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Introduction

Understanding the relation between a response and associated predictors, and selecting
those predictors that are important, is a common problem faced by statisticians and
data analysts.

When (Y, X, Z) € R x R% x R9% a simple but popular way of addressing this is to fit
a linear model
Y=8"X+~"Z+¢, E(|X,2)=0,

and perform an F-test for the significance of X.
When the linear model is misspecified, we might either wrongly declare X to be

important or unimportant, and similar issues arise from other tests based on parametric
models.
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What does it mean for a variable to be significant?

These issues combined with the increasing use and effectiveness of nonparametric
methods lead us to require a model-free hypothesis.
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What does it mean for a variable to be significant?

These issues combined with the increasing use and effectiveness of nonparametric
methods lead us to require a model-free hypothesis.

We consider conditional mean independence; real-valued Y is conditionally mean
independent of X given Z if

E(Y | X,Z) =E(Y|2).
The alternative, conditional mean dependence, may be characterised by the property

that X improves the prediction of Y in a mean-squared error sense, given knowledge of
Z.
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Contrasting with conditional independence

A more common model-free hypothesis is that of conditional independence; we say
that Y and X are conditionally independent given Z and write Y 1L X | Z if

E(f(Y)|X,2) = E(f(Y)]Z)

for all suitable real-valued functions f.
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A more common model-free hypothesis is that of conditional independence; we say
that Y and X are conditionally independent given Z and write Y 1L X | Z if

E(f(Y)|X,Z) =E(f(Y)|Z)
for all suitable real-valued functions f.

Any test of conditional mean independence may also be used as a test of conditional
independence, although it will not be powerful against all alternatives.

This also means we are faced with the same statistical limitations as when testing
conditional independence.
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The hardness of testing conditional (mean) independence

Testing for conditional independence is a difficult problem without further assumptions.
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The hardness of testing conditional (mean) independence

Testing for conditional independence is a difficult problem without further assumptions.

Suppose (Y, X, Z) € R3 and the joint distribution has a density with respect to
Lebesgue measure. Then, any test that rejects with probability «o under the null, has
power at most « against any alternative distribution (shah and Peters, 2020].

As a consequence of this result, we know that domain knowledge is required to select a
conditional independence test tailored to the problem at hand.
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The Generalised Covariance Measure (GCM)

The Generalised Covariance Measure (GCM) is a conditional (mean) independence test
relying (primarily) on the ability of user-chosen regression methods for estimating
conditional expectations [shah and Peters, 2020].
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The Generalised Covariance Measure (GCM)

The Generalised Covariance Measure (GCM) is a conditional (mean) independence test
relying (primarily) on the ability of user-chosen regression methods for estimating
conditional expectations [shah and Peters, 2020].

For X € R, set

Li:={Y; - mY\Z(Zi)}{X' - mX|Z(Zi)}
L

{ ZI lL _L) }1/2

Under conditions GCMy x|z LA N(0,1) under the null.

GCMY,X|Z Z—

The primary requirement is that

izn:{mwz(z — fyz(Z Z{mX|Z — fixz(Z))}? = op(n1).
i—1
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Power of the GCM

As the GCM is a normalised version of ECov(Y, X | Z), we only have power when
ECov(Y, X |Z) # 0, which is not always the case when E(Y | X, Z) # E(Y | Z).
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Power of the GCM

As the GCM is a normalised version of ECov(Y, X | Z), we only have power when
ECov(Y, X |Z) # 0, which is not always the case when E(Y | X, Z) # E(Y | Z).

Consider (X, Z,e) ~ N3(0,1) and Y = X2 +¢. Here, Cov(Y,X|Z) =0 so
E{Cov(Y,X|Z)} =0 hence the GCM is powerless.

Scheidegger et al. [2021] introduce a carefully weighted version of the GCM that can
have power when Cov(Y, X |Z) # 0, but this remains powerless in the above example.

We would like a test that:

® relies primarily on user-chosen machine learning methods performing sufficiently
well (i.e. restricts the null in this fashion);

® has power against a more diverse set of alternatives.
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Estimating the mean squared difference in regression functions

Williamson et al. [2021a] propose to estimate
T =E[{E(Y | X,Z) - E(Y | 2)}*] = E[{Y - E(Y | 2)}*] - E{Y - E(Y| X, 2)}?|

via
L1 . Ly A
T Y AYi— iy z(2))? - n >_Yi = fayix,z(Xi, Zi)}.
i—1 i1
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Williamson et al. [2021a] propose to estimate
7= B{E(Y | X, 2) ~ E(Y | 2)}3] = E[{Y — E(Y | 2)}] - E[{Y ~ E(Y | X, 2)}?]
Ti= ,172”:{\/; — iy z(Z)}? - izn:{yi — My x,z(Xi, Zi) Y.
i=1 i=1

7 is asymptotically Gaussian centered on 7 and achieves the semiparametric efficient
variance bound provided 7 > 0.

However, the functional 7 is not pathwise differentiable at distributions where 7 = 0,
so classical semiparametric theory is not applicable to the problem of testing 7 = 0.
Consequently, v/n7 becomes degenerate under the null.

Williamson et al. [2021b] propose a variant involving sample-splitting, but this
approach sacrifices power.
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Our approach is based on the following characterisation of conditional mean
independence:
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An alternative approach
Our approach is based on the following characterisation of conditional mean
independence:

E({Y —E(Y|2)}f(X,Z)) =0 for all suitable f.
Consider the following oracular test statistic. Set L} := {Y; — E(Y;| Z)}f(X;, Z;) and
S SE
AL @y

where [ := {Y; — E(Y;| Xi, Z))} (Xi, Z)).

T =

EL* A/ Var(L*) ~ ET* is maximised under the alternative via

E(YIX,Z)-E(Y|Z)  h(X,2Z)
fX,2) = Var(Y | X, 2) (X, Z)
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Using these ideas, we propose the Projected Covariance Measure (PCM):

@ Split the sample randomly into Dy and Ds.
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The Projected Covariance Measure (PCM)

Using these ideas, we propose the Projected Covariance Measure (PCM):
@ Split the sample randomly into Dy and Ds.
(0] Eroduce anAestimate of v and of A, h and v, using D5 and set
f(x,z) := h(x,z)/v(x, z).

© Set T := GCM computed on Dj, and reject when T > z;_.

Y f(X,2)|Z'

h(X, Z) = 0 under the null, so both the numerator and denominator of the test
converges to 0!

Despite this, the primary condition for Type | error control is
1 n
2 -1
E Z{mY|Z(Z mY\Z(Z 0_2 Z{ f|Z f‘Z(Z)} = OP(n )7
i=1

where o := Var(f(X, Z) — mﬂZ(Z) ).
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Under suitable s-Hoélder smoothness conditions on certain nuisance functions, no test
can have power against all alternatives with
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for simplicity and using regression splines for each of our regression, we obtain (under
conditions) that
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Power of the PCM

Under suitable s-Hoélder smoothness conditions on certain nuisance functions, no test
can have power against all alternatives with

T S, n745/(45+dx+dz) )

By employing additional sample-splitting as in Newey and Robins [2018], setting v =1
for simplicity and using regression splines for each of our regression, we obtain (under
conditions) that

o T4 N(0,1) under the null;

® The PCM has uniform power against alternatives with
. Z n74s/(4s+dx+dz).

The PCM is thus minimax optimal in this setting.

13/17



Numerical results

Let Z € R7, ,£ € R be independent, with (Z,¢,&) ~ No(0, /) and consider the null
setting where

X =sin2nZ))(1+ o)+ €, Y =sin(2rZy)(1 + Zo) + &.
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Numerical results

Let Z € R7, ,£ € R be independent, with (Z,¢,&) ~ No(0, /) and consider the null
setting where

X =sin2nZ))(1+ o)+ €, Y =sin(2rZy)(1 + Zo) + &.

Consider also alternative settings, that are modifications of the null, where
@ ECov(Y,X|Z) =0 but Cov(Y,X|Z)# 0 (additive effect);
® Cov(Y,X|Z)=0but E(Y|X,Z2) #E(Y|2);
® ECov(Y,X|Z) =0 but Cov(Y,X|Z) # 0 (interaction effect);
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PCM simulations using ranger

wgem.fix

wgcm.est

williamson

Method

gcm

pcm_ss

setting =0 setting =1 setting =2 setting =3

0.14 0.12 0.09 0.19 0.14 0.25 0.06 0.04 0.06 0.18 0.04 0.05

0.32 0.18 0.2 0.17 0.15 0.09 0.39 0.26 0.32

Rejection rate

0.75
0.50
0.23 0.14 0.07 0.23 0.16 0.12 0.16 0.06 0.07 026 0.1 015 0.25
= 0.00
0.15 0.31
0.16 0.07 0.06 0.28 0.34

10* 2.10* 410 10" 2.10° 4.10* 10* 2.10* 4.10°

n
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Conclusion

® The PCM works by first finding a ‘projection’ that is expected to expose signal in
the residuals from regressing on Z on one part of the data. On the second part,
we compute a generalised covariance measure statistic using this projection.
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Conclusion

® The PCM works by first finding a ‘projection’ that is expected to expose signal in
the residuals from regressing on Z on one part of the data. On the second part,
we compute a generalised covariance measure statistic using this projection.

® Uniform type | error control is guaranteed is settings ranging from
high-dimensional to nonparametric.

® Delivers minimax optimal power in nonparametric settings.

® Paper and R—package coming soon!

Thank you for listening.
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