Adjusting for Multi-Cause Confounding

Jeff Adams
Ongoing work with Niels R. Hansen

Department of Mathematical Sciences
University of Copenhagen

October 2022

1/10



The Confounding Model

® i.i.d. samples of p treatments X; and a response Y.

Goal: Estimate the treatment effect of X on Y.

Problem: There is an unobserved confounder Z.

® Assumption: Treatments are non-adjacent.

° e 0 ® Assumption: Z is a “multi-cause” confounder.

Assumption: Additive treatment effects 5.
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The Intuition

If Z were measured, we could regress

Y = B;X; + £(2) for any j of interest.

If f(x) = argmax, p(Z = z|X = x) were known,
then we could plug in Z = f(X).

° e 0 ® Since X are assumed conditionally independent
given Z, maybe we can learn f from X.

Together, the regression is Y = 53,X; + &(f(X)).
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Related Work

Recent related papers include:

® Wang and Blei (2019): Advocate non-parametric estimation of Z, but give no
finite-sample guarantees.

® Ogburn et al. (2020) and Grimmer et al. (2020): Critical response.
e Cevid et al. (2020): A spectral transform and LASSO-based approach.
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Step 1: Learn f by Tensor Decomposition

® Modeling choice: Assume Z is discrete in {1, ..., K}.
e Partition X into thirds: X = (X, Xj, Xx).

® By conditional independence,
E[X; ® Xj] = Zw(z ) @

E[X; ® X; ® Xi] = Zw D oW @ )

® Kruskal's Theorem tells us w(?) and 1(?) are (generically) identifiable.

® We can learn ,u(z) and w(?) with provable sample complexities in p and K. (Anandkumar
et al., 2014) (Guo et al., 2022)
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Step 2: Latent Labeling

® Suppose estimates /i() of u(?) satisfy ||2(2) — p(2) |5 < e.

® Simplest labeling algorithm: pick the nearest mean! A 855

Z = argmin | X — 3|,
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Step 2: Latent Labeling

e Suppose estimates /i(2) of u(?) satisfy H,&(Z) — M(Z)HQ < e. ,
® Simplest labeling algorithm: pick the nearest mean! T 9N 038
Z = argmin | X — 3|,
z

® Bound the mislabeling rate with standard concentration
inequalities:

2 =z =1 <3[9, < 9] J2 -3

- p[(x — A T(0 — 4@) < ~1 3 ,;(2)”12 _ 1]

2
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® Decreasing in p for fixed [i; rate depends on true separation in means. 6/10



Step 3: OLS with Measurement Error

e Suppose P[Z = 7/|Z = z] < ¢ for any distinct z, z'.

e Consider the OLS estimator AOLS — ECovlXiY] 2]
J EVar[X;|Z]
’BJQLS _ BJ’ ) OLS oracle + oracle ﬁj‘
gO(vay+o

with probability 1 — exp{—;x—i(} if Kv/C—0and w, > g.
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Step 3: OLS with Measurement Error

e Suppose P[Z = 7/|Z = z] < ¢ for any distinct z, z'.

e Consider the OLS estimator AOLS — ECovlXiY] 2]
J EVar[X;|Z]
’BJQLS _ BJ’ ) OLS oracle + oracle ﬁj‘
gO(Kf)—m

with probability 1 — exp{—;x—i(} if K/ = 0and w, > biK_

® Since Bﬁmde — fj is unbiased and asymptotically (with respect to N>) normal:

® \We have consistency under the above conditions.
® \We have asymptotic normality with oracle variance if further Ky/N>( — 0.
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Example: Easy Bounds

Suppose for all z there exist a, b such that ||z — u#)3 > ap and w, > e
® Given O(k3/8)* or O(p?/5) samples, we can learn ;(?) to O(,/p) with probability 1 — 4.
(Anandkumar et al., 2014; Guo et al., 2022)
® This gives us mislabeling probabilities ¢ of O(1/p).

* Given O(K log 1) additional samples, the bias for any BJ-OLS is O(K//p) with probability
1-—26.
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Discussion

® We have a flexible 3 step pipeline.

Better tensor decomposition methods for step 17
Sub-Gaussian bounds for step 27

Nonlinear mechanism in step 37

Extend to continuous Z7
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® Better tensor decomposition methods for step 17
® Sub-Gaussian bounds for step 27

® Nonlinear mechanism in step 37

® Extend to continuous Z7

® We have a trajectory in N, p, and K.

® Wang and Blei (2019) and Grimmer et al. (2020) require either p = oo or N = oco.
® How: Tolerating mislabeled Z and carrying error forward.
® Plausibility: We allow K to increase with p.
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Discussion

® We have a flexible 3 step pipeline.

® Better tensor decomposition methods for step 17
® Sub-Gaussian bounds for step 27

® Nonlinear mechanism in step 37

® Extend to continuous Z7

® We have a trajectory in N, p, and K.

® Wang and Blei (2019) and Grimmer et al. (2020) require either p = oo or N = oco.
® How: Tolerating mislabeled Z and carrying error forward.
® Plausibility: We allow K to increase with p.

e Compare to semiparametric regression Y = BJXJ + g(f(X)).

® Conditional independence restricts the function class for f in a principled way.
® This drastically reduces the variance of 5.
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