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GRAPHICAL MODELS IN THIS TALK

Directed arrows capture causal relations between random variables

Xy Atrial fibrillation

Xl = 51
Xo = ApXy + &
A3Xy + ApXy + g

&5
I



STRUCTURAL EQUATION MODELS

A graph G = (V, F) gives rise to structural equations
jepa(i)
« ¢, represent stochastic errors with E[g;] = 0,
* \j; are unknown parameters forming a matrix A = (A;;).
The corresponding moment tensor model is
MEI(G) = {(S = (I - ) TADIT - A),
T=00)e(I—-A)le(I-A)te(I—-A)"1):
Q2 isn x n positive definite diagonal matrix,
Q) isn x n x n diagonal 3-way tensor, and A € R¥}.

This makes (statistical) sense for non-Gaussian random variables.

Goal: characterize polynomial relations among elements in the model.



TETRADS

Let 0 be a hidden variable and 1, 2, 3, 4 be observed ones.

0
A

Then the following tetrad relations [Drton, Sturmfels, Sullivant 05;

Peters, Janzing, Scholkopf 17] hold among the elements of the
covariance matrix

8512534 — 513524 512534 — 514523 S13524 — 514523
Proof Evaluate the expressions via
87] = WO)\OiAO‘j'

They all evaluate to zero.



WHY HIGHER MOMENTS?

The covariance matrix structure reveals statistical information, e.g.
B———®

has covariance ideal I = (s;3599 — S15893) corresponding to the
statement X; 1 X5|X,...

Proposition One can deduce the skeleton and the colliders of the
graph from the covariance matrix.

...but so do the graphs

Proposition [Wang, Drton 18] The whole graph can be
reconstructed from covariance matrices and 3'-order tensors.




TREKS ON GRAPHS

A trek with top v between i and j is formed by joining two paths
sharing a source v
L=1 44— V=>J = ... = ]j. =]
and gives rise to a monomial
Tl Pespy Moy oor Py M P con g

An n-trek between vertices k1, ..., k,, is a collection of directed

pathsT' = (P, ..., P, ), where P, has sink k,. and they all share the
same top vertex as source v = top(7T").
kll — k12 —— 000 p klll = kl

U ko — kgg —> > ko, = ko

kgy — kgo —> > K3y, = k3 5



THE SIMPLE TREK PARAMETRIZATION

A trek is minimal if the top node is the only one that appears in all
paths of the trek. For a graph G, let T'(iy, ... , i,,) be the set of

minimal n-treks between i, ... ,7,,.

Consider the polynomial map ¢:
Clsijptije |1 <i<j<k<n] — Cla;b;N;|i— 7€ E]

39 Y39

Sij = Z atop H )‘kb
€T (i,5) k—ler
e B D bope I Am
T€T(4,5,k) m%lET
Example 1
Sy P a; ty b / \3

S14 P agAj9Aeg + a3 A3A3
t123 > biA19A3

2
S13 > ajAg \ /
4



THE TREK RULE

Sij B Z top() H Ak

T7€T(4,7) k—ler
tijk = beon(r H A
T€T(i,5,k) TYL*}lET

Proposition [Sullivant 08; Améndola, Drton, G, Homs & Robeva 22]
For a directed graph G, let ¢ be the map given by the simple trek
rule. Then the vanishing ideal I(23)(G) := 7(M23)(@)) of the
model is

I23)(@) = ker ¢ .

Corollary [Améndola, Drton, G, Homs & Robeva 22] If G is a tree,
I23)(@)is a toric ideal, i.e. it is generated by binomials.



VANISHING MINORS

Let i, j € Vbe two vertices such that a 2-trek between i and j exists.
Define

A |Bike o Sk, tieym, * tiegm, ’
S t t

Jk,. Jlimq Jjlgmy

where

* kq,..., k, are all vertices such that top(i, k,) = top(j, k,) and
* (I, my),..,(ly, m,) are all pairs of vertices such that

tOp(i, lbv mb) = t0p<j7 lb7 mb)'

Proposition [Améndola, Drton, G, Homs & Robeva 22] For a tree G,
the following polynomials are in I(2:3)(G):

* s;; such that there is no 2-trek between 7 and j,
* 1, such that there is no 3-trek between 4, j and k,

o the 2-minors of A,

ij» forall (7, j) with a 2-trek between them. 8



IDEAL DESCRIPTION FOR TREES

Proposition [Améndola, Drton, G, Homs & Robeva 22] All quadratic
binomials in 7(2:3)(@) are linear combinations of 2-minors of
matrices A, ;.

EXample The b|nom|alf = 823t145_845t123 1
lies in 1(23)(@). Itis a sum of minors from // X\J
Ay, Ay and A 2 3 4 5

Theorem [Améndola, Drton, G, Homs & Robeva 22] All binomials in
I2:3)(@) are generated by quadratic binomials, i.e. 1(>?)(G) is
generated by the matrices A, ; (plus vanishing indeterminates).

Proof A distance reduction argument for binomials in the ideal,
showing that matrix minors are a Markov basis.



APPLICATION: TREES WITH HIDDEN VARIABLES

Let // U O be a partition of the nodes of the DAG GG. The hidden
nodes [ are said to be upstream from the observed nodes O in G if
there are no edgeso — hin Gwitho € Oand h € H.

1
T

Lemma Theideal (23 (G) is homogeneous w.r.t. the grading:

degs;; = (1,1 + number of elements in the multiset {4, j} in O)
degt;;;, = (1,number of elements in the multiset {i, j, k} in O).

Proposition For a tree (7, the observed variable ideal Ig’g) (G)is
generated by the minors of the submatrices of A, ; with 7, j both in
O, with columns indexed by k and (I, m) where k, [, m are allin O. .



VARIETY ADMITS MORE COMPACT DESCRIPTION

Theorem [Améndola, Drton, G, Homs & Robeva 22] Let .J be the
ideal generated by the linear generators of I(2:3)(G) and matrices
A such that there is a directed path between ¢ and j. Then

M23)(G) = V(J) N PD(n).

In particular, pick (S, T) € MZ3)(G). Fori — j € E, let\;; = 2,

coming from A, ;. Then one can show

S =T—-MNT'SUI—A) and T'=Te(I—A)e(I—A)e(I—A)

are diagonal.

Example LetGbel — 2,1 — 3,1 — 4,1 — 5. Computations show
I3(G) = (J : 533)

and

ME3I(@) = V(IZ3)(@)) N PD(5) = V(J) N PD(5). 1



A FOREST OF NON-TREES

The ideal of

N
1————3

1 /594
2] 819

3 \S;3

is given by

the 2 x 2 minors of

1 11

L /s11 tin

21812 ti12

3 \s13 1113

12

1112
1122
123

2

13

li13
123
133

the 3 x 3 minors of

11 12 13 22 23
tiin tre tis tise tiog
tiiz tioz tiaz faoo  faog
ti1z  tios tizz faoz oo

and the determinant of

13 22 23
0 513 S22 823
2 | tiag oo loog
3 \ti33 toa3  l993

12



A FOREST ON NON-TREES

The ideal of the graph

1 k/// 0 \\\N 2
N/

is given by the maximal minors of

1 2 11 12 13 22 23

L /si1 s12 tinn tiie tiis tize tios
21812 S22 liia ligg tiag fazp  toog |
3 \s13 So3 T3 liaz  lizz o2z foss

13



MOMENT POLYTOPES

Given a polytree G, the third-order moment polytope is

Pg) = conv (eijk : 1, 7, k such that a 3-trek between i, jand & exists)

where e, ;;, € RIVIT1Elis the vector of exponents of the monomial
(bG(tijk) = btop(i,j,k) Hl%me?’( i,7,k) )‘lm € IR[bl? )‘lm]

3)

Theorem The third-order moment polytope P, is the solution to

zp 2 0foralll e V,

Y = 0foralll = m e E,
Sa=1
lev
22z; + Z Yni — Yim = 0forallmsuchthat! — m € E,
hepa(l)

3Zl + Z Yni — z Yim 2 OfOI’ a“l S V.

hepa(l) mech(l) 14



OPEN PROBLEMS

« What about non-trees?

« Sparse latent factor analysis (current project with Drton,
Portakal, Sturma)

+ Latent factor analysis in higher dimensions (see also
Ardiyansyah, Sodomaco 22)

+ Euclidean distance degrees to the varieties

+ [Your favorite graphical model here]

15



SUMMARY

+ Graphical models are richer in the non-Gaussian setting, it is
meaningful to study higher-order moment tensors

« The trek rules can be extended for h.o.m. and one can obtain
binomial (matrix minors) descriptions of the ideals

« The hidden variable ideals are given by some of the binomials

« Lots of open questions...

Reference:

Améndola, Drton, G, Homs & Robeva

Third-Order Moment Varieties of Linear Non-Gaussian Graphical
Models
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THANK YOU!



