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Problem and setup

� Structure Learning Problem
Learn the DAG G of a structural causal model from observational data. Data are n i.i.d. copies of
a p-dimensional random vector X satisfying

Xi = fi(Xpa(i), εi), i ∈ [p],

where the εi are independent noise terms.
� Challenges

1. The graph G can be non identifiable,
2. If p is large , then usual algorithms are too slow.

� Assumptions
1. G is a Polytree,
2. fi are Linear,
3. εi are non-Gaussian.
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Polytrees

� The skeleton of the graph is a tree, i.e there are no undirected cycles,
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Figure 1 A directed tree1
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Figure 2 A polytree
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Figure 3 Not a polytree

� Why? The graph can be recovered using any (reasonable) bivariate dependence measures.2

1Jakobsen et al. [2022]
2Rebane and Pearl [1987]

Daniele Tramontano, Anthea Monod and Mathias Drton | Learning Linear Non-Gaussian Polytree Models | October 10-15, 2022 3



Orientation
� Proposed Two-Step Approach

1. Learn the skeleton with Chow-Liu algorithm,
2. Three different orientation schemes.

� Orientation Matrix3 For a potential edge e : i→ j and K ∈ N, define the matrix Ae,K as:(
ce,km
ce,km−1

| 2 ≤ m ≤ k ≤ K
)
,

where ce,km is the kth cumulant cum(Xi, . . . , Xik ) with i1 = · · · = im = i and im+1 = . . . ik = j.

� Cumulants

1. cum(Xi) = E[Xi] = 0
2. cum(Xi1 , Xi2 ) = E[Xi1Xi2 ]
3. cum(Xi1 , Xi2 , Xi3 ) = E[Xi1Xi2Xi3 ]

4. cum(Xi1 , Xi2 , Xi3 , Xi4 ) =
E[Xi1Xi2Xi3Xi4 ]− E[Xi1Xi2 ]E[Xi3Xi4 ]−
E[Xi1Xi3 ]E[Xi2Xi4 ]− E[Xi1Xi4 ]E[Xi2Xi3 ].

3Améndola et al. [2021]
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Orientation Matrix

� Example(G : 1→ 2, K = 3, zero means) Let X1 = ε1 and X2 = λ1,2X1 + ε2. Thus:

A1→2,3 =
[

E(X2
1 ) E(X3

1 ) E(X2
1X2)

E(X1X2) E(X2
1X2) E(X1X

2
2 )

]
=
[

E(ε2
1) E(ε3

1) λ1,2E(ε3
1)

λ1,2E(ε2
1) λ1,2E(ε3

1) λ2
1,2E(ε3

1)

]
whereas :

A2→1,3 =
[

E(X2
2 ) E(X3

2 ) E(X2
2X1)

E(X2X1) E(X2
2X1) E(X2X

2
1 )

]
=
[
λ2

1,2E(ε2
1) + E(ε2

2) λ3
1,2E(ε3

1) + E(ε3
2) λ2

1,2E(ε3
1)

λ1,2E(ε2
1) λ2

1,2E(ε3
1) λ1,2E(ε3

1)

]
.

so rk(A1→2,3) = 1 while rk(A2→1,3) = 2 (in general).
� Matrix Rank Reveals Orientation

1. Let e : i→ j be an edge of G. Then
(i) rank(Ai→j,K) = 1,
(ii) rank(Aj→i,K) = 2, in general.

2. Suppose the skeleton of G contains the subgraph i− j − l with ρi,j , ρj,l 6= 0. Then the corresponding
subgraph of G is i→ j ←− l iff ρi,l = 0.
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Orientation Schemes and Consistency

� Orientation Schemes
1. PO Orient all the edges independently using

lemma 1,

2. TPO Orient the first edge using lemma 1, and
then use lemma 2 to orient the next edges,

3. PTO Learn the the CPDAG first using lemma
2, and then use lemma 1 to orient the
remainig edges.

� Consistency Suppose the data are an
n-sample drawn from a distribution in the
model given by a polytree G. Let Ĝ be the
polytree obtained by applying the orientation
scheme PO to the (undirected) edge set of

the Chow–Liu treeM(Rn). There is a set of
constants {δ′,MK , L} such that Ĝ = G with
probability greater than

1− 4B(K)(p− 1) exp
{
− 2
LK2

√
MK

(
δ′
√
n
) 1

K

}
+

−3p(p− 1)
2 exp

{
− 1

2L
√
M2

(
λγ
√
n

2 + λ

) 1
2
}
,

for all n greater than:
max

{
e2(2+λ)2(4L2√M2)4

λ2γ2 , e
2(LK2√MK)2K

δ′2

}
,

where p is the size of the tree and n is the
sample size.
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Simulations

Figure 4 Structural Hamming distance on simulated
polytrees, p = 10000, 20000, n/p = 0.1 and εi drawn
from a gamma distribution

Figure 5 Structural Hamming distance on simulated
polytrees, p = 10000, 20000, n/p = 0.1 and εi drawn
from a uniform distribution
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Future Work?

1. Other identifiable settings?
2. How to avoid Chow–Liu?
3. Which tree structures are the most difficult to learn?4

4. What happens when the graph is not a tree?5

4Tan et al. [2009]
5Acid and de Campos [1994], Dasgupta [1999], Grüttemeier et al. [2021]
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