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Starting point

■ Research question: What is the total causal effect of X1 on X2? Confidence?

■ Given: Observational data in form of n samples of (X1, ..., Xd).

■ Problem: Causal structure unknown.

■ Naive two-step approach?
(1) Learn causal structure.
(2) Calculate confidence intervals for causal effects in inferred model.
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Setup
Model assumptions that ensure identifiability

■ Linear structural equation model with Gaussian errors with equal variances.

LSEM

Xj =
∑

k ̸=j βjkXk + ϵj , ϵj = N(0, σ2), j = 1, ..., d.

■ Represented by directed acyclic graph G.

Example:
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Setup

■ Target: Total causal effect of an external intervention on variable X1 onto variable X2.

C(1 → 2) := d
dx1

E[X2| do(X1 = x1)] = (Id −B)−1
21

= Σ12|pa(1)/Σ11|pa(1)1(1 <G 2)

Example:
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C(1 → 2) = β21 + β41β24.
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Setup

■ Idea: Use test inversion.

Tests for
H(ψ)

0 : C(1 → 2) = ψ
Confidence interval

for C(1 → 2)

■ Goal: construct suitable tests for all possible hypothesized causal effects!

■ Difficulty: Hypothesis of fixed effect ψ is a union of single hypotheses over all
directed acyclic graphs across d nodes G(d), that is,

H(ψ)
0 :=

⋃
G∈G(d)

H(ψ)
0 (G)
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Single Hypothesis H(ψ)
0 (G)

H(ψ)
0 (G) :

{
Σ ∈ PD(d) : ∃σ2 such that

{
ψ = Σ12|pa(1)/σ

2 1(1 <G 2)
σ2 = Σjj|pa(j) ∀ j = 1, ..., d

}

■ Idea: Use theory of intersection union test.

■ Reject union if we reject each single hypothesis.
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Constrained likelihood ratio test

■ Idea: Relax alternative to entire cone of covariance matrices.

■ Each single hypothesis for a given graph defines a smooth submanifold of different
dimension depending on the causal order of the graph.

■ The limit distribution is a chi-squared distribution.

■ Result: Asymptotic (1 − α) confidence set for causal effect C(1 → 2) is

{ψ ∈ R : min
G∈G(d) : 1<G2

λ(ψ)
n (G) ≤ χ2

d,1−α} ∪ {0 : min
G∈G(d) : 2<G1

λ(0)
n (G) ≤ χ2

d−1,1−α}
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Split likelihood ratio test1

■ Idea: Split data and use universal critical value.

■ Calculate MLE of Σ under alternative based on Data set 1.

■ Calculate MLE of Σ under hypothesis and likelihoods based on Data set 2.

■ Result: (1 − α) confidence set for causal effect C(1 → 2) is

{ψ ∈ R : min
G∈G(d) : 1<G2

λ̃(ψ)
n (G) ≤ −2 log(α)} ∪ {0 : min

G∈G(d) : 2<G1
λ̃(0)
n (G) ≤ −2 log(α)}

1Wasserman L, Ramdas A, Balakrishnan S. Universal inference. Proc. Natl. Acad. Sci. USA. 2020.
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Simulations

TRUE EFFECT
method n\β 0.05 0.1 0.5

LRT
100 0.98 0.98 0.98
500 0.99 0.99 0.98

1000 0.97 0.98 0.98

LRTheur
100 1.00 1.00 1.00
500 1.00 1.00 1.00

1000 1.00 1.00 1.00

SLRT
100 1.00 1.00 1.00
500 1.00 1.00 1.00

1000 1.00 1.00 1.00

Bootstrap
100 0.66 0.75 0.97
500 0.71 0.79 0.96

1000 0.75 0.83 0.97

Empirical Coverage
of 95%-CIs
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