

ETH-UCPH-TUM Workshop 2022-10

SORT'N'REGRESS Beware of the DAG!

Alexander Reisach Université Paris Cité

Christof Seiler Maastricht University

Sebastian Weichwald Copenhagen University

ETH-UCPH-TUM Workshop 2022-10

SORT'N'REGRESS

BEWARE OF THE SIMULATED DAG!

Alexander Reisach Université Paris Cité

Christof Seiler Maastricht University

Sebastian Weichwald Copenhagen University

$$X = W^{\top}X + N$$

$$X = W^{\top}X + N$$

► **MEC:** faithfulness + Markov

Chickering, 1995; Spirtes et al., 2000

$$X = W^{\top}X + N$$

► MEC: faithfulness + Markov

Chickering, 1995; Spirtes et al., 2000

DAG: LiNGAM + faithfulness + sufficiency

Shimizu et al., 2006

$$X = W^{\top}X + N$$

► **MEC**: faithfulness + Markov

Chickering, 1995; Spirtes et al., 2000

DAG: LiNGAM + faithfulness + sufficiency

Shimizu et al., 2006

► DAG: equal error variance

Peters & Bühlmann, 2014; Loh & Bühlmann, 2014

$$X = W^{\top}X + N$$

MEC: faithfulness + Markov

Chickering, 1995; Spirtes et al., 2000

► **DAG:** LiNGAM + faithfulness + sufficiency

Shimizu et al., 2006

► DAG: equal error variance

Peters & Bühlmann, 2014; Loh & Bühlmann, 2014

DAG: regularity conditions on error variances along causal order Hoyer et al., 2009; Ghoshal and Honorio, 2017, 2018; Chen et al., 2019; Park 2020

$$X = W^{\top}X + N$$

MEC: faithfulness + Markov

Chickering, 1995; Spirtes et al., 2000

DAG: LiNGAM + faithfulness + sufficiency

Shimizu et al., 2006

► DAG: equal error variance

▶ ...

Peters & Bühlmann, 2014; Loh & Bühlmann, 2014

DAG: regularity conditions on error variances along causal order Hoyer et al., 2009; Ghoshal and Honorio, 2017, 2018; Chen et al., 2019; Park 2020

sort variables by increasing marginal variance 'n' regress, sparsely, each variable onto its predecessors

d = 10, ER-2, Gauss-NV

d = 50, ER-2, Gauss-NV

$\label{eq:varsortability} \mathsf{varsortability} := \frac{\# \ \mathsf{directed} \ \mathsf{paths} \ \mathsf{from} \ \mathsf{lower} \ \mathsf{to} \ \mathsf{higher} \ \mathsf{variance} \ \mathsf{node}}{\# \ \mathsf{directed} \ \mathsf{paths}}$

		varsortability				
		min	mean	max		
graph	noise					
ER-1	Gauss-EV	0.94	0.97	0.99		
	exponential	0.94	0.97	0.99		
	gumbel	0.94	0.97	1.00		
ER-2	Gauss-EV	0.97	0.99	1.00		
	exponential	0.97	0.99	1.00		
	gumbel	0.98	0.99	0.99		
ER-4	Gauss-EV	0.98	0.99	0.99		
	exponential	0.98	0.99	0.99		
	gumbel	0.98	0.99	0.99		
SF-4	Gauss-EV	0.98	1.00	1.00		
	exponential	0.98	1.00	1.00		
	gumbel	0.98	1.00	1.00		

		varsortability			
		min	mean	max	
graph	ANM-type				
ER-1	Additive GP	0.81	0.91	1.00	
	GP	0.72	0.86	0.96	
	MLP	0.55	0.79	0.96	
	Multi Index Model	0.62	0.82	1.00	
ER-2	Additive GP	0.79	0.91	0.98	
	GP	0.82	0.89	0.97	
	MLP	0.46	0.71	0.87	
	Multi Index Model	0.65	0.79	0.89	
ER-4	Additive GP	0.90	0.95	0.98	
	GP	0.74	0.88	0.93	
	MLP	0.59	0.72	0.85	
	Multi Index Model	0.57	0.73	0.85	
SF-4	Additive GP	0.95	0.97	0.99	
	GP	0.88	0.94	0.97	
	MLP	0.75	0.83	0.93	
	Multi Index Model	0.77	0.84	0.97	

 $h(W) = tr(exp(W \odot W)) - d = 0$

NOTEARS: MSE + sparsity GOLEM: Gaussian likelihood + sparsity

https://blog.ml.cmu.edu/2020/04/10/learning-dags-with-continuous-optimization/

Method	Year	Data	Acycl.	Interv.	Output
CMS [152]	2014	low	-	no	Bi
NO TEARS [267]	2018	low	yes	no	DAG
CGNN [75]	2018	low	yes	no	DAG
Graphite [83]	2019	low/medium	no	no	UG
SAM [122]	2019	low/medium	yes	no	DAG
DAG-GNN [262]	2019	low	yes	no	DAG
GAE [177]	2019	low	yes	no	DAG
NO BEARS [142]	2019	low/medium/high	yes	no	DAG
Meta-Transfer [19]	2019	Bi	yes	yes	Bi
DEAR [214]	2020	high	yes	no	-
CAN [167]	2020	low/medium/high	yes	no	DAG
NO FEARS [251]	2020	low	yes	no	DAG
GOLEM [176]	2020	low	yes	no	DAG
ABIC [20]	2020	low	yes	no	ADMG/PAG
DYNOTEARS [178]	2020	low	yes	no	SVAR
SDI [124]	2020	low	yes	yes	DAG
AEQ [64]	2020	Bi	-	no	direction
RL-BIC [272]	2020	low	yes	no	DAG
CRN [125]	2020	low	yes	yes	DAG
ACD [151]	2020	low	Granger	no	time-series DA
V-CDN [145]	2020	high	Granger	no	time-series DAG
CASTLE (reg.) [138]	2020	low/medium	yes	no	DAG
GranDAG [139]	2020	low	yes	no	DAG
MaskedNN [175]	2020	low	yes	no	DAG
CausalVAE [257]	2020	high	yes	yes	DAG
CAREFL [126]	2020	low	yes	no	DAG / Bi
Varando [244]	2020	low	yes	no	DAG
NO TEARS+ [268]	2020	low	yes	no	DAG
ICL [250]	2020	low	yes	no	DAG
LEAST [271]	2020	low/medium/high	yes	no	DAG

d = 50, ER-2, Gauss-NV

standardization is not enough

raw ground-truth modelstandardized model $A := N_A$ $A_s := A/\sqrt{\operatorname{Var}(A)}$ $B := \beta_{A \to B}A + N_B$ $B_s := B/\sqrt{\operatorname{Var}(B)}$ $C := \beta_{B \to C}B + N_C$ $C_s := C/\sqrt{\operatorname{Var}(C)}$

observe: either $(X_1, X_2, X_3) = (A, B, C)$ or $(X_1, X_2, X_3) = (C, B, A)$ **task:** $X_1 \rightarrow X_2 \rightarrow X_3$ or $X_1 \leftarrow X_2 \leftarrow X_3$?

"left-to-right regression coefficients" $|\hat{\beta}_{1\to 2}| \leq |\hat{\beta}_{2\to 3}|$? "right-to-left regression coefficients" $|\hat{\beta}_{3\to 2}| < |\hat{\beta}_{2\to 1}|$?

chain orientation task

		accuracy by variance-sorting		accura <u>cy by coefficie</u> nt-sorting			
d	edge range	raw	standardized	harmonized	raw	standardized	harmonized
3	$\pm(0.5, 2.0)$	97.50%	50.05%	84.70%	62.58%	73.03%	57.30%
	$\pm(0.5, 0.9)$	80.38%	50.05%	69.62%	57.15%	62.38%	55.65%
	$\pm(0.1, 0.9)$	65.65%	50.30%	60.08%	54.17%	55.88%	53.45%
5	$\pm(0.5, 2.0)$	98.67%	50.15%	82.17%	78.60%	86.58%	64.20%
	$\pm(0.5, 0.9)$	77.65%	49.27%	66.30%	61.83%	68.65%	57.50%
	$\pm(0.1, 0.9)$	63.08%	50.38%	57.65%	58.17%	57.33%	56.35%
10	$\pm(0.5, 2.0)$	99.38%	50.02%	79.30%	93.72%	96.97%	69.08%
	$\pm(0.5, 0.9)$	73.75%	50.25%	62.00%	64.97%	70.70%	58.50%
	$\pm(0.1, 0.9)$	62.55%	51.23%	58.25%	55.85%	56.05%	54.40%

d = 20, ER-2, Gauss-NV

Reisach, Seiler, Weichwald (2021). Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game. NeurIPS.

5420 3