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How to allow for non Gaussian
behavior in graphical models? (I)
■ Consider statistical models on directed acyclic graphs (DAG’s)

or Bayesian networks (Pearl 1988; Lauritzen 1996)
■ For a DAG with Markov properties X1, . . . , Xd has density

f(x1, . . . xd) =
d∏

j=1
f(xj|π(Xj) = π(xj)), (1)

where π(Xj) is parent set of Xj (π(Xj) = {Xk : Xk → Xj}).
■ Standard graphical models of the form (1) for continuous

variables assume joint Gaussianity.
■ However some data sets are not easily transformed to joint

normality, therefore we want to construct non Gaussian
graphical models.
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How to allow for non Gaussian
behavior in graphical models? (II)
■ We can choose in (1) the conditional densities arbitrary and

still get a joint density.
■ However this does not guarantee a compatible joint distribution

(Wang and Ip 2008). But Varin and Vidoni (2005) showed that
the conditional specified model (1) minimizes the
Kullback-Leibler distances to the conditional distributions.

■ So one approach to extend standard Gaussian DAG’s is to use
other conditional densities.

■ Here we will use D-vine regression densities and illustrate it
using an experiment from the Sachs data (Sachs et al. 2005).

■ Comparison of the D-vine approach will be made to a
generalized additive model (GAM) approach.
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Structural equation models (SEM)
for graphical random variables

■ The standard Gaussian DAG model is a linear structural
equation model (SEM).

■ Assume graph G with nodes V = {X1, . . . Xd}, edge set E
and directed weight adjacency matrix A, i.e. Ai,j ̸= 0 if and
only if (i, j) ∈ E.

■ Let ϵ ∼ Nd(0, Ω), then the linear SEM for X = (X1, . . . , Xd)⊤

X = A⊤X + ϵ. (2)

■ This implies that X ∼ Nd(0, (I − A)Ω−1(I − A)⊤), i.e.
Xj|π(Xj) = π(xj) is univariate normal.

■ Such a factorization is equivalent to the Markov assumption
with respect to the graph G (Lauritzen 1996, Theorem 3.27).
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Generalized additive SEM for graphs
■ Voorman et al. (2014) assume that

Xj|{Xk, k ̸= j} =
∑
k ̸=j

gjk(Xk) + ϵj (3)

for zero mean error term ϵj and gjk(xk) = Ψjkβjk where
columns of matrix Ψj,k ∈ Rn×d are basis functions.

■ Estimation uses a penality approach: Minimize over
βjk, 1 ≤ j, k ≤ d, k ≺ j (topological order)

1
2n

||xj −
∑
k≺j

Ψjkβjk||2 + λ
∑
k≺j

||Ψjkβjk||2 (4)

■ Penalization parameter λ is chosen to minimize BIC with an
appropriately defined degree of freedom (Voorman et al.
2014).
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Sachs data
■ The Sachs data contains flow cytometry measurements on 11

variables (pip3, plc, pip2, pkc, pka, p38, jnk, raf, mek, erk, akt
in topological order) under 14 experimental conditions.

■ Concentrate on experiment cd3cd28_aktinhib (n=911)
■ Consent graph (20 edges) based on all 14 experiments:

raf

mek

plc
pip2

pip3

erk

akt

pka

pkc
p38

jnk
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More general multivariate models
■ Multivariate normal distribution is often the base model.
■ However multivariate data exhibit often complex dependency

patterns, such as asymmetry and dependence in the extremes
not covered by the multivariate normal distribution.

■ The copula approach allows separate models for the margins
and the dependence.

■ Standard classes of multivariate copulas such as Gaussian,
Student t and Archimedean copulas are too restrictive

■ Vine copulas allow for flexible modeling of (conditional) pairs of
variables.

■ They can accommodate asymmetric tail behavior and
symmetric behavior of variables in a single model.
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What are copulas?
■ Copula: A d-dimensional copula C is a multivariate

distribution on [0, 1]d with uniformly distributed marginals.

■ Copula density function: c(u1, ..., ud) := ∂d

∂u1...∂ud
C(u1, ..., ud)

■ Theorem (Sklar 1959):

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))
f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))f1(x1)...fd(xd)

for some d-dimensional copula C.
■ Conditional density in d = 2

f(x1, x2) = c12(F1(x1), F2(x2))f1(x1)f2(x2)
f2|1(x2|x1) = c12(F1(x1), F2(x2))f2(x2)
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What are these vine copulas?

■ Multivariate vine copulas are copulas built out of bivariate
copulas.

■ A pair copula construction (PCC) is possible through
conditioning. Joe (1996) gave a first example.

■ Many PCC’s are feasible. Bedford and Cooke (2002)
introduced a graphical structure to organize them.

■ Gaussian vines were analyzed in Kurowicka and Cooke (2006)
while ML estimation for Non Gaussian ones started with Aas
et al. (2009).
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Vine copula resources
■ Books:

□ Kurowicka and Joe (eds, 2011): Dependence modeling -
Handbook on Vine Copulas

□ Joe (2014): Dependence modeling with copulas
□ Czado (2019): Analyzing dependent data with vine copulas: a

practical guide with R

■ Reviews:
□ Aas (2016): Pair-copula constructions for financial applications:

A review
□ Czado and Nagler (2022): Vine copula based modeling

■ Web Resources
□ vine-copula.org

□ en.wikipedia.org/wiki/Vine_copula
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How does this work in 3 dimensions?
Recursion

f(x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1)

Using Sklar for f(x1, x2), f(x2, x3) and f13|2(x1, x3|x2) implies

f2|1(x2|x1) = c12(F1(x1), F2(x2))f2(x2)
f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2))f3|2(x3|x2)

= c13;2(F1|2(x1|x2), F3|2(x3|x2))c23(F2(x2), F3(x3))f3(x3)

Three dimensional pair copula construction

f(x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2))c23(F2(x2), F3(x3))
× c12(F1(x1), F2(x2)) × f3(x3)f2(x2)f1(x1)

The copula corresponding to the distribution of (X1, X3) given X2 = x2
is denoted by c13;2. Only bivariate copulas and univariate conditional
cdf’s are used. Can be generalized to d dimensions.
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Three data scales
■ x-scale (original i.i.d data vectors): (xi1, . . . xid)
■ u-scale (copula data):

(ui1, . . . uid), where uij = Fj(xij) i = 1, . . . , n; j = 1, . . . , d

is the probability integral transform.
■ z-scale (marginal normalized data):

(zi1, . . . zid), where zij = Φ−1(uij) i = 1, . . . , n; j = 1, . . . , d

and Φ−1 quantile function of N(0, 1)
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Bivariate elliptical copula families
Gaussian copula

(left τ = .25, right: τ = .75)
symmetric dependence

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u1

u2

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

u1

u2

x1

x2

 0.01 

 0.05 

 0.1 

 0.15 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

x1

x2

 0.01 

 0.05 

 0.1 

 0.15 

 0.2 

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

t-copula with df = 3
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Bivariate Archimedean copula families
Gumbel copula

(left τ = .25, right: τ = .75)
upper tail dependent
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Clayton copula
(left τ = .25, right: τ = .75)

lower tail dependent
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How do vines work in higher dimensions?

■ Which pairs of variables are needed?
■ What are the conditioning variables?

Components of a regular vine R(V, C, θ) distribution

1. Tree structure V of linked trees identifies the pairs of variables
and conditioning variables.

2. Parametric bivariate copulas C = C(V) for each edge in the
tree structure

3. Corresponding parameter value θ = θ(C(V))

■ Recursion for conditional distribution functions (Joe 1996):

If v = (vj , v−j) then F (x|v) =
∂Cxvj ;v−j (F (x|v−j), F (vj |v−j))

∂F (vj |v−j)
.
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Can we see an example of a tree structure?

2

5 1 4

3

1,5 1,4

2,4

3,4 T1

2,4

1,5 1,4

3,4

4,5|1

1,2|4

1,3|4 T2

4,5|1 1,3|4 1,2|4
3,5|14 2,3|14

T3

3,5|14 2,3|14
2,5|134

T4

Density

f = f1 · f2 · f3 · f4 · f5

· c14 · c15 · c24 · c34

· c12;4 · c13;4 · c45;1

· c23;14 · c35;14

· c25;134
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Special regular vines: C and D-vines
C-vine: each tree has
unique node connected to
d − j edges

f1234 = [
4∏

i=1

fi] · c12 · c13 · c14

·c23;1 · c24;1 · c34;12

2 3

1 4

12

13

14
tree 1

13

12 14

23|1

24|1
tree 2

23|1 24|1
34|12

tree 3

useful for ordering by importance

D-vine: no node is con-
nected to more than 2
edges

f1234 = [
4∏

i=1

fi] · c12 · c23 · c34

·c13;2 · c24;3 · c14;23

1 2 3 4
12 23 34

tree 1

12 23 34
13|2 24|3

tree 2

13|2 24|3
14|23

tree 3

useful for temporal ordering
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How can we estimate and select PCCs?

Three tasks (Czado et al. (2013))
1. How to estimate the pair copula parameters for a given vine

tree structure and pair copula families for each edge?
2. How to choose the pair copula families and estimate the

corresponding parameters for a given vine tree structure?
3. How to select and estimate all components of a regular vine?
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Task 1: Sequential and ML estimation
Parameters: Θ = (θ12, θ23, θ13;2)
Observations: {(xt1, xt2, xt3), t = 1, · · · , T}

Sequential estimates:
■ Estimate θ12 from {(xt1, xt2), t = 1, · · · , T}
■ Estimate θ23 from {(xt2, xt3), t = 1, · · · , T}.
■ Define pseudo observations

v̂1|2t := F (xt1|xt2, θ̂12) and v̂3|2t := F (xt3|xt2, θ̂23)

Finally estimate θ13;2 from {(v̂1|2t, v̂3|2t), t = 1, · · · , T}.

Maximum likelihood
L(Θ|x) =

T∑
t=1

[log c12(xt1, xt2|θ12) + log c23(xt2, xt3|θ23)

+ log c13;2(F (xt1|xt2, θ12), F (xt3|xt2, θ23)|θ13;2)]
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Task 2: Joint estimation of pair copula

families and parameters

■ Restrict to a set of bivariate pair copula families and use AIC
or Vuong test to select family

■ Check for truncation (Brechmann et al. (2012), Nagler et al.
(2019)) by using independence copulas in higher trees

Task 3: Sequential treewise selection
■ Capture strong pairwise dependencies first.
■ Select trees sequentially.
■ Give weights to every edge possible and select tree which

maximizes the sum of weights.
■ Details in Dißmann et al. (2013).
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Software/Simulation for vines

■ Software: rvinecopulib (Nagler and Vatter 2021)
■ Simulation of vine copulas:

□ Rosenblatt transform: A sample u1, ..., ud from C1,...,d is
obtained as follows:

First: Sample wj
i.i.d.∼ U [0; 1], j = 1, . . . , d

Then: u1 := w1

u2 := C−1
2|1 (w2|u1)

...

ud := C−1
d|d−1,...,1(wd|ud−1, . . . , u1).

□ So we need conditional distributions associated with d
dimensional vine copulas
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h functions and univariate cond. copula cdf’s

Indices: r : s := (r, r + 1, . . . , s), sets: xr:s = (xr, . . . , xs)
h functions:

h1|d;2:(d−1)(u1|vd) := ∂

∂vd

C1d;2:(d−1)(u1, vd)

hd|1;2:(d−1)(ud|v1) := ∂

∂v1
C1d;2:(d−1)(v1, ud)

Recursion for univariate conditional copula cdf’s

C1|2:d(u1|u2:d) = h1|d;2:(d−1)(C1|2:(d−1)(u1|u2:(d−1))|Cd|2:(d−1)(ud|u2:(d−1)))

Cd|2:(d−1)(ud|u2:(d−1)) = hd|2;3:(d−1)(Cd|3:(d−1)(ud|u3:(d−1))|C2|3:(d−1)(u2|u3:(d−1)))
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Univariate conditional distributions

of D-vine copulas

Restrict to D-vine copulas, but extension to R-vines possible

c1234 = c12 · c23 · c34

· c13;2 · c24;3

· c14;23

1 2 3 4
12 23 34

12 23 34
13; 2 24; 3

13; 2 24; 3
14; 23

Univariate conditional copula cdf of first node

C1|2:4(u1|u2:4) =
h1|4;2,3(h1|3;2(h1|2(u1|u2)|h3|2(u3|u2))|h4|2;3(h4|3(u4|u3)|h2|3(u2|u3)))
where hi|j;D(u|v) := ∂Cij;D(u, v)/∂v.
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Vine copula based (quantile) regression

■ Paper: Kraus, D., and Czado, C. (2017). D-vine copula based
quantile regression. Computational Statistics & Data Analysis,
110, 1-18.

■ Software: Nagler. T. (2022). vinereg: D-Vine Quantile
Regression. R package version 0.8.1.
https://CRAN.R-project.org/package=vineregNagler
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Conditional quantiles in a D-vine copula

■ Express the univariate conditional copula cdf Cv|1:m(·|u1:m) for
fixed conditioning values u1:m using h functions.

■ Denote by Qv|1:m(·|u1:m) the quantile function corresponding
to Cv|1:m(·|u1:m) for fixed u1:m.

■ For continuous pair copulas we have

Conditional quantiles

Qv|1:m(α|u1:m) := C−1
v|1:m(α|u1:m) for α ∈ (0, 1).

■ Use the inverses of the h function to recursively invert the
univariate conditional cdf Cv|1:m(·|u1:m) to obtain the
corresponding conditional quantile Qv|1:m(α|u1:m).
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Copula quantile regression
Original scale Copula scale

Node variable X ∼ FX V : = FX(X)
Parent variables S = (S1, . . . , Sm) U : = (U1, . . . , Um)

where Uk := FSk
(Sk)

Copula quantile regression:
F −1

X|S1,...Sm
(α|s) = F −1

X

(
C−1

V |U1,...Um
(α|u1, . . . um)

)
For DAG context:
■ X corresponds to a particular node
■ S1, . . . Sm corresponds to parent variables of that node.
■ Conditional quantiles C−1

V |U1,...Um
are based on a D-vine copula.
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Linear and copula quantile regression

Linear quantile regression

F −1
X|S(α|s) = β0(α) +

m∑
k=1

βk(α)sk

■ Linearity assumption often violated → quantile crossing
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■ Linear quantiles only occur with Gaussian dependence
(Bernard and Czado 2015).

■ No quantile crossing occurs in copula quantile regression
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D-vine copula quantile regression estimation
(Kraus and Czado 2017)
■ Given i.i.d. data (x, s = (s1, . . . , sm)) of sample size n
■ Create pseudo copula data (v̂, û = (û1, . . . , ûm)) by estimating

univariate cdf’s and applying the probability integral transform
■ We use kernel smoothing estimators for the cdf of all variables

since we need F̂ −1
x (α) later.

■ Over all D-vines D with D-vine ordering V , pair copula families
B(V), parameter set Θ(B(V)) and i th pseudo copula values
(v̂i, ûi) maximize

conditional log-likelihood based on D-vine D

cll(v̂, û; D) :=
n∑

i=1
ln(cv|u1,...um

(v̂i|ûi1, . . . ûim; D))

■ conditional copula density cv|u1,...,um is analytically available.
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Selection of D-Vine copula quantile

regression models (Kraus and Czado 2017)

■ There are m! possible D-vine orderings, these are too many.
■ So we follow a forward selection of the parent nodes:

□ Start with the parent node, which has the largest cll value, call
this variable 1, so we have ordering v ↔ 1 with cllmax and pair
copula family cv1 and parameter θv1.

□ For each remaining parent node w, determine cll(w) based on
D-vine ordering v ↔ 1 ↔ w, families and parameters, choose
the one with largest cll(w).

□ If cll(w) > cllmax then call w variable 2 and consider ordering
v ↔ 1 ↔ 2 with cllmax, otherwise stop.

□ Continue until cllmax cannot be improved.

■ This gives a ranking of the parent nodes by importance.
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D-vine SEM
■ Assume that a DAG for data at hand is given.
■ Use a D-vine regression model for each f(xj|π(Xj) = π(xj))
■ Since this involves a forward selection of the parent nodes, the

starting DAG can be reduced if parent nodes are not selected.
■ This D-vine SEM is approximately compatible with the

specified conditional distributions for each node as long as
selected pair copulas are a good approximation for the integral
of certain conditional pair copulas.
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Marginal exploration
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Pairwise exploration (I)
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Pairwise exploration (II)
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Graphical analysis of Sachs data
■ Data preparation: all variables logarithmized and

standardized
■ Gaussian SEM model (5 edges selected):

□ uses R package sparsebn based on Fu and Zhou (2013)
□ uses concave penalization of Aragam and Zhou (2015)

■ GAM SEM model: (8 edges selected)
□ uses R package spacejam based on Voorman et al. (2014)
□ uses topological order of consent graph
□ selects using minimal BIC with cubic polynomials as basis

■ D-vine SEM model (10 edges selected):
□ uses R package vinereg based on Kraus and Czado (2017)

with non parametric margins
□ Starting from consent graph
□ Removes edges, when parent nodes are not selected using BIC
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Chosen DAG’s for the Sachs Data
Consent DAG

pip3

plc

pip2
pkc

pka

p38

jnk

raf

mek

erk

akt

GAM DAG

pip3

plc

pip2
pkc

pka

p38

jnk

raf

mek

erk

akt

D−vine DAG

pip3

plc

pip2
pkc

pka

p38

jnk

raf

mek

erk

akt

Gauss DAG

pip3

plc

pip2
pkc

pka

p38

jnk

raf

mek

erk

akt

Claudia Czado | Vine copula structural equation models | Oct.2022 35



Comparison of chosen edges
■ Gaussian SEM (5 edges):

□ pip3 → pip2, pkc → p38, pka → akt, erk → akt, raf → mek

■ GAM SEM (8 edges):
□ pip3 → pip2, pip3 → plc, pkc → p38, p38 → jnk, pka → akt,

pka → erk, erk → akt, raf → mek
□ Extra edges compared to Gauss SEM in blue.

■ D-vine SEM (10 edges):
□ pip3 → pip2, pip3 → plc, plc → pip2, pkc → jnk, pkc → p38,

pka → akt, pka → mek, pka → erk, erk → akt, raf → mek
□ Extra edges compared to Gauss SEM in green.

■ D-vine SEM versus GAM SEM:
□ D-vine SEM does not have edge p38 → jnk of GAM SEM, but

has edges plc → pip2, pkc → jnk and pka → mek.
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Chosen pair copulas in D-vine SEM (I)
■ Node plc with parent node pip3

edge family parameters tau loglik
(plc, pip3) bb8 1.70 , 0.98 0.25 100

■ Node pip2 with parents pip3 and plc
edge family parameters tau loglik

(pip2, pip3) bb7 1.50, 0.30 0.31 142
(pip3, plc) bb8 1.70, 0.98 0.25 100

(pip2, plc; pip3) nonpar -0.10 144
■ Node p38 with parent node pkc

edge family parameters tau loglik
(p38, pkc) bb1 0.29 , 2.31 0.62 549

■ Node jnk with parent node pkc
edge family parameters tau loglik

(jnk, pkc) gauss 0.26 , — 0.17 33
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Pair copulas in D-vine SEM (II)
■ Node mek with parents raf and pkc

edge family parameters tau loglik
(mek, raf) gauss 0.69, — 0.48 291
(raf, pkc) ind —, — 0.00 0

(mek, pkc; raf) gauss -0.11,— -0.07 6
■ Node erk with parent node pka

edge family parameters tau loglik
(erk, pka) nonpar — , — 0.13 187

■ Node akt with parents erk and pka
edge family parameters tau loglik

(akt, erk) gumbel 3.00, — 0.67 663
(erk, pka) nonpar —, — 0.13 187

(akt, pka; erk) bb8 2.50, 0.87 0.33 135
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Fitted conditional means
■ For the Gaussian SEM and the GAM SEM the fits of the

conditional means of each observations are computed and
then non linearly smoothed over all observations (purple line
in plots)

■ For D-vine SEM the fitted conditional medians, 10%
conditional quantiles and 90% conditional quantiles for all
observations are calculated and non linearly smoothed. The
fitted quantiles of the D-vine SEM can serve as 80%
confidence interval.

■ We plot the conditional means or quantiles as function of each
parent variable separately.

Claudia Czado | Vine copula structural equation models | Oct.2022 39



Conditional means using Gauss SEM
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■ purple smooths are mostly linear as postulated by model
■ Only akt has two parents (pka,erk)
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Conditional means using GAM SEM
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non linear conditional means effects, but no confidence intervals
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Conditional means using D-vine SEM
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non linear conditional means effects with confidence intervals
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Summary of Sachs analysis results
■ Gaussian DAG is not appropriate for this experimental setting

of the Sachs data
■ GAM SEM does not allow for confidence intervals, while the

D-Vine SEM does.
■ D-Vine SEM selects more edges compared to the other two

methods.
■ More complex marginal conditional median effects are seen in

D-vine SEM compared to the mean effects in the GAM SEM.
■ Many non Gaussian pair copulas are needed for the D-vine

SEM.
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Outline

1 Motivation
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distributions

3 Vine copula based quantile regression models
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6 Summary and outlook
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Summary and outlook
■ D-vine SEM’s useful tool to identify and analyze non Gaussian

graphical data
■ Extension to R-vine based SEM’s (start with Chang and Joe

(2019)) and/or discrete variables (start with Panagiotelis et al.
(2012)) are possible.

■ Develop forward and backward selection algorithms of parents.
■ Bauer et al. (2012) use R-vine based pairwise conditional

dependence tests within the PC algorithm, while Müller and
Czado (2018) look at sparse R-vine DAG’s Tepegjozova and
Czado (2022) developed more suitable Y-vine structure to
model bivariate conditional distributions. Can be utilized for
identifying DAG’s from data.

■ Higher dimensional case studies are needed.
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