

Fraunhofer-Institut für Kognitive Systeme IKS

Leopold Mareis (Narges Ahmidi [IKS], Mathias Drton [TUM])

Nonparametric Effect Estimation and Guideline Search for Continuous Treatments

We want to measure the effect of the stent diameter on the heart attack rate. Is lm(HeartAttack ~ Stent.diameter) an appropriate model?

How can we estimate the effect non-parametrically assuming Stent.diameter is continuous?

And what is a good guideline telling physicians how to select the stent diameter based on the patient's age?

Do-Operator and Interventions [Pearl, 2009]

We are assuming a continuous SEM $X_i = h_i(X_{pa(i)}, \varepsilon_i)$, ε_i independent, with a binary response $Y = h_Y(X_{pa(Y)}, \varepsilon_Y)$. No unobserved confounding.

Marginal Integration (MI, Backdoor Adjustment)

Under $\overbrace{\bigcirc}^{\bigcirc}$, the average causal effect can be written as an observational quantity:

$$\mathbb{E}[Y; do(T = g(C))] = \int \mathbb{E}[Y|c, T = g(C)]f(c) dc \approx \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbb{E}}[Y|C^{i}, T = g(C^{i})]$$

In practice, this requires estimating the conditional expectation (linear model, logistic regression, local linear estimator) and approximating the integral.

[[]Ernest and Bühlmann, 2015]

Inverse Probability Weighting

Again, $\bigcirc \frown \bigcirc \frown \bigcirc$. For this slide, assume T binary:

$$\mathbb{E}[Y; do(T = g(C))] = \int yf(y|a, T = g(c))f(c) d(y, c) = \mathbb{E}\left[Y\frac{\mathbbm{1}_{T=g(C)}}{f(T|C)}\right]$$

Example

	Т	†(T C)
Alice	1	0.2
Bob	0	0.4
Charlie	1	0.5

Goal: $\mathbb{E}[Y; do(T = 1)]$ Virtual dataset: $\tilde{D} := \{A, A, A, A, A, C, C\}$ Estimate interventional expectation as average of Y in \tilde{D} .

[Robins et al., 1994]

Continuous IPW

Assume $\overbrace{\bigcirc}^{T}$. Let *T* be continuous and K^n be kernels.

$$\mathbb{E}[Y; do(T = g(C))] \stackrel{n \to \infty}{\longleftarrow} \mathbb{E}\left[Y \frac{K^n(T - g(C))}{f(T|C)}\right] \approx \frac{1}{n} \sum_{i=1}^n Y^i \frac{K(T^i - C^i)}{\hat{f}(T^i|C^i)}$$

- K(T g(C)) quantifies the distance of the natural treatment to the intervention guideline instead of $\mathbb{1}_{T=g(C)}$.
- In CIPW, the propensity score f(T|C) has to be estimated opposed to the conditional expectation in MI.

[[]Kallus and Zhou, 2018]

Heuristic for (explainable) guidelines

Goal: Find guideline $\hat{g}(\cdot)$ with small $\mathbb{E}[Y; do(T = \hat{g}(C))]$

Idea: We have for any guideline g the natural lower bound

$$\mathbb{E}[Y; do(T = g(C))] \stackrel{MI}{\approx} \frac{1}{n} \sum \hat{\mathbb{E}}[Y|T = g(C^i), C^i] \ge \frac{1}{n} \sum \min_{\tau} \hat{\mathbb{E}}[Y|T = \tau, C^i].$$

Steps:

- 1. Find $\hat{\tau}^i = \operatorname{argmin}_{\tau \in supp(T)} \hat{\mathbb{E}}[Y|T = \tau, C^i]$, the risk minimizing treatment for sample *i*.
- 2. Find an (explainable) guideline \hat{g} such that $\hat{g}(C^i) \approx \hat{\tau}^i$ for all samples.
- 3. Estimate $\mathbb{E}[Y; do(T = \hat{g}(C))]$ with CIPW, which is based on $\hat{f}(C|T)$.

Advantage: Data-driven heuristic and not biased by expert assessment.

Dataset: Stent Implantation

Sets of Variables¹:

- baseline information of the patient (age, smoking status, nr. of prior heart attacks),
- medication information (anti-platelet, heparin),
- lesion information of the target vessel (length, diameter, residual blood flow, eccentricity),
- stent information (length, diameter, applied pressure, inflation time) and
- target lesion failure [response, binary] (heart attack or revascularization) information for up to 5 years.

Goal: Estimate intervention expectations $\mathbb{E}[\texttt{tlf}; do(\texttt{stent.attribute} = \xi)]$ and $\mathbb{E}[\texttt{tlf}; do(\texttt{stent.attribute} = \xi \cdot \texttt{lesion.attribute})]$ and apply heuristic.

¹In this talk, we neglect pre- and post-dilatation balloon information

- We have baseline, medication ⊥⊥ stent | lesion. Thus, we can restrict our analysis on the three red groups of random variables on the right.
- Every node may contain a random vector. To allow for slimmer regression models, we trim superfluous edges with based on conditional independence tests (assuming additive noise).

[[]Peters et al., 2014], similar to their phase 2

Results: Effect estimation

 $\mathbb{E}[tlf; do(T = t)]$ against t

$$\mathbb{E}[tlf; do(T = \xi \cdot C)]$$
 against ξ

MI with linear model, MI with logistic regression, MI with local linear estimator, CIPW with kernel density estimator dataset tlf risk, gray area: underlying density, shaded areas: 90% bootstrap CI

 \Rightarrow Recommend higher values of $t \mid \Rightarrow$ Recommend lower values of ξ

Not shown here: similar results when computed with the original and trimmed DAG.

Results: Heuristic guideline

- Here, $\hat{g}(\cdot)$ is just a function of C_j . Simultaneously construct guidelines for all covariates and check intervention expectation.
- Few guidelines only seem to decrease the heart attack rate as often $\hat{g}(C_i) \hat{\tau}$ is large.
- Explainable guidelines that can be directly implemented in hospitals and observed be further in future medical studies.

References

Ernest, J. and Bühlmann, P. (2015).

Marginal integration for nonparametric causal inference. *Electronic Journal of Statistics*, 9(2):3155–3194.

Kallus, N. and Zhou, A. (2018).

Policy evaluation and optimization with continuous treatments. In International conference on artificial intelligence and statistics, pages 1243–1251. PMLR.

Pearl, J. (2009)

Causality. Cambridge university press.

÷.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B. (2014).

Causal discovery with continuous additive noise models. Iournal of Machine Learning Research, 15(58):2009–2053

Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994).

Estimation of regression coefficients when some regressors are not always observed Journal of the American statistical Association, 89(427):846–866.

Fraunhofer-Institut für Kognitive Systeme IKS

Contact

Leopold Mareis Division RAD leopold.mareis@fraunhofer.de leopold.mareis@tum.de Funded by IKS Evolution Project

