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Causal Discovery
Given multivariate data, estimate underlying causal structure.

(Sachs et al., 2005)
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Dominant Approach: Structural Causal/Equation Models
(the ‘usual’ graphical models)

X1 : Tax Rate X2 : Smoking X3 : Health

X4 : Genetics

Noisy functional relationships:

X1 = f1(ε1),
X2 = f2(X1,X4, ε2),
X3 = f3(X2,X4, ε3),
X4 = f4(ε4),

Often, linear relationships:

X1 = λ01 + ε1,
X2 = λ02 + λ12X1 + λ42X4 + ε2,
X3 = λ03 + λ23X2 + λ43X4 + ε3,
X4 = λ04 + ε4.

Noise terms are “just noise”: ε1 ⊥⊥ ε2 ⊥⊥ ε3 ⊥⊥ ε4.
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Motivation

• DAGs (directed acyclic graphs) very well understood:

− simple interpretation
− scalable statistically and computationally
− solid theory: characterization of model equivalence (X → Y versus X ← Y ), . . .

• Feedback loops ≡ directed cycles:

− far more complicated model geometry
− statistics tricky
− interpretation less clear

• Attempts to interpret directed cycles typically appeal to equilibria of temporal processes in post-hoc way.

Alternative: Immediately consider models derived from a temporal process in equilibrium.
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Graphical Continuous Lyapunov Models
Varando & Hansen (2020, UAI) and Fitch (2019, arXiv)

• X (1), . . . ,X (n) ∈ Rp i.i.d. sample with

X (i) ∼ equilibrium distribution of a multivariate Ornstein-Uhlenbeck processes

• Ornstein-Uhlenbeck process X (t) solves stochastic differential equation

dX (t) = M (X (t)− µ) dt + D dW (t),

where W (t) is a Wiener process.

Parameters: µ ∈ Rp and M,D ∈ Rp×p non-singular.

• Key object: Drift matrix M captures relations between the coordinates of X (t)
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Continuous Lyapunov Equation

• If M is stable, X (t) admits a Gaussian equilibrium distribution N(µ, Σ) with covariance matrix Σ ∈ PDp
given by the continuous Lyapunov equation:

M Σ + ΣM> = −C where C = DD> ∈ PDp.

• We assume the volatility matrix C to be known up to a positive scalar multiple (e.g., C = γIp).

• For γ > 0, we have

M Σ + ΣM> = −C ⇐⇒ γM Σ + Σ γM> = −γC .

Hence, (M,C) and (γM, γC) define the same covariance matrix Σ.

• Going forward, we treat C as known.
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Graphical Continuous Lyapunov Models
• Support of drift matrix M corresponds to a directed graph:

X1 X2 X3
m21 m32

M =


m11 0 0
m21 m22 0
0 m32 m33

 .

Formally, G = (V ,E ) with V = {1, . . . , p} and i → j ∈ E when Mji , 0.

• Sparse stable matrices:

Stabp(E ) =
{
M ∈ Rp×p : M stable, Mji = 0 if i → j < E

}
• Associated normal distributions form the graphical continuous Lyapunov model of G , which corresponds
to the cone

MG = {Σ ∈ PDp : Σ solves Lyapunov equation for some M ∈ Stabp(E )}
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Problems We Studied So Far . . .
1. Parameter Identifiability (not today)

• Is M uniquely determined by the covariance matrix Σ?

• Is M uniquely determined by the cov. matrix Σ if we know M ∈ Stabp(E ) for graph G = (V ,E ) and for
any (diagonal) C ∈ PDp?

( Mapping M 7→ Σ injective on Stabp(E )? )

• Identifiability in Continuous Lyapunov Models; arXiv preprint 2022; D, Homs, Améndola, Drton, Hansen.

2. Estimation/Model selection

• Direct Lasso:
min

M∈Rp×p

1
2‖MΣ̂ + Σ̂MT + C‖2

F + λ‖M‖1

• On the Lasso for Graphical Continuous Lyapunov Models, arXiv preprint 2022, D, Drton, Kolar.
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Direct Lasso for Estimation/Model Selection

• Sample covariance matrix Σ̂ = 1
n

n∑
i=1

X (i)(X (i))>

• Direct Lasso (Fitch, 2019):

min
M∈Rp×p

1
2 ‖M Σ̂ + Σ̂M> + C‖2

F + λ‖M‖1.

• Goal (for now): Support recovery

− True signal M∗ with support S ≡ S(M∗) = {(j , k) : M∗jk , 0}.

− Estimate M̂ with support Ŝ ≡ S(M̂) = {(j , k) : M̂jk , 0}
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Some Simulations from Hansen and Varando (2020)
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Just another Lasso Problem
• Vectorized version:

min
M∈Rp×p

1
2 ‖A(Σ̂)vec(M) + vec(C)‖2

2 + λ‖vec(M)‖1,

with ‘design matrix’
A(Σ̂) ∈ Rp2×p2.

• Quadratic form written out:

min
M∈Rp×p

1
2 vec(M)>Γ(Σ̂)vec(M)− g(Σ̂)>vec(M) + λ‖vec(M)‖1.

with

Gram matrix: Γ(Σ) := A(Σ)>A(Σ) and g(Σ) := −A(Σ)vec(C).

• Computationally a lasso problem

• Analysis of support recovery via Primal-Dual-Witness method
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Support Recovery via PDW
• Support recovery succeeds if Γ∗SS invertible + irrepresentability + beta-min.

• For a probabilistic guarantee, need to bound in particular

P(|||(Γ(Σ̂)− Γ(Σ∗))·S |||∞ ≥ ε1).

• Standard analysis: Give a concentration inequality for each entry of the Gram matrix Γ̂ + union bound.

Unfortunately, our Gram matrix here has p2 of its entries of the type:

Γ(1,1),(2,1) = 4 · Σ11 · Σ21 +
p∑

i=2
Σ1i · Σ2i .

Estimates of these entries do not concentrate well (‘p2 < n’).

• Better through a spectral perspective.
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Sample Covariance Matrix
We use a standard result on the spectral norm of the estimation error of the sample covariance matrix.

Theorem
Suppose that (X (i))n

i=1 are σ sub-Gaussian random variables. Then the sample covariance matrix Σ̂ satisfies

P

|||Σ̂− Σ∗|||2
σ2 ≥ c1

{ √p
n + p

n

}
+ δ

 ≤ c2 exp(−c3n min{δ, δ2}) for all δ ≥ 0,

where {cj}3
j=0 are universal constants.
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Spectrum of Gram Matrix
• Gram matrix:

Γ(Σ) = 2(Σ2 ⊗ Ip) + (Σ⊗ Σ)K (p,p) + K (p,p)(Σ⊗ Σ)

• Separately consider
Γ1(Σ) = 2(Σ2 ⊗ Ip) and Γ2(Σ) = (Σ⊗ Σ)K (p,p) + K (p,p)(Σ⊗ Σ).

• Let ∆Σ = Σ̂− Σ∗, and for illustration consider Γ2. Using that

− commutation matrix K (p,p) is orthogonal with |||K (p,p)|||2 = 1,
− Kronecker product is bilinear,
− eigenvalues of Kronecker product are products of eigenvalues, we obtain that

|||Γ2(Σ̂)− Γ2(Σ∗)|||2 ≤ 2|||Σ̂⊗ Σ̂− Σ∗ ⊗ Σ∗|||2
= 2|||∆Σ ⊗∆Σ + ∆Σ ⊗ Σ∗ + Σ∗ ⊗∆Σ + Σ∗ ⊗ Σ∗ − Σ∗ ⊗ Σ∗|||2
≤ 2|||∆Σ ⊗∆Σ|||2 + 2|||∆Σ ⊗ Σ∗|||2 + 2|||Σ∗ ⊗∆Σ|||2
≤ 2|||∆Σ|||22 + 4|||Σ∗|||2 |||∆Σ|||2,
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Probabilistic Guarantee
Theorem
Suppose the sample is drawn from a p-dimensional Ornstein-Uhlenbeck process in equilibrium.
Process defined by a true stable drift matrix M∗ with support set S of size d = |S|.
If Γ∗SS is invertible and the irrepresentability condition holds for α ∈ (0, 1],
then . . .

In short:
n > C d log p

ensures that with high prob (1− pτ ), for tuning parameter λ = C ′
√
d log p/n, the direct lasso

• has a unique solution M̂,
• with support S(M̂) ⊆ S,
• and ‖M̂ −M∗‖∞ ≤ C ′′

√
(d log p)/n.
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What About Irrepresentability?
• Irrepresentability condition: For α > 0,

‖Γ∗ScS(Γ∗SS)−1sign(vec(M∗S))‖∞ < 1− α.

• Standard lasso for linear regression, with Gram matrix XTX :
Irrepresentability holds in particular if XTX is close to diagonal (‘orthogonal design’)

• Natural guess for the Lyapunov problem:
Irrepresentability holds, in particular, for M∗ close to diagonal (when Σ∗ is close to diagonal).
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Irrepresentability versus Correlation
Theorem
Let G = (V ,E ) be a simple graph on V = {1, . . . , p}. Let M∗ be a stable diagonal matrix:

M∗ = diag(−d1, . . . ,−dp).

Then irrepresentability holds uniformly in a neighborhood of M∗ if and only if

di < dj for every edge i → j ∈ E .

For the condition to hold it is nessecary that the graph is a DAG.

• We do not have a general recipe to construct examples of M∗ that satisfy irrepresentability for simple
graphs with directed cycles. (Random sampling produces rare cases.)

• Non-simple graphs only trickier as identifiability problems arise at diagonal M∗.
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Example

1 2 3 4 5 1 2 3 4 5

(a) G1 : a path 1 to 5. (b) G2 : the 5-cycle.
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Conclusion/Outlook

• Direct lasso is useful, but what about irrepresentability (for cyclic graphs)? `0?

• Mixed Integer Programming, Trimmed Lasso, promising results

• Better (convex) loss?

• . . .
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