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The Confounding Model
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• i.i.d. samples of p treatments Xi and a response Y .

• Goal: Estimate the treatment effect of X on Y .

• Problem: There is an unobserved confounder Z .

• Assumption: Treatments are non-adjacent.

• Assumption: Z is a “multi-cause” confounder.

• Assumption: Additive treatment effects β.
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The Intuition
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• If Z were measured, we could regress
Y = β̂jXj + ĝ(Z ) for any j of interest.

• If f (x) = argmaxz p(Z = z |X = x) were known,
then we could plug in Ẑ = f (X ).

• Since X are assumed conditionally independent
given Z , maybe we can learn f̂ from X .

• Together, the regression is Y = β̂jXj + ĝ(f̂ (X )).
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Related Work

Recent related papers include:

• Wang and Blei (2019): Advocate non-parametric estimation of Z , but give no
finite-sample guarantees.

• Ogburn et al. (2020) and Grimmer et al. (2020): Critical response.

• Ćevid et al. (2020): A spectral transform and LASSO-based approach.
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Step 1: Learn f̂ by Tensor Decomposition

• Modeling choice: Assume Z is discrete in {1, ...,K}.
• Partition X into thirds: X = (Xi ,Xj ,Xk).

• By conditional independence,

E[Xi ⊗ Xj ] =
K∑

z=1

ω(z)µ
(z)
i ⊗ µ

(z)
j

E[Xi ⊗ Xj ⊗ Xk ] =
K∑

z=1

ω(z)µ
(z)
i ⊗ µ

(z)
j ⊗ µ

(z)
k

• Kruskal’s Theorem tells us ω(z) and µ(z) are (generically) identifiable.

• We can learn µ(z) and ω(z) with provable sample complexities in p and K . (Anandkumar
et al., 2014) (Guo et al., 2022)
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Step 2: Latent Labeling

• Suppose estimates µ̂(z) of µ(z) satisfy ∥µ̂(z)−µ(z)∥2 < ϵ.

• Simplest labeling algorithm: pick the nearest mean!

Ẑ = argmin
z

∥X − µ̂(z)∥2

• Bound the mislabeling rate with standard concentration
inequalities:

P[Ẑ = 2|Z = 1] ≤ P
[∥∥∥X − µ̂(2)

∥∥∥
2
<

∥∥∥X − µ̂(1)
∥∥∥
2

∣∣∣Z = 1
]

= P
[
(X − µ̂(1))T (µ̂(1) − µ̂(2)) < −1

2

∥∥∥µ̂(1) − µ̂(2)
∥∥∥2
2

∣∣∣∣Z = 1

]
≤

(∥∥µ(1) − µ(2)
∥∥
3
+ 2ϵ

)2(∥∥µ(1) − µ(2)
∥∥
2
− ϵ

)4 ∥∥∥σ(1)
∥∥∥
3

• Decreasing in p for fixed µ̂; rate depends on true separation in means.
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Step 3: OLS with Measurement Error

• Suppose P[Ẑ = z ′|Z = z ] ≤ ζ for any distinct z , z ′.

• Consider the OLS estimator β̂OLS
j =

ÊĈov[Xj ,Y |Ẑ ]

ÊV̂ar[Xj |Ẑ ]
.

∣∣∣β̂OLS
j − β̂j

∣∣∣ ≤ ∣∣∣β̂OLS
j − β̂oracle

j

∣∣∣︸ ︷︷ ︸
≤O(K

√
ζ)→0

+
∣∣∣β̂oracle

j − βj

∣∣∣
with probability 1− exp

{
− N2

8bK

}
if K

√
ζ → 0 and ωz ≥ 1

bK .

• Since β̂oracle
j − βj is unbiased and asymptotically (with respect to N2) normal:

• We have consistency under the above conditions.
• We have asymptotic normality with oracle variance if further K

√
N2ζ → 0.
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Example: Easy Bounds

Suppose for all z there exist a, b such that ∥µ(z) − µ(z ′)∥22 ≥ ap and ωz ≥ 1
bK .

• Given O(k3/δ)* or O(p2/δ) samples, we can learn µ(z) to O(
√
p) with probability 1− δ.

(Anandkumar et al., 2014; Guo et al., 2022)

• This gives us mislabeling probabilities ζ of O(1/p).

• Given O
(
K log 1

δ

)
additional samples, the bias for any β̂OLS

j is O(K/
√
p) with probability

1− 2δ.
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Discussion

• We have a flexible 3 step pipeline.
• Better tensor decomposition methods for step 1?
• Sub-Gaussian bounds for step 2?
• Nonlinear mechanism in step 3?
• Extend to continuous Z?

• We have a trajectory in N, p, and K .
• Wang and Blei (2019) and Grimmer et al. (2020) require either p = ∞ or N = ∞.
• How: Tolerating mislabeled Ẑ and carrying error forward.
• Plausibility: We allow K to increase with p.

• Compare to semiparametric regression Y = β̂jXj + g(f̂ (X )).
• Conditional independence restricts the function class for f in a principled way.
• This drastically reduces the variance of β̂.
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