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Motivating Example

We want to measure the effect of the stent diameter on the heart attack rate. Is

lm(HeartAttack ~ Stent.diameter) an appropriate model?

How can we estimate the effect non-parametrically

assuming Stent.diameter is continuous?
Stent.diameter

HeartAttack

Age

And what is a good guideline telling physicians how to select the stent diameter

based on the patient’s age?

2 Leopold Mareis Raitenhaslach 2022



Do-Operator and Interventions [Pearl, 2009]

We are assuming a continuous SEM Xi = hi(Xpa(i), εi), εi independent, with a binary

response Y = hY (Xpa(Y), εY ). No unobserved confounding.

PX PX ;do(T=t) PX ;do(T=g(A))
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C = ε1
T = h1(C,ε2)
W = h2(C,ε3)
M = h3(T ,W ,ε4)
Y = h4(C,M,W ,ε5)

C = ε1
T = t
W = h2(C,ε3)
M = h3(T ,W ,ε4)
Y = h4(C,M,W ,ε5)

(C ′,C ′′) = ε1
T = g(C ′)
W = h2(C,ε3)
M = h3(T ,W ,ε4)
Y = h4(C,M,W ,ε5)
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Marginal Integration (MI, Backdoor Adjustment)

Under T YC , the average causal effect can be written as an observational quantity:

E[Y ;do(T = g(C))] =

∫
E[Y |c, T = g(C)]f (c)dc ≈ 1

n

n∑
i=1

Ê[Y |C i, T = g(C i)]

In practice, this requires estimating the conditional expectation (linear model, logistic

regression, local linear estimator) and approximating the integral.

[Ernest and Bühlmann, 2015]

4 Leopold Mareis Raitenhaslach 2022



Inverse Probability Weighting

Again, T YC . For this slide, assume T binary:

E[Y ;do(T = g(C))] =

∫
yf (y|a, T = g(c))f (c)d(y, c) = E

[
Y
1T=g(C)

f (T |C)

]

Example
T f(T|C)

Alice 1 0.2

Bob 0 0.4

Charlie 1 0.5

Goal: E[Y ;do(T = 1)]
Virtual dataset: D̃ := {A,A,A,A,A,C ,C}
Estimate interventional expectation as average of Y in D̃.

[Robins et al., 1994]
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Continuous IPW

Assume T YC . Let T be continuous and Kn be kernels.

E[Y ;do(T = g(C))]
n→∞←− E

[
Y
Kn(T − g(C))

f (T |C)

]
≈ 1

n

n∑
i=1

Y i K(T
i − C i)

f̂ (T i|C i)

K(T − g(C)) quantifies the distance of the natural treatment to the intervention

guideline instead of 1T=g(C).

In CIPW, the propensity score f (T |C) has to be estimated opposed to the conditional

expectation in MI.

[Kallus and Zhou, 2018]
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Heuristic for (explainable) guidelines

Goal: Find guideline ĝ(·) with small E[Y ;do(T = ĝ(C))]

Idea: We have for any guideline g the natural lower bound

E[Y ;do(T = g(C))]
MI
≈ 1

n

∑
Ê[Y |T = g(C i),C i] ≥ 1

n

∑
min
τ

Ê[Y |T = τ,C i].

Steps:

1. Find τ̂ i = argminτ∈supp(T)Ê[Y |T = τ,C i], the risk minimizing treatment for sample i.

2. Find an (explainable) guideline ĝ such that ĝ(C i) ≈ τ̂ i for all samples.

3. Estimate E[Y ;do(T = ĝ(C))] with CIPW, which is based on f̂ (C |T).

Advantage: Data-driven heuristic and not biased by expert assessment.
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Dataset: Stent Implantation

Sets of Variables1:

baseline information of the patient (age, smoking status, nr. of prior heart attacks),

medication information (anti-platelet, heparin),

lesion information of the target vessel (length, diameter, residual blood flow,

eccentricity),

stent information (length, diameter, applied pressure, inflation time) and

target lesion failure [response, binary] (heart attack or revascularization) information

for up to 5 years.

Goal: Estimate intervention expectations E [tlf;do (stent.attribute = ξ)] and
E [tlf;do (stent.attribute = ξ · lesion.attribute)] and apply heuristic.

1 In this talk, we neglect pre- and post-dilatation balloon information
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Expert Knowledge Causal DAG

We have baseline, medication ⊥⊥ stent | lesion. Thus,
we can restrict our analysis on the three red groups of

random variables on the right.

Every node may contain a random vector. To allow for

slimmer regression models, we trim superfluous edges

with based on conditional independence tests

(assuming additive noise).

baseline

medication lesion

stent

tlf

[Peters et al., 2014], similar to their phase 2

9 Leopold Mareis Raitenhaslach 2022



Results: Effect estimation

E[tlf ;do(T = t)] against t E[tlf ;do(T = ξ · C)] against ξ
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MI with linear model, MI with logistic regression, MI with local linear estimator, CIPW with kernel density estimator
dataset tlf risk, gray area: underlying density, shaded areas: 90% bootstrap CI

⇒ Recommend higher values of t ⇒ Recommend lower values of ξ

Not shown here: similar results when computed with the original and trimmed DAG.
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Results: Heuristic guideline

a

ta
u

τ̂

Covariate Cj

t

Medical guideline ĝ(·)

Here, ĝ(·) is just a function of Cj. Simultaneously construct guidelines for all

covariates and check intervention expectation.

Few guidelines only seem to decrease the heart attack rate as often ĝ(Cj)− τ̂ is large.

Explainable guidelines that can be directly implemented in hospitals and observed be

further in future medical studies.
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