Treks,
TETRADS \&
THIRD-ORDER
TENSORS OF MOMENTS

Polynomial relations for linear graphical models BEYOND COVARIANCE MATRICES

Alex Grosdos
joint with Carlos Améndola, Mathias Drton, Roser Homs, Elina Robeva

ETH-UCPH-TUM Workshop on Graphical Models

GRAPHICAL MODELS IN THIS TALK

Directed arrows capture causal relations between random variables

translating to equations

$$
\begin{array}{rlrl}
X_{1} & = & \varepsilon_{1} \\
X_{2} & =\lambda_{12} X_{1} & +\varepsilon_{2} \\
X_{3} & =\lambda_{13} X_{1}+\lambda_{23} X_{2}+\varepsilon_{3}
\end{array}
$$

Structural equation models

A graph $G=(V, E)$ gives rise to structural equations

$$
X_{i}=\sum_{j \in \operatorname{pa}(i)} \lambda_{j i} X_{j}+\varepsilon_{i}, \quad i \in V
$$

- ε_{i} represent stochastic errors with $\mathbb{E}\left[\varepsilon_{i}\right]=0$,
- $\lambda_{j i}$ are unknown parameters forming a matrix $\Lambda=\left(\lambda_{i j}\right)$.

The corresponding moment tensor model is

$$
\begin{aligned}
\mathcal{M}^{(2,3)}(G)=\{ & \left(S=(I-\Lambda)^{-T} \Omega^{(2)}(I-\Lambda)^{-1},\right. \\
& \left.T=\Omega^{(3)} \bullet(I-\Lambda)^{-1} \bullet(I-\Lambda)^{-1} \bullet(I-\Lambda)^{-1}\right): \\
& \Omega^{(2)} \text { is } n \times n \text { positive definite diagonal matrix, } \\
& \left.\Omega^{(3)} \text { is } n \times n \times n \text { diagonal 3-way tensor, and } \Lambda \in \mathbb{R}^{E}\right\} .
\end{aligned}
$$

This makes (statistical) sense for non-Gaussian random variables.
Goal: characterize polynomial relations among elements in the model.

Tetrads

Let 0 be a hidden variable and $1,2,3,4$ be observed ones.

Then the following tetrad relations [Drton, Sturmfels, Sullivant 05; Peters, Janzing, Schölkopf 17] hold among the elements of the covariance matrix

$$
s_{12} s_{34}-s_{13} s_{24} \quad s_{12} s_{34}-s_{14} s_{23} \quad s_{13} s_{24}-s_{14} s_{23}
$$

Proof Evaluate the expressions via

$$
s_{i j} \mapsto \omega_{0} \lambda_{0 i} \lambda_{0 j} .
$$

They all evaluate to zero.

WhY higher moments?

The covariance matrix structure reveals statistical information, e.g.

has covariance ideal $I=\left\langle s_{13} s_{22}-s_{12} s_{23}\right\rangle$ corresponding to the statement $X_{1} \Perp X_{3} \mid X_{2} \ldots$

Proposition One can deduce the skeleton and the colliders of the graph from the covariance matrix.
...but so do the graphs

Proposition [Wang, Drton 18] The whole graph can be reconstructed from covariance matrices and $3^{\text {rd }}$-order tensors.

Treks on graphs

A trek with top v between i and j is formed by joining two paths sharing a source v

$$
i=i_{l} \leftarrow \cdots \leftarrow i_{1} \leftarrow v \rightarrow j_{1} \rightarrow \ldots \rightarrow j_{r}=j
$$

and gives rise to a monomial

$$
a_{v}\left(\lambda_{v i_{1}} \lambda_{i_{1} i_{2}} \ldots \lambda_{i_{l-1} i_{l}}\right)\left(\lambda_{v j_{1}} \lambda_{j_{1} j_{2}} \ldots \lambda_{j_{r-1} j_{r}}\right)
$$

An n-trek between vertices k_{1}, \ldots, k_{n} is a collection of directed paths $T=\left(P_{1}, \ldots, P_{n}\right)$, where P_{r} has sink k_{r} and they all share the same top vertex as source $v=\operatorname{top}(T)$.

The simple trek parametrization

A trek is minimal if the top node is the only one that appears in all paths of the trek. For a graph G, let $T\left(i_{1}, \ldots, i_{n}\right)$ be the set of minimal n-treks between i_{1}, \ldots, i_{n}.

Consider the polynomial map ϕ_{G} :

$$
\begin{aligned}
\mathbb{C}\left[s_{i j}, t_{i j k} \mid 1 \leq i \leq j \leq k \leq n\right] & \rightarrow \mathbb{C}\left[a_{i}, b_{i}, \lambda_{i j} \mid i \rightarrow j \in E\right] \\
s_{i j} & \mapsto \sum_{\tau \in T(i, j)} a_{\operatorname{top}(\tau)} \prod_{k \rightarrow l \in \tau} \lambda_{k l}, \\
t_{i j k} & \mapsto \sum_{\tau \in T(i, j, k)} b_{\operatorname{top}(\tau)} \prod_{m \rightarrow l \in \tau} \lambda_{m l} .
\end{aligned}
$$

Example

$$
\begin{aligned}
s_{i i} & \mapsto a_{i} \quad t_{i i i} \mapsto b_{i} \\
s_{13} & \mapsto a_{1} \lambda_{13} \\
s_{14} & \mapsto a_{1} \lambda_{12} \lambda_{24}+a_{1} \lambda_{13} \lambda_{34} \\
t_{123} & \mapsto b_{1} \lambda_{12} \lambda_{13}
\end{aligned}
$$

The trek rule

$$
\begin{array}{rll}
s_{i j} & \mapsto & \sum_{\tau \in T(i, j)} a_{\mathrm{top}(\tau)} \prod_{k \rightarrow l \in \tau} \lambda_{k l} \\
t_{i j k} & \mapsto & \sum_{\tau \in T(i, j, k)} b_{\operatorname{top}(\tau)}^{\prod_{m \rightarrow l \in \tau}} \lambda_{m l}
\end{array}
$$

Proposition [Sullivant 08; Améndola, Drton, G, Homs \& Robeva 22] For a directed graph G, let ϕ_{G} be the map given by the simple trek rule. Then the vanishing ideal $I^{(2,3)}(G):=\mathcal{J}\left(\mathcal{M}^{(2,3)}(G)\right)$ of the model is

$$
I^{(2,3)}(G)=\operatorname{ker} \phi_{G}
$$

Corollary [Améndola, Drton, G, Homs \& Robeva 22] If G is a tree, $I^{(2,3)}(G)$ is a toric ideal, i.e. it is generated by binomials.

VANISHING MINORS

Let $i, j \in V$ be two vertices such that a 2-trek between i and j exists. Define

$$
A_{i j}:=\left[\begin{array}{cccccc}
s_{i k_{1}} & \cdots & s_{i k_{r}} & t_{i \ell_{1} m_{1}} & \cdots & t_{i \ell_{q} m_{q}} \\
s_{j k_{1}} & \cdots & s_{j k_{r}} & t_{j \ell_{1} m_{1}} & \cdots & t_{j \ell_{q} m_{q}}
\end{array}\right]
$$

where

- k_{1}, \ldots, k_{r} are all vertices such that $\operatorname{top}\left(i, k_{a}\right)=\operatorname{top}\left(j, k_{a}\right)$ and
- $\left(l_{1}, m_{1}\right), \ldots,\left(l_{q}, m_{q}\right)$ are all pairs of vertices such that $\operatorname{top}\left(i, l_{b}, m_{b}\right)=\operatorname{top}\left(j, l_{b}, m_{b}\right)$.

Proposition [Améndola, Drton, G, Homs \& Robeva 22] For a tree G, the following polynomials are in $I^{(2,3)}(G)$:

- $s_{i j}$ such that there is no 2 -trek between i and j,
- $t_{i j k}$ such that there is no 3 -trek between i, j and k,
- the 2-minors of $A_{i j}$, for all (i, j) with a 2-trek between them.

IDEAL DESCRIPTION FOR TREES

Proposition [Améndola, Drton, G, Homs \& Robeva 22] All quadratic binomials in $I^{(2,3)}(G)$ are linear combinations of 2-minors of matrices $A_{i j}$.

Example The binomial $f=s_{23} t_{145}-s_{45} t_{123}$ lies in $I^{(2,3)}(G)$. It is a sum of minors from A_{13}, A_{14} and A_{15}.

Theorem [Améndola, Drton, G, Homs \& Robeva 22] All binomials in $I^{(2,3)}(G)$ are generated by quadratic binomials, i.e. $I^{(2,3)}(G)$ is generated by the matrices $A_{i j}$ (plus vanishing indeterminates).

Proof A distance reduction argument for binomials in the ideal, showing that matrix minors are a Markov basis.

Application: trees with hidden variables

Let $H \cup O$ be a partition of the nodes of the DAG G. The hidden nodes H are said to be upstream from the observed nodes O in G if there are no edges $o \rightarrow h$ in G with $o \in O$ and $h \in H$.

Lemma The ideal $I^{(2,3)}(G)$ is homogeneous w.r.t. the grading: $\operatorname{deg} s_{i j}=(1,1+$ number of elements in the multiset $\{i, j\}$ in $O)$ $\operatorname{deg} t_{i j k}=(1$, number of elements in the multiset $\{i, j, k\}$ in $O)$.

Proposition For a tree G, the observed variable ideal $I_{O}^{(2,3)}(G)$ is generated by the minors of the submatrices of $A_{i j}$ with i, j both in O, with columns indexed by k and (l, m) where k, l, m are all in O.

VARIETY ADMITS MORE COMPACT DESCRIPTION

Theorem [Améndola, Drton, G, Homs \& Robeva 22] Let J be the ideal generated by the linear generators of $I^{(2,3)}(G)$ and matrices $A_{i j}$ such that there is a directed path between i and j. Then

$$
\mathcal{M}^{(2,3)}(G)=V(J) \cap P D(n) .
$$

In particular, pick $(S, T) \in \mathcal{M}^{(2,3)}(G)$. For $i \rightarrow j \in E$, let $\lambda_{i j}=\frac{s_{i j}}{s_{i i}}$, coming from $A_{i j}$. Then one can show
$S^{\prime}=(I-\Lambda)^{T} S(I-\Lambda) \quad$ and $\quad T^{\prime}=T \bullet(I-\Lambda) \bullet(I-\Lambda) \bullet(I-\Lambda)$ are diagonal.

Example Let G be $1 \rightarrow 2,1 \rightarrow 3,1 \rightarrow 4,1 \rightarrow 5$. Computations show

$$
I^{(2,3)}(G)=\left(J: s_{11}^{\infty}\right)
$$

and

$$
\mathcal{M}^{(2,3)}(G)=V\left(I^{(2,3)}(G)\right) \cap P D(5)=V(J) \cap P D(5)
$$

A FOREST OF NON-TREES

The ideal of the 3×3 minors of

1
1
2
3

${ }_{3}$
2 $\left(\begin{array}{ccccccc}s_{11} & s_{12} & t_{111} & t_{112} & t_{113} & t_{122} & t_{123} \\
s_{12} & s_{22} & t_{112} & t_{122} & t_{123} & t_{222} & t_{223} \\
s_{13} & s_{23} & t_{113} & t_{123} & t_{133} & t_{223} & t_{223}\end{array}\right)$
is given by
the 2×2 minors of

1	11	12	13
1			
2			
3			

s_{12} \& t_{112} \& t_{122} \& t_{123}

s_{13} \& t_{113} \& t_{123} \& t_{133}\end{array}\right)\) | \emptyset |
| :--- |
| 2 |\(\left(\begin{array}{ccc}13 \& 22 \& 23

s_{13} \& s_{22} \& s_{23}

t_{123} \& t_{222} \& t_{223}

t_{133} \& t_{223} \& t_{223}\end{array}\right)\)
and the determinant of

A FOREST ON NON-TREES

The ideal of the graph

is given by the maximal minors of
$\left.\begin{array}{l} \\ 1 \\ 2 \\ 3\end{array} \begin{array}{ccccccc}1 & 2 & 11 & 12 & 13 & 22 & 23 \\ s_{11} & s_{12} & t_{111} & t_{112} & t_{113} & t_{122} & t_{123} \\ s_{12} & s_{22} & t_{112} & t_{122} & t_{123} & t_{222} & t_{223} \\ s_{13} & s_{23} & t_{113} & t_{123} & t_{133} & t_{223} & t_{233}\end{array}\right)$.

MOMENT POLYTOPES

Given a polytree G, the third-order moment polytope is
$P_{G}^{(3)}=\operatorname{conv}\left(e_{i j k}: i, j, k\right.$ such that a 3-trek between i, j and k exists $)$
where $e_{i j k} \in \mathbb{R}^{|V|+|E|}$ is the vector of exponents of the monomial
$\phi_{G}\left(t_{i j k}\right)=b_{\operatorname{top}(i, j, k)} \prod_{l \rightarrow m \in \mathcal{T}(i, j, k)} \lambda_{l m} \in \mathbb{R}\left[b_{l}, \lambda_{l m}\right]$.
Theorem The third-order moment polytope $P_{G}^{(3)}$ is the solution to

$$
\begin{gathered}
z_{l} \geq 0 \text { for all } l \in V, \\
y_{l m} \geq 0 \text { for all } l \rightarrow m \in E, \\
\sum_{l \in V} z_{l}=1, \\
2 z_{l}+\sum_{h \in p a(l)} y_{h l}-y_{l m} \geq 0 \text { for all } m \text { such that } l \rightarrow m \in E, \\
3 z_{l}+\sum_{h \in p a(l)} y_{h l}-\sum_{m \in c h(l)} y_{l m} \geq 0 \text { for all } l \in V
\end{gathered}
$$

OPEN PROBLEMS

-What about non-trees?

- Sparse latent factor analysis (current project with Drton, Portakal, Sturma)
- Latent factor analysis in higher dimensions (see also Ardiyansyah, Sodomaco 22)
- Euclidean distance degrees to the varieties
- [Your favorite graphical model here]

SUMMARY

- Graphical models are richer in the non-Gaussian setting, it is meaningful to study higher-order moment tensors
- The trek rules can be extended for h.o.m. and one can obtain binomial (matrix minors) descriptions of the ideals
- The hidden variable ideals are given by some of the binomials
- Lots of open questions ...

Reference:
Améndola, Drton, G, Homs \& Robeva
Third-Order Moment Varieties of Linear Non-Gaussian Graphical
Models

Thank you!

