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Copulas

Figure: CDF and PDF of a
bivariate copula.

- Copula
- distribution on the unit hypercube
- uniform margins

- Sklar’s theorem
- F (x1, ..., xd) = C (F1(x1), ...,Fd(xd))
- probability integral transform(PIT)

- [Sklar, 1959]

- Decomposition
- conditioning
- bivariate copulas
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Regular vine
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- Pair Copula Construction
- construction of multivariate

distributions

- [Bedford and Cooke, 2002]

- Regular vine copula
- tree sequence
- pair copulas
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- Pair Copula Construction

- Regular vine copula

- Tree sequence conditions
- T1 is a tree with node set
N1 = U1, . . . ,Ud

- proximity condition
- for k ≥ 2, Tk is a tree with

node set Nk = Ek−1 and
edge set Ek
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Regular vine density

T1 : U1 U2 U3 U4

CU1U2
CU2U3

CU3U4
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CU1U4;U2U3

U1U4;U2U3

- Density:

cU1,U2,U3,U4 =cU1U2 · cU2U3 · cU3U4 ·
cU1U3;U2 · cU3U4;U3 ·
cU1U4;U2U3

- Consequence of Sklar’s Theorem

fX1,X2,X3,X4 =fX1 · fX2 · fX3 · fX4 ·
cU1U2 · cU2U3 · cU3U4 ·
cU1U3;U2 · cU3U4;U3 ·
cU1U4;U2U3
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Conditional distributions

T1 : U1 U2 U3 U4

CU1U2
CU2U3

CU3U4
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T3 : U1U3;U2 U2U4;U3

CU1U4;U2U3

U1U4;U2U3

- Conditional distribution

CU1|U2,U3,U4

can be obtained as a composition of
first order derivatives from pair copula
densities contained in B (T )

- holds true only if the conditioned
variable is a leaf node in every tree of
the vine tree sequence

- inverses of first order derivative
functions are obtainable
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Vine based quantile regression

T1 : V U1 U2 U3

CV U1
CU1U2

CU2U3

T2 : V U1 U1U2 U2U3

CV U2;U1
CU1U3;U2

T3 : V U2;U1 U1U3;U2

CV U3;U1U2

V U3;U1U2

- Vine based quantile regression

qα (u1, u2, u3) = C−1
V |U1,U2,U3

(α|u1, u2, u3)

- it can be shown that

F−1
Y |X1,X2,X3

(α|·) = F−1
Y

(
C−1
V |U1,U2,U3

(α|·)
)

- autonomous model building
approaches have been proposed

- [Kraus and Czado, 2017] [Tepegjozova et al., 2022]
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Motivation for bivariate quantiles and
bivariate quantile regression

- In the case of a multivariate response data sets, usually
different models are used for modeling each response on the
same set of covariates.

- However, the possible interaction or dependence between the
responses is disregarded.

- Examples of such data sets are minimum and maximum
temperature, minimum and maximum risk values, pressure
and volume, and other dependent joint events (more details in
[Tepegjozova and Czado, 2022]).
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Bivariate unconditional quantiles

Figure: Bivariate quantile sets of 2-dimensional
Gaussian copula with Kendall’s tau of 0.50.

- Bivariate quantiles

- if U1 and U2 are uniformly distributed,
their bivariate quantile set is defined as

QU
α = {(u1, u2) ∈ [0, 1]2 ; CU1,U2(u1, u2) = α}

- given arbitrary distributed and
continuous X1 and X2, their bivariate
quantile set is defined as

QX
α = {(x1, x2) ∈ R2 ; FX1,X2(x1, x2) = α}

- their relation can be described as

QX
α = {(F−1

X1
(u1) ,F−1

X2
(u2)) ∈ R2 ; (u1, u2) ∈ QU

α}
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Bivariate conditional quantiles

- Copula level

given p + 2 uniformly distributed random variables
V1,V2,U1, . . . ,Up, the bivariate quantiles of V1 and V2 given
U1, . . . ,Up are defined as

QV
α (u) = {(v1, v2) ∈ [0, 1]2 ; CV1,V2|U(v1, v2|u) = α}

- General case

given continuously distributed random variables Y1,Y2,X1, . . . ,Xp

QY
α (x) = {(y1, y2) ∈ R2 ; FY1,Y2|X(y1, y2|x) = α}

- Relation

QY
α (x) = {(F−1

Y1
(v1),F−1

Y2
(v2)) ∈ R2 ; CV1,V2|U(v1, v2|u) = α}
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Numerical evaluation of bivariate quantiles
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Figure: Graphical representation of the numerical
estimation procedure.
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Y-vines

T1 :

V1

V2

U1 U2 U3

T2 : V1U1

V2U1

U1U2 U2U3

T3 : V1U2;U1

V2U2;U1

U1U3;U2

T4 : V1U3;U1U2 V2U3;U1U2

- Y-vine tree sequence
- regular vine copula
- both response variables are ensured to

be leaf nodes in each tree
- symmetric with respect to response

variables

- Conditional distribution

CV1,V2|U1...Up

- obtained as univariate integral
involving pair copula densities from
the Y-vine and the conditional
distribution function CV1|V2U1...Up
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Forward sequential predictor selection

T1 :
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•
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Sequential predictor selection
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Sequential predictor selection
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Data introduction

- contains weather data of 25
different stations in the urban area
of Seoul

- from 2013 to 2017 data has been
collected between June 30th and
August 30th

- includes two response variables,
next day minimum and maximum
temperature

- includes 14 continuous predictor
variables

[Dua and Graff, 2017]
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Variable name Description(unit) Range

Next Tmax The next-day maximum air temperature (◦C ) 17.4 to 38.9
Next Tmin The next-day minimum air temperature (◦C ) 11.3 to 29.8
Present Tmax Maximum air temperature between 0 and 21 h on the present day (◦C ) 20 to 37.6
Present Tmin Minimum air temperature between 0 and 21 h on the present day (◦C ) 11.3 to 29.9
LDAPS RHmin LDAPS model forecast of next-day minimum relative humidity (%) 19.8 to 98.5
LDAPS RHmax LDAPS model forecast of next-day maximum relative humidity (%) 58.9 to 100
LDAPS Tmax lapse LDAPS model forecast of next-day maximum air temperature applied lapse rate (◦C ) 17.6 to 38.5
LDAPS Tmin lapse LDAPS model forecast of next-day minimum air temperature applied lapse rate (◦C ) 14.3 to 29.6
LDAPS WS LDAPS model forecast of next-day average wind speed (m/s) 2.9 to 21.9
LDAPS LH LDAPS model forecast of next-day average latent heat flux (W /m2) -13.6 to 213.4
LDAPS CC1 LDAPS model forecast of next-day 1st 6-hour split average cloud cover (0-5 h) (%) 0 to 0.97
LDAPS CC2 LDAPS model forecast of next-day 2nd 6-hour split average cloud cover (6-11 h) (%) 0 to 0.97
LDAPS CC3 LDAPS model forecast of next-day 3rd 6-hour split average cloud cover (12-17 h) (%) 0 to 0.98
LDAPS CC4 LDAPS model forecast of next-day 4th 6-hour split average cloud cover (18-23 h) (%) 0 to 0.97
Solar radiation Daily incoming solar radiation (wh/m2) 4329.5 to 5992.9

Table: Variable description, the unit of measurement and the range of
possible values the considered variables can take.
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Fitted Y-vine

Marija Tepegjozova Bivariate vine based quantile regression 17 / 21



Illustration

Figure: The plots correspond to the days 10.08.2017, 18.08.2017 and 25.08.2017 (left to right). Shown are
estimated conditional quantile curves for α = 0.05, 0.1, 0.25, 0.5, 0.75, 0.90, 0.95 (left bottom to right top) and
corresponding 90%, 80% and 50% confidence region (light to dark grey shaded) on each panel. Row 1 are
estimates on the x-scale and row 2 is on the u-scale. The black dot is the true value.
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Advantages of joint modeling of dependent
responses

Figure: Shown are conditional bivariate quantile curves QY
0.05 (x) and QY

0.95 (x) and the corresponding 90%

confidence region CIY0.10 (grey shaded). Additionally, in row 1 the estimated univariate quantiles for
α = 0.025, 0.975 for both response variables and the corresponding 90% confidence regions (in red) are shown. In
row 2, the bivariate conditional quantiles when the responses are treated as conditionally independent and the

associated 90% confidence regions CI
Y1⊥Y2|X
0.10 (red shaded) are shown.
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Thank you for your attention!
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