

2 Pair-copula constructions (PCC) of vine distributions

3 Vine copula based quantile regression models
4 D-vine based structural equation models
5 Analysis of the Sachs Data
6 Summary and outlook

Marginal exploration

Many non-normal margins.
Claudia Czado | Vine copula structural equation models | Oct. 2022

Pairwise exploration (I)

Higher estimated Kendall's τ between (pip3,plc),(pip3,pip2),(pkc,p38),(pkc,jnk), (pka,akt),(pka,erk),(p38,jnk),(raf,mek),(erk,akt)

Pairwise exploration (II)

-					
\%il					
8-					
Po	i	-			
-	0	\sim	-		
	0	0			
0	0				
100	-	0		$1{ }^{1}$	

Graphical analysis of Sachs data

- Data preparation: all variables logarithmized and standardized
\square Gaussian SEM model (5 edges selected):
\square uses R package sparsebn based on Fu and Zhou (2013)
\square uses concave penalization of Aragam and Zhou (2015)
\square GAM SEM model: (8 edges selected)
\square uses R package spacejam based on Voorman et al. (2014)
\square uses topological order of consent graph
\square selects using minimal BIC with cubic polynomials as basis
\square D-vine SEM model (10 edges selected):
\square uses R package vinereg based on Kraus and Czado (2017) with non parametric margins
\square Starting from consent graph
\square Removes edges, when parent nodes are not selected using BIC

Chosen DAG's for the Sachs Data

Consent DAG

D-vine DAG

GAM DAG

Gauss DAG

Comparison of chosen edges

■ Gaussian SEM (5 edges):
\square pip3 \rightarrow pip2, pkc \rightarrow p38, pka \rightarrow akt, erk \rightarrow akt, raf \rightarrow mek
■ GAM SEM (8 edges):
\square pip3 \rightarrow pip2, pip3 \rightarrow plc, pkc \rightarrow p38, p38 \rightarrow jnk, pka \rightarrow akt, pka \rightarrow erk, erk \rightarrow akt, raf \rightarrow mek
\square Extra edges compared to Gauss SEM in blue.

- D-vine SEM (10 edges):
\square pip3 \rightarrow pip2, pip3 \rightarrow plc, plc \rightarrow pip2, pkc \rightarrow jnk, pkc \rightarrow p38, pka \rightarrow akt, pka \rightarrow mek, pka \rightarrow erk, erk \rightarrow akt, raf \rightarrow mek
\square Extra edges compared to Gauss SEM in green.
- D-vine SEM versus GAM SEM:
\square D-vine SEM does not have edge p38 \rightarrow jnk of GAM SEM, but has edges plc \rightarrow pip2, pkc \rightarrow jnk and pka \rightarrow mek.

Chosen pair copulas in D-vine SEM (I) TIII

- Node plc with parent node pip3 edge family parameters tau loglik (plc, pip3) bb8 $1.70,0.98 \quad 0.25 \quad 100$
■ Node pip2 with parents pip3 and plc edge family parameters tau loglik (pip2, pip3) bb7 1.50,0.30 $0.31 \quad 142$ (pip3, plc) bb8 1.70, $0.98 \quad 0.25 \quad 100$ $\begin{array}{llll}\text { (pip2, plc; pip3) nonpar } & -0.10 & 144\end{array}$
■ Node p38 with parent node pkc edge family parameters tau loglik (p38, pkc) bb1 0.29, 2.31 0.62 549
■ Node jnk with parent node pkc
edge family parameters tau loglik
(jnk, pkc) gauss $0.26,-0.1733$

Pair copulas in D-vine SEM (II)

■ Node mek with parents raf and pkc edge family parameters tau loglik (mek, raf) gauss 0.69, - $0.48 \quad 291$ (raf, pkc) ind $\quad-,-0.00 \quad 0$ (mek, pkc; raf) gauss $\quad-0.11,-\quad-0.07 \quad 6$

- Node erk with parent node pka edge family parameters tau loglik (erk, pka) nonpar -, $\quad 0.13187$
■ Node akt with parents erk and pka edge family parameters tau loglik (akt, erk) gumbel 3.00, - 0.67663 (erk, pka) nonpar $\quad-,-0.13187$ (akt, pka; erk) bb8 2.50, 0.87 $0.33 \quad 135$

Fitted conditional means

- For the Gaussian SEM and the GAM SEM the fits of the conditional means of each observations are computed and then non linearly smoothed over all observations (purple line in plots)
■ For D-vine SEM the fitted conditional medians, 10% conditional quantiles and 90% conditional quantiles for all observations are calculated and non linearly smoothed. The fitted quantiles of the D-vine SEM can serve as 80% confidence interval.
- We plot the conditional means or quantiles as function of each parent variable separately.

Conditional means using Gauss SEM Tll

- purple smooths are mostly linear as postulated by model ■ Only akt has two parents (pka, erk)

Conditional means using GAM SEM

non linear conditional means effects, but no confidence intervals avaidadedo | Vine copula structural equation models | Oct. 2022

Conditional means using D-vine SEM Tll

non linear conditional means effects with confidence intervals
Claudia Czado | Vine copula structural equation models | Oct. 2022

Summary of Sachs analysis results

- Gaussian DAG is not appropriate for this experimental setting of the Sachs data
- GAM SEM does not allow for confidence intervals, while the D-Vine SEM does.
- D-Vine SEM selects more edges compared to the other two methods.
\square More complex marginal conditional median effects are seen in D-vine SEM compared to the mean effects in the GAM SEM.
- Many non Gaussian pair copulas are needed for the D-vine SEM.

Outline

1 Motivation

2 Pair-copula constructions (PCC) of vine distributions

3 Vine copula based quantile regression models
4 D-vine based structural equation models

5 Analysis of the Sachs Data

6 Summary and outlook

Summary and outlook

- D-vine SEM's useful tool to identify and analyze non Gaussian graphical data
■ Extension to R-vine based SEM's (start with Chang and Joe (2019)) and/or discrete variables (start with Panagiotelis et al. (2012)) are possible.
- Develop forward and backward selection algorithms of parents.
\square Bauer et al. (2012) use R-vine based pairwise conditional dependence tests within the PC algorithm, while Müller and Czado (2018) look at sparse R-vine DAG’s Tepegjozova and Czado (2022) developed more suitable Y-vine structure to model bivariate conditional distributions. Can be utilized for identifying DAG's from data.
- Higher dimensional case studies are needed.

Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009).
Pair-copula constructions of multiple dependence.
Insurance, Mathematics and Economics 44, 182-198.
Aragam, B. and Q. Zhou (2015).
Concave penalized estimation of sparse gaussian bayesian networks.
The Journal of Machine Learning Research 16(1), 2273-2328.
Bauer, A., C. Czado, and T. Klein (2012).
Pair-copula constructions for non-Gaussian DAG models.
Canadian Journal of Statistics 40, 86-109.

Bedford, T. and R. M. Cooke (2002).
Vines - a new graphical model for dependent random variables.
Annals of Statistics 30(4), 1031-1068.
Bernard, C. and C. Czado (2015).
Conditional quantiles and tail dependence.
Journal of Multivariate Analysis 138, 104-126.
Brechmann, E., C. Czado, and K. Aas (2012).
Truncated regular vines in high dimensions with application to financial data.
Canadian Journal of Statistics 40, 68-85.

Chang, B. and H. Joe (2019).
Prediction based on conditional distributions of vine copulas.
Computational Statistics \& Data Analysis 139, 45-63.
Czado, C., S. Jeske, and M. Hofmann (2013).
Selection strategies for regular vine copulae.
Journal de la Société Francaise de Statistique 154, 174-191.

Dißmann, J., E. Brechmann, C. Czado, and D. Kurowicka (2013).
Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics and Data Analysis 52(1), 52-59.
Claudia Czado | Vine copula structural equation models | Oct. 2022

Fu, F. and Q. Zhou (2013).
Learning sparse causal gaussian networks with experimental intervention: regularization and coordinate descent. Journal of the American Statistical Association 108(501), 288-300.

Joe, H. (1996).
Families of m-variate distributions with given margins and $m(m-1) / 2$ bivariate dependence parameters.
In L. Rüschendorf and B. Schweizer and M. D. Taylor (Ed.), Distributions with Fixed Marginals and Related Topics.
Kraus, D. and C. Czado (2017).
D-vine copula based quantile regression.
Computational Statistics \& Data Analysis 110, 1-18.
Kurowicka, D. and R. Cooke (2006).
Uncertainty analysis with high dimensional dependence modelling.
Chichester: Wiley.
Lauritzen, S. L. (1996).
Graphical Models (1st ed.).
Oxford, England: University Press.
Morales-Nápoles, O. (2011).
Counting vines.
In D. Kurowicka and H. Joe (Eds.), Dependence Modeling: Vine Copula Handbook, pp. 189-218. World Scientific Publishing Co.
Müller, D. and C. Czado (2018).
Representing sparse gaussian dags as sparse r-vines allowing for non-gaussian dependence.
Journal of Computational and Graphical Statistics 27(2), 334-344.
Nagler, T., C. Bumann, and C. Czado (2019).
Model selection in sparse high-dimensional vine copula models with an application to portfolio risk.
Journal of Multivariate Analysis 172, 180-192.
Nagler, T. and T. Vatter (2021).
rvinecopulib: High Performance Algorithms for Vine Copula Modeling.
R-project.
R package version 0.6.1.1.1.
Claudia Czado | Vine copula structural equation models | Oct. 2022

Panagiotelis, A., C. Czado, and H. Joe (2012).
Pair copula constructions for multivariate discrete data.
Journal of the American Statistical Association 107, 1063-1072.
Pearl, J. (1988).
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Series in Representation and Reasoning. Morgan Kaufmann Publishers Inc.
Sachs, K., P. Omar, D. Pe'er, D. A. Lauffenburger, and G. P. Nolan (2005).
Causal protein signaling networks derived from multiparameter single-cell data.
Science 308, 523-529.
Sklar, A. (1959).
Fonctions dé repartition á n dimensions et leurs marges.
Publ. Inst. Stat. Univ. Paris 8, 229-231.
Tepegjozova, M. and C. Czado (2022).
Bivariate vine copula based quantile regression.
arXiv preprint arXiv:2205.02557.
Varin, C. and P. Vidoni (2005).
A note on composite likelihood inference and model selection.
Biometrika 92(3), 519-528.
Voorman, A., A. Shojaie, and D. Witten (2014).
Graph estimation with joint additive models.
Biometrika 101(1), 85-101.
Wang, Y. J. and E. H. Ip (2008).
Conditionally specified continuous distributions.
Biometrika 95(3), 735-746.

