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GRAPHICAL MODELS IN THIS TALK

Directed arrows capture causal relations between random variables

𝑋1: Drug 𝑋3: Thrombosis

𝑋2: Atrial fibrillation

𝜆13

𝜆12 𝜆23

translating to equations

𝑋1 = 𝜀1
𝑋2 = 𝜆12𝑋1 + 𝜀2
𝑋3 = 𝜆13𝑋1 + 𝜆23𝑋2 + 𝜀3
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STRUCTURAL EQUATION MODELS

A graph 𝐺 = (𝑉 , 𝐸) gives rise to structural equations

𝑋𝑖 = ∑
𝑗∈pa(𝑖)

𝜆𝑗𝑖𝑋𝑗 + 𝜀𝑖, 𝑖 ∈ 𝑉 ,

• 𝜀𝑖 represent stochastic errors with 𝔼[𝜀𝑖] = 0,
• 𝜆𝑗𝑖 are unknown parameters forming a matrix Λ = (𝜆𝑖𝑗).

The corresponding moment tensor model is

ℳ(2,3)(𝐺) = {(𝑆 = (𝐼 − Λ)−𝑇Ω(2)(𝐼 − Λ)−1,
𝑇 = Ω(3) • (𝐼 − Λ)−1 • (𝐼 − Λ)−1 • (𝐼 − Λ)−1) ∶
Ω(2) is 𝑛 × 𝑛 positive definite diagonal matrix,
Ω(3) is 𝑛 × 𝑛 × 𝑛 diagonal 3-way tensor, and Λ ∈ ℝ𝐸}.

This makes (statistical) sense for non-Gaussian random variables.

Goal: characterize polynomial relations among elements in the model.
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TETRADS

Let 0 be a hidden variable and 1, 2, 3, 4 be observed ones.

0

1 2 3 4

Then the following tetrad relations [Drton, Sturmfels, Sullivant 05;
Peters, Janzing, Schölkopf 17] hold among the elements of the
covariance matrix

𝑠12𝑠34 − 𝑠13𝑠24 𝑠12𝑠34 − 𝑠14𝑠23 𝑠13𝑠24 − 𝑠14𝑠23.

Proof Evaluate the expressions via

𝑠𝑖𝑗 ↦ 𝜔0𝜆0𝑖𝜆0𝑗.

They all evaluate to zero.
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WHY HIGHER MOMENTS?

The covariance matrix structure reveals statistical information, e.g.

𝑋1 𝑋2 𝑋3

has covariance ideal 𝐼 = ⟨𝑠13𝑠22 − 𝑠12𝑠23⟩ corresponding to the
statement 𝑋1 ⟂⟂ 𝑋3|𝑋2...

Proposition One can deduce the skeleton and the colliders of the
graph from the covariance matrix.

...but so do the graphs

𝑋1 𝑋2 𝑋3 𝑋1 𝑋2 𝑋3

Proposition [Wang, Drton 18] The whole graph can be
reconstructed from covariance matrices and 3rd-order tensors.
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TREKS ON GRAPHS

A trek with top 𝑣 between 𝑖 and 𝑗 is formed by joining two paths
sharing a source 𝑣

𝑖 = 𝑖𝑙 ← ⋯ ← 𝑖1 ← 𝑣 → 𝑗1 → … → 𝑗𝑟 = 𝑗

and gives rise to a monomial

𝑎𝑣(𝜆𝑣𝑖1
𝜆𝑖1𝑖2

… 𝜆𝑖𝑙−1𝑖𝑙
)(𝜆𝑣𝑗1

𝜆𝑗1𝑗2
… 𝜆𝑗𝑟−1𝑗𝑟

).

An 𝑛-trek between vertices 𝑘1, … , 𝑘𝑛 is a collection of directed
paths 𝑇 = (𝑃1, … , 𝑃𝑛), where 𝑃𝑟 has sink 𝑘𝑟 and they all share the
same top vertex as source 𝑣 = top(𝑇 ).

𝑣

𝑘11

𝑘21

𝑘31

𝑘12

𝑘22

𝑘32

…

…

…

𝑘1𝑙1
= 𝑘1

𝑘2𝑙2
= 𝑘2

𝑘3𝑙2
= 𝑘3 5



THE SIMPLE TREK PARAMETRIZATION

A trek is minimal if the top node is the only one that appears in all
paths of the trek. For a graph 𝐺, let 𝑇 (𝑖1, … , 𝑖𝑛) be the set of
minimal 𝑛-treks between 𝑖1, … , 𝑖𝑛.

Consider the polynomial map 𝜙𝐺:

ℂ[𝑠𝑖𝑗, 𝑡𝑖𝑗𝑘 ∣ 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑘 ≤ 𝑛] → ℂ[𝑎𝑖, 𝑏𝑖, 𝜆𝑖𝑗 ∣ 𝑖 → 𝑗 ∈ 𝐸]
𝑠𝑖𝑗 ↦ ∑

𝜏∈𝑇 (𝑖,𝑗)
𝑎top(𝜏) ∏

𝑘→𝑙∈𝜏
𝜆𝑘𝑙,

𝑡𝑖𝑗𝑘 ↦ ∑
𝜏∈𝑇 (𝑖,𝑗,𝑘)

𝑏top(𝜏) ∏
𝑚→𝑙∈𝜏

𝜆𝑚𝑙.

Example

𝑠𝑖𝑖 ↦ 𝑎𝑖 𝑡𝑖𝑖𝑖 ↦ 𝑏𝑖
𝑠13 ↦ 𝑎1𝜆13
𝑠14 ↦ 𝑎1𝜆12𝜆24 + 𝑎1𝜆13𝜆34

𝑡123 ↦ 𝑏1𝜆12𝜆13

1

2 3

4
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THE TREK RULE

𝑠𝑖𝑗 ↦ ∑
𝜏∈𝑇 (𝑖,𝑗)

𝑎top(𝜏) ∏
𝑘→𝑙∈𝜏

𝜆𝑘𝑙

𝑡𝑖𝑗𝑘 ↦ ∑
𝜏∈𝑇 (𝑖,𝑗,𝑘)

𝑏top(𝜏) ∏
𝑚→𝑙∈𝜏

𝜆𝑚𝑙

Proposition [Sullivant 08; Améndola, Drton, G, Homs & Robeva 22]
For a directed graph 𝐺, let 𝜙𝐺 be the map given by the simple trek
rule. Then the vanishing ideal 𝐼(2,3)(𝐺) ∶= ℐ(ℳ(2,3)(𝐺)) of the
model is

𝐼(2,3)(𝐺) = ker 𝜙𝐺.

Corollary [Améndola, Drton, G, Homs & Robeva 22] If 𝐺 is a tree,
𝐼(2,3)(𝐺) is a toric ideal, i.e. it is generated by binomials.
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VANISHING MINORS

Let 𝑖, 𝑗 ∈ 𝑉 be two vertices such that a 2-trek between 𝑖 and 𝑗 exists.
Define

𝐴𝑖𝑗 ∶= [
𝑠𝑖𝑘1

⋯ 𝑠𝑖𝑘𝑟
𝑡𝑖ℓ1𝑚1

⋯ 𝑡𝑖ℓ𝑞𝑚𝑞

𝑠𝑗𝑘1
⋯ 𝑠𝑗𝑘𝑟

𝑡𝑗ℓ1𝑚1
⋯ 𝑡𝑗ℓ𝑞𝑚𝑞

] ,

where

• 𝑘1, … , 𝑘𝑟 are all vertices such that top(𝑖, 𝑘𝑎) = top(𝑗, 𝑘𝑎) and
• (𝑙1, 𝑚1),… ,(𝑙𝑞, 𝑚𝑞) are all pairs of vertices such that

top(𝑖, 𝑙𝑏, 𝑚𝑏) = top(𝑗, 𝑙𝑏, 𝑚𝑏).

Proposition [Améndola, Drton, G, Homs & Robeva 22] For a tree 𝐺,
the following polynomials are in 𝐼(2,3)(𝐺):

• 𝑠𝑖𝑗 such that there is no 2-trek between 𝑖 and 𝑗,
• 𝑡𝑖𝑗𝑘 such that there is no 3-trek between 𝑖, 𝑗 and 𝑘,
• the 2-minors of 𝐴𝑖𝑗, for all (𝑖, 𝑗) with a 2-trek between them. 8



IDEAL DESCRIPTION FOR TREES

Proposition [Améndola, Drton, G, Homs & Robeva 22] All quadratic
binomials in 𝐼(2,3)(𝐺) are linear combinations of 2-minors of
matrices 𝐴𝑖𝑗.

ExampleThebinomial 𝑓 = 𝑠23𝑡145−𝑠45𝑡123
lies in 𝐼(2,3)(𝐺). It is a sum of minors from
𝐴13, 𝐴14 and 𝐴15.

1

2 3 4 5

Theorem [Améndola, Drton, G, Homs & Robeva 22] All binomials in
𝐼(2,3)(𝐺) are generated by quadratic binomials, i.e. 𝐼(2,3)(𝐺) is
generated by the matrices 𝐴𝑖𝑗 (plus vanishing indeterminates).

Proof A distance reduction argument for binomials in the ideal,
showing that matrix minors are a Markov basis.
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APPLICATION: TREES WITH HIDDEN VARIABLES

Let 𝐻 ∪ 𝑂 be a partition of the nodes of the DAG 𝐺. The hidden
nodes 𝐻 are said to be upstream from the observed nodes 𝑂 in G if
there are no edges 𝑜 → ℎ in 𝐺 with 𝑜 ∈ 𝑂 and ℎ ∈ 𝐻.

1

2 3 4 5

Lemma The ideal 𝐼(2,3)(𝐺) is homogeneous w.r.t. the grading:

deg 𝑠𝑖𝑗 = (1, 1 + number of elements in the multiset {𝑖, 𝑗} in 𝑂)
deg 𝑡𝑖𝑗𝑘 = (1, number of elements in the multiset {𝑖, 𝑗, 𝑘} in 𝑂).

Proposition For a tree 𝐺, the observed variable ideal 𝐼(2,3)
𝑂 (𝐺) is

generated by the minors of the submatrices of 𝐴𝑖𝑗 with 𝑖, 𝑗 both in
𝑂, with columns indexed by 𝑘 and (𝑙, 𝑚) where 𝑘, 𝑙, 𝑚 are all in 𝑂. 10



VARIETY ADMITS MORE COMPACT DESCRIPTION

Theorem [Améndola, Drton, G, Homs & Robeva 22] Let 𝐽 be the
ideal generated by the linear generators of 𝐼(2,3)(𝐺) andmatrices
𝐴𝑖𝑗 such that there is a directed path between 𝑖 and 𝑗. Then

ℳ(2,3)(𝐺) = 𝑉 (𝐽) ∩ 𝑃𝐷(𝑛).

In particular, pick (𝑆, 𝑇 ) ∈ ℳ(2,3)(𝐺). For 𝑖 → 𝑗 ∈ 𝐸, let 𝜆𝑖𝑗 = 𝑠𝑖𝑗
𝑠𝑖𝑖

,
coming from 𝐴𝑖𝑗. Then one can show

𝑆′ = (𝐼 − Λ)𝑇𝑆(𝐼 − Λ) and 𝑇 ′ = 𝑇 • (𝐼 − Λ) • (𝐼 − Λ) • (𝐼 − Λ)

are diagonal.

Example Let 𝐺 be 1 → 2, 1 → 3, 1 → 4, 1 → 5. Computations show

𝐼(2,3)(𝐺) = (𝐽 ∶ 𝑠∞
11)

and

ℳ(2,3)(𝐺) = 𝑉 (𝐼 (2,3)(𝐺)) ∩ 𝑃𝐷(5) = 𝑉 (𝐽) ∩ 𝑃𝐷(5). 11



A FOREST OF NON-TREES

The ideal of

1

2

3

is given by

the 3 × 3 minors of

1 2 11 12 13 22 23

⎛⎜
⎝

⎞⎟
⎠

1 𝑠11 𝑠12 𝑡111 𝑡112 𝑡113 𝑡122 𝑡123
2 𝑠12 𝑠22 𝑡112 𝑡122 𝑡123 𝑡222 𝑡223
3 𝑠13 𝑠23 𝑡113 𝑡123 𝑡133 𝑡223 𝑡223

the 2 × 2 minors of

1 11 12 13

⎛⎜
⎝

⎞⎟
⎠

1 𝑠11 𝑡111 𝑡112 𝑡113
2 𝑠12 𝑡112 𝑡122 𝑡123
3 𝑠13 𝑡113 𝑡123 𝑡133

and the determinant of

13 22 23

⎛⎜
⎝

⎞⎟
⎠

∅ 𝑠13 𝑠22 𝑠23
2 𝑡123 𝑡222 𝑡223
3 𝑡133 𝑡223 𝑡223
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A FOREST ON NON-TREES

The ideal of the graph

0

1 2

3

is given by the maximal minors of

1 2 11 12 13 22 23

⎛⎜
⎝

⎞⎟
⎠

1 𝑠11 𝑠12 𝑡111 𝑡112 𝑡113 𝑡122 𝑡123
2 𝑠12 𝑠22 𝑡112 𝑡122 𝑡123 𝑡222 𝑡223
3 𝑠13 𝑠23 𝑡113 𝑡123 𝑡133 𝑡223 𝑡233

.
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MOMENT POLYTOPES

Given a polytree 𝐺, the third-order moment polytope is

𝑃 (3)
𝐺 = conv (𝑒𝑖𝑗𝑘 ∶ 𝑖, 𝑗, 𝑘 such that a 3-trek between 𝑖, 𝑗 and 𝑘 exists)

where 𝑒𝑖𝑗𝑘 ∈ ℝ|𝑉 |+|𝐸| is the vector of exponents of the monomial
𝜙𝐺(𝑡𝑖𝑗𝑘) = 𝑏top(𝑖,𝑗,𝑘) ∏𝑙→𝑚∈𝒯(𝑖,𝑗,𝑘) 𝜆𝑙𝑚 ∈ ℝ[𝑏𝑙, 𝜆𝑙𝑚].

Theorem The third-order moment polytope 𝑃 (3)
𝐺 is the solution to

𝑧𝑙 ≥ 0 for all 𝑙 ∈ 𝑉 ,

𝑦𝑙𝑚 ≥ 0 for all 𝑙 → 𝑚 ∈ 𝐸,

∑
𝑙∈𝑉

𝑧𝑙 = 1,

2𝑧𝑙 + ∑
ℎ∈𝑝𝑎(𝑙)

𝑦ℎ𝑙 − 𝑦𝑙𝑚 ≥ 0 for all m such that 𝑙 → 𝑚 ∈ 𝐸,

3𝑧𝑙 + ∑
ℎ∈𝑝𝑎(𝑙)

𝑦ℎ𝑙 − ∑
𝑚∈𝑐ℎ(𝑙)

𝑦𝑙𝑚 ≥ 0 for all 𝑙 ∈ 𝑉 .
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OPEN PROBLEMS

• What about non-trees?

• Sparse latent factor analysis (current project with Drton,
Portakal, Sturma)

• Latent factor analysis in higher dimensions (see also
Ardiyansyah, Sodomaco 22)

• Euclidean distance degrees to the varieties

• [Your favorite graphical model here]
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SUMMARY

• Graphical models are richer in the non-Gaussian setting, it is
meaningful to study higher-order moment tensors

• The trek rules can be extended for h.o.m. and one can obtain
binomial (matrix minors) descriptions of the ideals

• The hidden variable ideals are given by some of the binomials

• Lots of open questions…

Reference:
Améndola, Drton, G, Homs & Robeva
Third-Order Moment Varieties of Linear Non-Gaussian Graphical
Models
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THANK YOU!

16


