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Interference

Stable unit treatment value assumption (SUTVA):
(Potential) outcome on one unit should be unaffected by
treatment assignments of other units
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• No interference: Wi does not affect Yj for i ̸= j

• No contagion: Yi does not affect Yj for i ̸= j
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Interference

Examples with interference:

• Crosscontamination in agricultural studies
• Instruction type in school
• Vaccinations
• Communication of advertisement

Remark: Common were units can communicate/compete
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Interference

No interference
• Ci ← ϵCi
• Wi ← g(Ci, ϵWi)

• Yi ← h(Wi,Ci, ϵi)

Interference
• Ci ← ϵCi
• Wi ← g(Ci, ϵWi)

• Yi ← h(W,Ci, ϵi),
W := (W1, . . . ,WN).
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Causal effects

Classical i.i.d. setting:
• Two possible treatment assignments
• Average Treatment Effect:
E[Y|do(W = 1)]− E[Y|do(W = 0)]

Interference setting:
• 2N possible treatment assignments
• Global Average Treatment Effect:
τ = 1

N
∑N

i=1 (E[Yi|do(W = 1)]− E[Yi|do(W = 0)])
• Stochastic Interventions:
τ(Pπ,Pη) = 1

N
∑N

i=1 (E[Yi|do(W ∼ Pπ)]− E[Yi|do(W ∼ Pη)])
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Literature on interference

Conceptual settings:
• Interference as nuisance to correct for
• Interference as part of effect

Approaches to handling interference:
• Experimental design (e.g. VanderWeele and Tchetgen Tchetgen, 2011)

• Partial interference: Arbitrary interference but within
non-overlapping groups (e.g. Hudgens and Halloran, 2008)

• Explicit modelling of interference (e.g. Chin, 2019)

Remark: Without restrictions on the interference, treatment effects
are generally not identifiable.
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Modelling interference with features

Network graph G:
Graph describing interactions between units, e.g,

• Friendship ties in a social group
• Geographical adjacency

Features: X = f (W,G) (Manski, 1993; Chin, 2019)
Deterministic functions of G and treatment vector W, e.g,

• Fraction of treated neighbors
• Fraction of treated neighbors of neighbors

Modelling interference:

Yi ← h(W,Ci, ϵi) = h′(Wi,Xi,Ci, ϵi)
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Modelling interference with features
Example: exposure to advertisement

• Xi = f (W,G) = number of treated neighbors of i in G,
• Yi ← µi +Wi + Xi + ϵi.

21 3

456

τ =
1
6

6∑
i=1

(E[Yi|do(W = 1)]− E[Yi|do(W = 0)])

=
1
6

6∑
i=1

(1+ E[Xi|do(W = 1)]− 0− E[Xi|do(W = 0)]) ,

where E[Xi|do(W = 1)] = (1,2,1,0,3,1).
=⇒ τ = (2+ 3+ 2+ 1+ 4+ 2)/6− 0 = 14/6.
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Model

Definition
Unit SEM with interference features & linear outcome
model (inspired by Chin, 2019):

• Ci ← ACi + ϵCi,
• Wi ← g(C, ϵWi),
• Xi ← f (W,G),
• Yi ←Wiβ

(1)(1,Xi) + (1−Wi)β
(0)(1,Xi) + γCi + ϵi.

Remark: Outcome model corresponds to

Yi ← α(0)(1,Xi) +α(1)(Wi,Oi) + γCi + ϵi,

with β(0) = α(0),β(1) = α(0) +α(1) and Oi = WiXi.
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Results overview

Results:
• Reformulate GATE τ and stochastic effects τ(Pπ,Pη)
• Define new notion of Interference-DAG (I-DAG)
• Propose adjustment estimator based on graphical criteria
on I-DAG

• Propose instrumental variable estimator based on
graphical criteria on I-DAG

• Derive sufficient conditions for consistency
• Derive sufficient conditions for asymptotic normality
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GATE reformulation

Lemma: (Stochastic treatment contrast with features)

τN(Pπ,Pη) = ω
(1)
N (π, η)(α(0) +α(1))− ω

(0)
N (π, η)α(0) where

ω
(1)
N =

1
N

N∑
i=1

(πE[Xi|do(W ∼ Pπ)]− ηE[Xi|do(W ∼ Pη)]) , and

ω
(0)
N =

1
N

N∑
i=1

((1− π)E[Xi|do(W ∼ Pπ)]− (1− η)E[Xi|do(W ∼ Pη)]) .

Remark: Weights can be computed or estimated with Monte
Carlo so only need to estimate α(0) and α(1).
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I-DAG

Idea: interpret feature model as non-i.i.d. data from DAG

Example:
• Zi ← ϵZi, Pi ← ϵPi, Ci ← ϵCi,
• Wi ← g(Zi, ϵWi),
• Xi ← f (W−i,G),
• Oi = WiXi,
• Yi = α

(0)
0 +α

(0)
1:PXi +α

(1)
0 Wi +α

(1)
1:POi + γCCi + γPPi + ϵi.
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I-DAG

Example: Unit SEM:
• Zi ← ϵZi, Pi ← ϵPi, Ci ← ϵCi,
• Wi ← g(Zi,P−i, ϵWi),
• Xi ← f (W−i,G),
• Oi = WiXi,
• Yi = α

(0)
0 +α

(0)
1:PXi +α

(1)
0 Wi +α

(1)
1:POi + γCCi + γPPi + ϵi.

O

Y C

WX Z

P
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I-DAG theory

Definition (Interference-DAG (I-DAG))
• If Ai → Bi for some i in the unit graph, then A→ B in the
I-DAG.

• If Ai →Wj for some i ̸= j in the unit graph, then A→ X in
the I-DAG.

Lemma (I-DAG encodes independence statements)
If A ⊥G B | C in the I-DAG, then Ai ⊥⊥ Bi | Ci for all i = 1, . . . ,N.
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I-DAG

Idea:
• α(0) and α(1) suffice to estimate
τN(Pπ,Pη) = ω

(1)
N (π, η)(α(0) +α(1))− ω

(0)
N (π, η)α(0).

• (α(0), α(1)) is total effect of pseudo-intervention on
(W,X,O) on Y in I-DAG G.
=⇒ Apply graphical criteria from literature to I-DAG to
estimate α(0) and α(1)

Lemma
P = pa(Y,G) \ T and Z valid adjustment set. Then βyt.p = βyt.z
where P = pa(Y,G) \ {X} and T = {W} ∪X ∪O.
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Assumptions on feature behaviour

Assumption 1:
Assume existence of:

• limN→∞
1
N
∑N

i=1 E[Xi|do(W ∼ Pπ)]
• limN→∞

1
N
∑N

i=1 E[Xi|do(W ∼ Pη)].

Assumption 2:
Constrain dependencies between units by using yet another
auxiliary graph called dependency graph.

Remark: Implicitly constrains underlying network graph
without explicitly modelling it.
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Dependency graph

Definition: (Interference dependency graph)
Ui → Uj present in D(X,W) iff:
a) Wi affects Xj,
b) Xi and Xj are affected by some Wk, k ̸= i, j.

Example: Xi = number of treated neighbors of i in G.
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Adjustment consistency

Theorem: (Consistency for adjustment estimator)
D valid adjustment set relative to (A,Y) with A = (X,W,O) in
I-DAG G, X̃ = (A,D)T. If

• E[Y4i ] <∞ and E
[
X̃4
i

]
<∞ ∀ i = 1, . . . ,N

• E
[
X̃iX̃

T
i

]
<∞ is invertible ∀ i = 1, . . . ,N,

• limN→∞
1
N
∑N

i=1 E
[
X̃iX̃

T
i

]
= ΣX̃X̃ <∞, where ΣX̃X̃ is invertible,

• d(N) ∈ o(N), where d(N) is the maximal degree in the
dependency graph D(X,W),

then
τols(Pπ,Pη)− τN(Pπ,Pη)

P−→ 0,
Remark: d(N) ∈ o(N) =⇒ no non-local features
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Adjustment asymptotic normality

Theorem: (Asymptotic normality of adjustment estimator)
D valid adjustment set relative to (A,Y) with A = (X,W,O) in
I-DAG G, X̃ = (A,D)T. If

• E[Y8i ] <∞ and E
[
X̃8
i

]
<∞ ∀ i = 1, . . . ,N,

• E
[
X̃iX̃

T
i

]
<∞ is invertible ∀ i = 1, . . . ,N,

• limN→∞
1
N
∑N

i=1 E
[
X̃iX̃

T
i

]
= ΣX̃X̃ <∞, where ΣX̃X̃ is invertible,

• limN→∞
1
N
∑N

i=1 E
[
ϵ2i X̃iX̃

T
i

]
= Σ

ϵ2X̃X̃ <∞, where

ϵi := Yi − X̃
T
i (γA, γD)

T,
• d(N) ∈ o(N1/4),

then √
N (τols(Pπ,Pη)− τN(Pπ,Pη))

D−→ N (0, σ2),
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Summary

• Framework that allows for both confounding and
interference

• I-DAG to make classical graphical results usable

• Adjustment estimator

• Instrumental variables estimator

• Necessary conditions for consistency and asymptotic
normality
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Thanks!
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Simulations

G: Watts-Strogatz network, Target: τ(Pπ,Pη) with π = 0.7 and
η = 0.2, X: i) fraction of treated neighbors and ii) fraction of
treated neighbors of neighbors.
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