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Motivation

■ Long tradition of estimating undirected GMs for discrete or continuous data.

■ Mixed graphs have seen less attention.

■ Seminal work by Lauritzen and Wermuth [1989], Lauritzen [1996] on the conditional
Gaussian distribution and its Markov properties → later adopted to the high-dimensional
setting by Cheng et al. [2017].

■ Fan et al. [2017] proposed a latent generative model for mixed data → only
binary-continuous mix.
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Workhorse: The nonparanormal family

■ According to Liu et al. [2009], a random vector Z ∈ Rd has a nonparanormal distribution
if there exist functions {fj}d

j=1 such that f(Z) ∼ Nd(µ, Σ).

■ If the fj ’s are differentiable and monotone then nonparanormal distribution ⇐⇒
Gaussian copula

■ The independence graph of the nonparanormal is encoded in Ω = Σ−1.

■ Ωjk = 0 ⇐⇒ Zj ⊥⊥ Zk | Z{\j,k}

K. Göbler, M. Drton, S. Mukherjee, A. Miloschewski | High-dimensional mixed graphs | October 12, 2022 3



Workhorse: The nonparanormal family

■ According to Liu et al. [2009], a random vector Z ∈ Rd has a nonparanormal distribution
if there exist functions {fj}d

j=1 such that f(Z) ∼ Nd(µ, Σ).

■ If the fj ’s are differentiable and monotone then nonparanormal distribution ⇐⇒
Gaussian copula

■ The independence graph of the nonparanormal is encoded in Ω = Σ−1.

■ Ωjk = 0 ⇐⇒ Zj ⊥⊥ Zk | Z{\j,k}

K. Göbler, M. Drton, S. Mukherjee, A. Miloschewski | High-dimensional mixed graphs | October 12, 2022 3



Workhorse: The nonparanormal family

■ According to Liu et al. [2009], a random vector Z ∈ Rd has a nonparanormal distribution
if there exist functions {fj}d

j=1 such that f(Z) ∼ Nd(µ, Σ).

■ If the fj ’s are differentiable and monotone then nonparanormal distribution ⇐⇒
Gaussian copula

■ The independence graph of the nonparanormal is encoded in Ω = Σ−1.

■ Ωjk = 0 ⇐⇒ Zj ⊥⊥ Zk | Z{\j,k}

K. Göbler, M. Drton, S. Mukherjee, A. Miloschewski | High-dimensional mixed graphs | October 12, 2022 3



Example: The Normal and the Nonparanormal

Comparison between a 2-dimensional Gaussian and a 2-dimensional nonparanormal with µ = (0, 0),

Σ =
(

1 .5
.5 1

)
, and fj(x) = sign(x)|x|αj and α1 = 1.5 and α2 = 2.5.
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Latent Gaussian Copula Model (LGCM)

■ Assume we have a mix of (ordered) discrete and continuous variables, i.e.
X = (X1, X2) of size d1 + d2 = d.

■ Lets assume there exists Z1 = (Z1, . . . , Zd1)T s.t. Z := (Z1, X2) ∼ NPN(µ, Σ∗, f)
where µ = (µj)j=1,...,d is the mean vector and Σ∗ = (Σ∗

jk)1≤j,k≤d the correlation matrix
and f = {f1, . . . , fd} a set of monotone differentiable univariate functions.

■ Relationship between observed discrete variables X1 and latent continuous variables
Z1 is given by:

Xj = xj
r if γj

r−1 ≤ Zj < γj
r

for j = 1, . . . , d1 and r = 1, . . . , lXj and γj
0 = −∞ and γj

lXj
= +∞.

■ In short we write X ∼ LNPN(µ, Σ∗, f, Γ) where Γ = (γ1, . . . , γd1) is a collection of
thresholds.
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Latent generative scheme: Example

■ Let us consider an example with an ordinal variable X1 that can take 3 different values,
say {1, 2, 3}.

■ We assume there exists a latent continuous variable Z1 with the following relation:

Z1 ∈ (−∞, ∞)

(−∞, γ1
1) [γ1

1 , γ1
2) [γ1

2 , ∞)

{1, 2, 3}

∈

X1
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Mode of action

1. Find estimate of the sample correlation matrix Σ̂(n) = (Σ̂(n)
jk )1≤j,k≤d of Σ∗.

2. Plug estimate of the sample correlation matrix into existing routines for estimating Ω∗,
e.g. glasso

Ω̂ = arg min
Ω⪰0

[
tr(Σ̂(n)Ω) − log|Ω| + λ

∑
j ̸=k

|Ωjk|
]
.

3. Choose graph that minimizes some information criterion, e.g. extended BIC that
additionally accounts for dimensionality of the problem [Foygel and Drton, 2010].
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Estimating Σ∗

■ We have to take care of three different cases for the couple (Xj , Xk).

1. Case I: both Xj and Xk are continuous,
2. Case II: Xj is discrete and Xk is continuous (or vice versa),
3. Case III: both Xj and Xk are discrete.

■ The product moment correlation between the latent continuous and the observed
discrete variable (Case II) is called point polyserial correlation [Pearson, 1909, Bedrick,
1992].

■ Between both latent continuous variables (Case III) it’s called point polychoric correlation
[Pearson, 1900, Olsson, 1979].
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Case I

Definition 1 (Estimator Σ̂(n) of Σ∗; Case I nonparanormal). The estimator
Σ̂(n) = (Σ̂(n)

jk )1≤j,k≤d of the covariance matrix Σ∗ is defined by:

Σ̂(n)
jk = 2 sin π

6 ρ̂Sp
jk

for all d1 < j < k ≤ d2.
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Case II

■ Rank estimators are no longer available in general.

■ Since f(Z) ∼ Nd(µ, Σ) we have the following conditional expectation

E[f(Xk) | f(Zj)] = µf(Xk) + Σ∗
jkσf(Xk)f(Zj), for 1 ≤ j ≤ d1 < k ≤ d2,

where we can assume w.l.o.g. that µf(Xk) = 0.

■ Multiplying both sides by Xj and dragging it into the expectation (function of f(Zj)) we
have

E[f(Xk)Xj | f(Zj)] = Σ∗
jkσf(Xk)f(Zj)Xj .

■ Apply LIE, rearrange, and expand by σXj , then

Σ∗
jk = E[f(Xk)Xj ]

σf(Xk)E[f(Zj)Xj ] =
rf(Xk)Xj

σXj

E[f(Zj)Xj ] .
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Case II

Definition 2 (Estimator Σ̂(n) of Σ∗; Case II nonparanormal). The estimator
Σ̂(n) = (Σ̂(n)

jk )1≤j,k≤d of the covariance matrix Σ∗ is defined by:

Σ̂(n)
jk =

r
(n)
f̂(Xk),Xj

σ
(n)
Xj∑lXj

−1
r=1 ϕ(γ̂j

r)(xj
r+1 − xj

r)

for all 1 < j ≤ d1 < k ≤ d2.

This is a double two-step estimator where first the thresholds and the unknown
transformation functions f are estimated and then the expression above.
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Case III

Definition 3 (Estimator Σ̂(n) of Σ∗; Case III nonparanormal). The estimator
Σ̂(n) = (Σ̂(n)

jk )1≤j,k≤d of the covariance matrix Σ∗ is defined by:

Σ̂(n)
jk = arg max

|Σjk|≤1

1
n

ℓ(n)(Σjk, xj
r, xk

s)

for all 1 < j < k ≤ d1.
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Concentration results

■ Concentration case I (no latent variables) can be found in Liu et al. [2012]

■ Concentration case II was challenging.
■ Concentration case III requires the likelihood functions to behave nicely.

Theorem 1. Suppose that . . . some mild requirements . . . Then the following probability
bound for case II holds

P

(
max

jk

∣∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣∣ ≥ ϵ

)
≤ 8 exp

2 log d −
√

nϵ2

(64 L Cγ lmax π)2 log n


+ 8 exp

(
2 log d − nϵ2

(4L Cγ)2 128(1 + 4c2)2

)

+ 8 exp
(

2 log d −
√

n

8π log n

)
+ 4 exp

(
− k1n3/4√

log n

k2 + k3

)
+ 2√

π log(nd2)
.

K. Göbler, M. Drton, S. Mukherjee, A. Miloschewski | High-dimensional mixed graphs | October 12, 2022 13



Concentration results

■ Concentration case I (no latent variables) can be found in Liu et al. [2012]
■ Concentration case II was challenging.

■ Concentration case III requires the likelihood functions to behave nicely.

Theorem 2. Suppose that . . . some mild requirements . . . Then the following probability
bound for case II holds

P

(
max

jk

∣∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣∣ ≥ ϵ

)
≤ 8 exp

2 log d −
√

nϵ2

(64 L Cγ lmax π)2 log n


+ 8 exp

(
2 log d − nϵ2

(4L Cγ)2 128(1 + 4c2)2

)

+ 8 exp
(

2 log d −
√

n

8π log n

)
+ 4 exp

(
− k1n3/4√

log n

k2 + k3

)
+ 2√

π log(nd2)
.

K. Göbler, M. Drton, S. Mukherjee, A. Miloschewski | High-dimensional mixed graphs | October 12, 2022 13



Concentration results

■ Concentration case I (no latent variables) can be found in Liu et al. [2012]
■ Concentration case II was challenging.
■ Concentration case III requires the likelihood functions to behave nicely.

Theorem 3. Suppose that . . . some mild requirements . . . Then the following probability
bound for case II holds

P

(
max

jk

∣∣∣∣Σ̂(n)
jk − Σ∗

jk

∣∣∣∣ ≥ ϵ

)
≤ 8 exp

2 log d −
√

nϵ2

(64 L Cγ lmax π)2 log n


+ 8 exp

(
2 log d − nϵ2

(4L Cγ)2 128(1 + 4c2)2

)

+ 8 exp
(

2 log d −
√

n

8π log n

)
+ 4 exp

(
− k1n3/4√

log n

k2 + k3

)
+ 2√

π log(nd2)
.

K. Göbler, M. Drton, S. Mukherjee, A. Miloschewski | High-dimensional mixed graphs | October 12, 2022 13



Outline

1 Motivation and Introduction

2 Setup

3 Estimation

4 Concentration

5 Illustration

K. Göbler, M. Drton, S. Mukherjee, A. Miloschewski | High-dimensional mixed graphs | October 12, 2022 13



Illustration

Difference graph between the true underlying graph, the latent oracle (left) and hume (right). Red
indicates false negtives and gray false positives
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