# Adjusting for Multi-Cause Confounding 

Jeff Adams<br>Ongoing work with Niels R. Hansen

Department of Mathematical Sciences
University of Copenhagen

October 2022

## The Confounding Model



- i.i.d. samples of $p$ treatments $X_{i}$ and a response $Y$.
- Goal: Estimate the treatment effect of $X$ on $Y$.
- Problem: There is an unobserved confounder $Z$.
- Assumption: Treatments are non-adjacent.
- Assumption: $Z$ is a "multi-cause" confounder.
- Assumption: Additive treatment effects $\beta$.


## The Intuition



- If $Z$ were measured, we could regress $Y=\hat{\beta}_{j} X_{j}+\hat{g}(Z)$ for any $j$ of interest.
- If $f(x)=\arg \max _{z} p(Z=z \mid X=x)$ were known, then we could plug in $\hat{Z}=f(X)$.
- Since $X$ are assumed conditionally independent given $Z$, maybe we can learn $\hat{f}$ from $X$.
- Together, the regression is $Y=\hat{\beta}_{j} X_{j}+\hat{g}(\hat{f}(X))$.


## Related Work

Recent related papers include:

- Wang and Blei (2019): Advocate non-parametric estimation of $Z$, but give no finite-sample guarantees.
- Ogburn et al. (2020) and Grimmer et al. (2020): Critical response.
- Ćevid et al. (2020): A spectral transform and LASSO-based approach.


## Step 1: Learn $\hat{f}$ by Tensor Decomposition

- Modeling choice: Assume $Z$ is discrete in $\{1, \ldots, K\}$.
- Partition $X$ into thirds: $X=\left(X_{i}, X_{j}, X_{k}\right)$.
- By conditional independence,

$$
\begin{aligned}
\mathbb{E}\left[X_{i} \otimes X_{j}\right] & =\sum_{z=1}^{K} \omega^{(z)} \mu_{i}^{(z)} \otimes \mu_{j}^{(z)} \\
\mathbb{E}\left[X_{i} \otimes X_{j} \otimes X_{k}\right] & =\sum_{z=1}^{K} \omega^{(z)} \mu_{i}^{(z)} \otimes \mu_{j}^{(z)} \otimes \mu_{k}^{(z)}
\end{aligned}
$$

- Kruskal's Theorem tells us $\omega^{(z)}$ and $\mu^{(z)}$ are (generically) identifiable.
- We can learn $\mu^{(z)}$ and $\omega^{(z)}$ with provable sample complexities in $p$ and $K$. (Anandkumar et al., 2014) (Guo et al., 2022)


## Step 2: Latent Labeling

- Suppose estimates $\hat{\mu}^{(z)}$ of $\mu^{(z)}$ satisfy $\left\|\hat{\mu}^{(z)}-\mu^{(z)}\right\|_{2}<\epsilon$.
- Simplest labeling algorithm: pick the nearest mean!

$$
\hat{Z}=\arg \min _{z}\left\|X-\hat{\mu}^{(z)}\right\|_{2}
$$

## Step 2: Latent Labeling

- Suppose estimates $\hat{\mu}^{(z)}$ of $\mu^{(z)}$ satisfy $\left\|\hat{\mu}^{(z)}-\mu^{(z)}\right\|_{2}<\epsilon$.
- Simplest labeling algorithm: pick the nearest mean!

$$
\hat{Z}=\arg \min _{z}\left\|X-\hat{\mu}^{(z)}\right\|_{2}
$$

- Bound the mislabeling rate with standard concentration inequalities:

$$
\begin{aligned}
\mathbb{P}[\hat{Z}=2 \mid Z=1] & \leq \mathbb{P}\left[\left\|X-\hat{\mu}^{(2)}\right\|_{2}<\left\|X-\hat{\mu}^{(1)}\right\|_{2} \mid Z=1\right] \\
& =\mathbb{P}\left[\left.\left(X-\hat{\mu}^{(1)}\right)^{T}\left(\hat{\mu}^{(1)}-\hat{\mu}^{(2)}\right)<-\frac{1}{2}\left\|\hat{\mu}^{(1)}-\hat{\mu}^{(2)}\right\|_{2}^{2} \right\rvert\, Z=1\right] \\
& \leq \frac{\left(\left\|\mu^{(1)}-\mu^{(2)}\right\|_{3}+2 \epsilon\right)^{2}}{\left(\left\|\mu^{(1)}-\mu^{(2)}\right\|_{2}-\epsilon\right)^{4}}\left\|\sigma^{(1)}\right\|_{3}
\end{aligned}
$$

- Decreasing in $p$ for fixed $\hat{\mu}$; rate depends on true separation in means.


## Step 3: OLS with Measurement Error

- Suppose $\mathbb{P}\left[\hat{Z}=z^{\prime} \mid Z=z\right] \leq \zeta$ for any distinct $z, z^{\prime}$.
- Consider the OLS estimator $\hat{\beta}_{j}^{\text {OLS }}=\frac{\hat{\mathbb{C}} \widehat{\operatorname{Cov}}\left[X_{j}, Y \mid \hat{Z}\right]}{\hat{\mathbb{E}} \overline{\operatorname{Var}}\left[X_{j} \mid \hat{z}\right]}$.

$$
\left|\hat{\beta}_{j}^{\mathrm{OLS}}-\hat{\beta}_{j}\right| \leq \underbrace{\left|\hat{\beta}_{j}^{\mathrm{OLS}}-\hat{\beta}_{j}^{\text {oracle }}\right|}_{\leq O(K \sqrt{\zeta}) \rightarrow 0}+\left|\hat{\beta}_{j}^{\text {oracle }}-\beta_{j}\right|
$$

with probability $1-\exp \left\{-\frac{N_{2}}{8 b K}\right\}$ if $K \sqrt{\zeta} \rightarrow 0$ and $\omega_{z} \geq \frac{1}{b K}$.

## Step 3: OLS with Measurement Error

- Suppose $\mathbb{P}\left[\hat{Z}=z^{\prime} \mid Z=z\right] \leq \zeta$ for any distinct $z, z^{\prime}$.
- Consider the OLS estimator $\hat{\beta}_{j}^{\text {OLS }}=\frac{\hat{\mathbb{E}} \widehat{\operatorname{Cov}}\left[X_{j}, Y \mid \hat{Z}\right]}{\widehat{\mathbb{E}} \overline{\operatorname{Var}}\left[X_{j} \mid \hat{Z}\right]}$.

$$
\left|\hat{\beta}_{j}^{\mathrm{OLS}}-\hat{\beta}_{j}\right| \leq \underbrace{\left|\hat{\beta}_{j}^{\mathrm{OLS}}-\hat{\beta}_{j}^{\text {oracle }}\right|}_{\leq O(K \sqrt{\zeta}) \rightarrow 0}+\left|\hat{\beta}_{j}^{\text {oracle }}-\beta_{j}\right|
$$

with probability $1-\exp \left\{-\frac{N_{2}}{8 b K}\right\}$ if $K \sqrt{\zeta} \rightarrow 0$ and $\omega_{z} \geq \frac{1}{b K}$.

- Since $\hat{\beta}_{j}^{\text {oracle }}-\beta_{j}$ is unbiased and asymptotically (with respect to $N_{2}$ ) normal:
- We have consistency under the above conditions.
- We have asymptotic normality with oracle variance if further $K \sqrt{N_{2} \zeta} \rightarrow 0$.


## Example: Easy Bounds

Suppose for all $z$ there exist $a, b$ such that $\left\|\mu^{(z)}-\mu^{\left(z^{\prime}\right)}\right\|_{2}^{2} \geq a p$ and $\omega_{z} \geq \frac{1}{b K}$.

- Given $O\left(k^{3} / \delta\right)^{*}$ or $O\left(p^{2} / \delta\right)$ samples, we can learn $\mu^{(z)}$ to $O(\sqrt{p})$ with probability $1-\delta$. (Anandkumar et al., 2014; Guo et al., 2022)
- This gives us mislabeling probabilities $\zeta$ of $O(1 / p)$.
- Given $O\left(K \log \frac{1}{\delta}\right)$ additional samples, the bias for any $\hat{\beta}_{j}^{\mathrm{OLS}}$ is $O(K / \sqrt{p})$ with probability $1-2 \delta$.


## Discussion

- We have a flexible 3 step pipeline.
- Better tensor decomposition methods for step 1 ?
- Sub-Gaussian bounds for step 2?
- Nonlinear mechanism in step 3?
- Extend to continuous $Z$ ?


## Discussion

- We have a flexible 3 step pipeline.
- Better tensor decomposition methods for step 1?
- Sub-Gaussian bounds for step 2?
- Nonlinear mechanism in step 3?
- Extend to continuous $Z$ ?
- We have a trajectory in $N, p$, and $K$.
- Wang and Blei (2019) and Grimmer et al. (2020) require either $p=\infty$ or $N=\infty$.
- How: Tolerating mislabeled $\hat{Z}$ and carrying error forward.
- Plausibility: We allow $K$ to increase with $p$.


## Discussion

- We have a flexible 3 step pipeline.
- Better tensor decomposition methods for step 1?
- Sub-Gaussian bounds for step 2?
- Nonlinear mechanism in step 3?
- Extend to continuous $Z$ ?
- We have a trajectory in $N, p$, and $K$.
- Wang and Blei (2019) and Grimmer et al. (2020) require either $p=\infty$ or $N=\infty$.
- How: Tolerating mislabeled $\hat{Z}$ and carrying error forward.
- Plausibility: We allow $K$ to increase with $p$.
- Compare to semiparametric regression $Y=\hat{\beta}_{j} X_{j}+g(\hat{f}(X))$.
- Conditional independence restricts the function class for $f$ in a principled way.
- This drastically reduces the variance of $\hat{\beta}$.


## Bibliography

A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky. Tensor decompositions for learning latent variable models. Journal of machine learning research, 15:2773-2832, 2014.
D. Ćevid, P. Bühlmann, and N. Meinshausen. Spectral deconfounding via perturbed sparse linear models. The Journal of Machine Learning Research, 21(1):9442-9482, 2020.
J. Grimmer, D. Knox, and B. M. Stewart. $\mathrm{Na} \backslash$ " ive regression requires weaker assumptions than factor models to adjust for multiple cause confounding. arXiv preprint arXiv:2007.12702, 2020.
B. Guo, J. Nie, and Z. Yang. Learning diagonal gaussian mixture models and incomplete tensor decompositions. Vietnam Journal of Mathematics, 50:421-446, 2022.
E. L. Ogburn, I. Shpitser, and E. J. T. Tchetgen. Counterexamples to" the blessings of multiple causes" by wang and blei. arXiv preprint arXiv:2001.06555, 2020.
Y. Wang and D. M. Blei. The blessings of multiple causes. Journal of the American Statistical Association, 114(528):1574-1596, 2019.

