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Interference

Stable unit treatment value assumption (SUTVA):
(Potential) outcome on one unit should be unaffected by
treatment assignments of other units

¢ No interference: W; does not affect Y; for i #j

¢ No contagion: Y; does not affect Y; for i # j
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Interference

Examples with interference:

Crosscontamination in agricultural studies
Instruction type in school

Vaccinations

Communication of advertisement

Remark: Common were units can communicate/compete
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Interference

No interference Interference
OC,'(—ECI. 0C,'<—€Cl.
o W; <+ 9g(C,ew,) o W; <+ 9g(Cj,ew,)
o Y+ h(W;,Cj¢) o Yi < h(W,Cj ),

W= (Wa,...,Wy).
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Causal effects

Classical i.i.d. setting:
e Two possible treatment assignments

e Average Treatment Effect:
E[Y|do(W = 1)] — E[Y|do(W = 0)]

Interference setting:
¢ 2V possible treatment assignments
¢ Global Average Treatment Effect:
7= % S (E[Y|do(W = 1)] - E[Y;|do(W = 0)))
e Stochastic Interventions:
7(PxPy) = § Sy (EIYi|do(W ~ Pr)] - E[Y)|do(W ~ P,)])
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Literature on interference

Conceptual settings:
¢ Interference as nuisance to correct for
e Interference as part of effect

Approaches to handling interference:
o Experimental design (e.g. VanderWeele and Tchetgen Tchetgen, 2011)

e Partial interference: Arbitrary interference but within
non-overlapping groups (e.g. Hudgens and Halloran, 2008)

e Explicit modelling of interference (e.g. chin, 2019)

Remark: Without restrictions on the interference, treatment effects
are generally not identifiable.
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Modelling interference with features

Network graph G:
Graph describing interactions between units, e.qg,

e Friendship ties in a social group
e Geographical adjacency

Features: X = f(W,G) (Manski, 1993; Chin, 2019)
Deterministic functions of G and treatment vector W, e.g,

e Fraction of treated neighbors
e Fraction of treated neighbors of neighbors

Modelling interference:

Yf «— h(W7 ci7 6I') = h/(W,‘,X,',CI', 6I')
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Modelling interference with features

Example: exposure to advertisement
e X; =f(W,G) = number of treated neighbors of i in G,
o Y ui+ W+ X +¢.
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E[Y|doW 1)] - E[Y;|do(W = 0)])
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IIMm
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6
GZ 1+ E[X;|do(W = 1)] — 0 — E[X;|do(W = 0)]),
i=1

where E[X;|do(W = 1)] = (1,2,1,0,3,1).
— r=(Q2+3+2+1+4+2)/6—0=14/6.
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Model

Definition
Unit SEM with interference features & linear outcome
model (inspired by Chin, 2019):

o C;+ AC; +¢c;,
Wi < 9(C, ew,),
X+ f(W,G),
Yi « WiBM(1, X)) + (1 - W)B(1,X)) +~+C; + €.

Remark: Outcome model corresponds to
Y/ <~ a(O)(17XI) + a(l)(Wi7oi) + 7CI + €,

with ,3(0) = a(o),,@(l) = a0 + oM and O,- = W,'X,'.
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Results overview

Results:
Reformulate GATE 7 and stochastic effects 7(P,P,)
Define new notion of Interference-DAG (I-DAG)

Propose adjustment estimator based on graphical criteria
on I-DAG

Derive sufficient conditions for consistency
Derive sufficient conditions for asymptotic normality
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GATE reformulation

Lemma: (Stochastic treatment contrast with features)

w(Pr, Py) = @\ () (@@ + a®) — @ (x, n)a® where

N
wi) = % Z (mE[Xi|do(W ~ Pr)] — nE[Xj|do(W ~ Py)]), and

N
A = % D" (1~ mEX|do(W ~ P)] — (1~ mERXiido(W ~ P,)

Remark: Weights can be computed or estimated with Monte
Carlo so only need to estimate a(®) and a(.
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I-DAG

Idea: interpret feature model as non-i.i.d. data from DAG

Example:
o Zj+ €z, Pi<ep, Cj < €c,,
Wi < 9(Z;, ew,),
X+ f(W_;,G),
0, = WX;,

Y, = agO) + a(loF),X, + Otgl)Wi + Ot(llF),o, +vcCi + VPP + €.
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I-DAG

Example: Unit SEM:
o 7+ €z, P+ €p, Ci+ €c;
o Wi« 9g(Zi,P_j,ew,),
o X, f(W_;,G),
e O, = WX,
o Y= agO) + a(l?) i+ agl)W,' + a(ll,),O, +cCi + pPj + €.

\
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I-DAG theory

Definition (Interference-DAG (I-DAG))

e If A; — B; for some i in the unit graph, then A — B in the
I-DAG.

o If A; — W, for some i # j in the unit graph, then A — X in
the I-DAG.

Lemma (I-DAG encodes independence statements)
IfA Lg B|Cinthe I-DAG, then A; 1L B; | C; foralli=1,... N.
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I-DAG

Idea:
e a9 and oY) suffice to estimate
n(Pr, Py) = wiy) (1) (2d® + M) — w) () al®).
e (a9, M) is total effect of pseudo-intervention on
(W,X,0) on Y in I-DAG ¢.
—> Apply graphical criteria from literature to I-DAG to
estimate a(® and oV

P =pa(Y,G) \ T and Z valid adjustment set. Then Byt p = Bytz
where P =pa(Y,G)\ {X} and T = {W}uXuUO.

Causality on networks 15/ 22



Assumptions on feature behaviour

Assumption 1:
Assume existence of:

o limy oo § S1q EXGIdO(W ~ Pr)]
o limy_ oo & SN 1 E[Xi|dO(W ~ P,)].

Assumption 2:
Constrain dependencies between units by using yet another
auxiliary graph called dependency graph.

Remark: Implicitly constrains underlying network graph
without explicitly modelling it.
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Dependency graph

Definition: (Interference dependency graph)
Uj — U; present in D(X, W) iff:

a) W, affects X,

b) X; and X; are affected by some Wy, k #i,j.

Example: X; = number of treated neighbors of i in G.
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Adjustment consistency

Theorem: (Consistency for adjustment estimator)
D valid adjustment set relative to (A,Y) with A = (X, W,0) in
I-DAG G, X = (A,D)". If

. E[Y,.4]<ooandE[)~(,-4] <ooVi=1,...,N
. E[)?,-)?,-T} < oo is invertibleVi=1,...,N,

o limy oo SN, E [)?,)?,T] = Y% < 0o, Where Ty is invertible,
e d(N) € o(N), where d(N) is the maximal degree in the
dependency graph D(X, W),
then ,
TO[S(PW,PW) — TN(Pﬂ,Pn) — 0,

Remark: d(N) € o(N) = no non-local features
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Adjustment asymptotic normality

Theorem: (Asymptotic normality of adjustment estimator)
D valid adjustment set relative to (A,Y) with A = (X, W, 0) in
I-DAG G, X = (A,D)". If

.E[Y8]<ooandE[ ]<ooVI—1 LN,

o E [x,-x,-} < oo isinvertiblevi=1,...,N,

o limy oo b SN, E [~ X ] Tgx < 00, Where Xz4 is invertible,
|2

o limy oo & N1 E [XX; } Y oz < 00, Where
- T
e :=Y;—X; (va.70)",
e d(N) € o(N¥/%),
then 5
\/N(Tols(PmPn) - TN(PmPn)) —>N(0,02),
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Framework that allows for both confounding and
interference

I-DAG to make classical graphical results usable

Adjustment estimator

Instrumental variables estimator

Necessary conditions for consistency and asymptotic
normality
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Simulations

RMSE Bias log(Variance) Coverage
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G: Watts-Strogatz network, Target: 7(P,,P,) with = = 0.7 and
n = 0.2, X: i) fraction of treated neighbors and ii) fraction of
treated neighbors of neighbors.
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