
Single World Intervention Graphs

Thomas Richardson

TUM Short Course Lecture III



Outline

Relating graphs and counterfactuals via node-splitting

Simple examples

General procedure

Local Property

Adjustment for Confounding

Potential Outcomes (po) Calculus

Sequentially Randomized Experiments / Time Dependent
Confounding

Joint work with James M. Robins (Harvard) and Ilya Shpitser (JHU)

Thomas Richardson Lecture 3: SWIGs Slide 2



Graphical Approach to Causality

X Y

No Confounding

X

H

Y

Confounding

Unobserved

Graph intended to represent direct causal relations.

Convention that confounding variables (e.g. H) are always included
on the graph.

Approach originates in the path diagrams introduced by Sewall
Wright in the 1920s.

If X→ Y then X is said to be a parent of Y; Y is child of X.
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Graphical Approach to Causality

X Y

No Confounding

Associated factorization:

P(x,y) = P(x)P(y | x)

In the absence of confounding the causal model asserts:

P(Y(x) = y) = P(Y = y | do(X = x)) = P(Y = y | X = x).

Thus ACE(X→ Y) is identified under this model.

Q: How does this relate to the non-graphical approach?
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Linking the two approaches

X Y

X ⊥⊥ Y(x0) & X ⊥⊥ Y(x1)

X

H

Y

X 6⊥⊥ Y(x0) or X 6⊥⊥ Y(x1)

Unobserved

Elephant in the room:
The variables Y(x0) and Y(x1) do not appear on these
graphs!!

Thomas Richardson Lecture 3: SWIGs Slide 5



Node splitting: Setting X to 0

X Y

P(X= x̃, Y= ỹ) = P(X= x̃)P(Y= ỹ | X= x̃)

⇒ X x = 0 Y(x = 0)

Can now ‘read’ the independence: X ⊥⊥ Y(x=0).
Also associate a new factorization:

P (X= x̃, Y(x=0)= ỹ) = P(X= x̃)P (Y(x=0)= ỹ)

where:
P (Y(x=0)= ỹ) = P(Y= ỹ |X=0).

This last equation links a term in the original factorization to the
new factorization. We term this the ‘modularity assumption’.
From counterfactual perspective modularity follows from factorization + consistency:

P (Y(x=0)= ỹ) = P (Y(x=0)= ỹ | X=0) = P(Y= ỹ |X=0)
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Node splitting: Setting X to 1

X Y

P(X= x̃, Y= ỹ) = P(X= x̃)P(Y= ỹ | X= x̃)

⇒ X x = 1 Y(x = 1)

Can now ‘read’ the independence: X ⊥⊥ Y(x=1).
Also associate a new factorization:

P (X= x̃, Y(x=1)= ỹ) = P(X= x̃)P (Y(x=1)= ỹ)

where:
P (Y(x=1)=y) = P(Y=y |X=1).
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Marginals represented by SWIGs are identified
The SWIG G(x0) represents P(X, Y(x0)).
The SWIG G(x1) represents P(X, Y(x1)).
Under no confounding these marginals are identified from P(X, Y).
In contrast the distribution P(X, Y(x0), Y(x1)) is not identified.
Y(x=0) and Y(x=1) are never on the same SWIG.
Although we have:

X ⊥⊥ Y(x=0) and X ⊥⊥ Y(x=1)

we do not assume

X ⊥⊥ Y(x=0), Y(x=1)

Had we tried to construct a single graph containing both Y(x=0)
and Y(x=1) this would have been impossible.

⇒ Single-World Intervention Graphs (SWIGs).
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Representing both graphs via a ‘template’

X Y

P(X= x̃, Y= ỹ) = P(X= x̃)P(Y= ỹ | X= x̃)

⇒
G

X x Y(x)

G(x)

Represent both graphs via a template:

Formally the template is a ‘graph valued function’ (not a graph!):

Takes as input a specific value x∗

Returns as output a SWIG G(x∗).

Each instantiation of the template represents a different margin:
SWIG G(x0) represents P(X, Y(x0));
SWIG G(x1) represents P(X, Y(x1)).
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Intuition behind node splitting:
(Robins, VanderWeele, Richardson 2007)

Q: How could we identify whether someone would choose to take
treatment, i.e. have X = 1, and at the same time find out what
happens to such a person if they don’t take treatment Y(x = 0)?

A: Consider an experiment in which, whenever a patient is
observed to swallow the drug have X = 1, we instantly intervene
by administering a safe ‘emetic’ that causes the pill to be
regurgitated before any drug can enter the bloodstream.
Since we assume the emetic has no side effects, the patient’s
recorded outcome is then Y(x = 0).
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Harder Inferential problem

A Z

H B

Y

Query: does this causal graph imply:

Y(a,b) ⊥⊥ B(a) | Z(a),A ?
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Simple solution

A Z

H B

Y
A

a
Z(a)

H

B(a)

b

Y(a,b)

Query does this graph imply:

Y(a,b) ⊥⊥ B(a) | Z(a),A ?

Answer: Yes – applying d-separation to the SWIG on the right we
see that there is no d-connecting path from Y(a,b) given Z(a).
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Single World Intervention Template Construction (1)

Given a graph G, a subset of vertices A = {A1, . . . ,Ak} to be intervened
on, we form G(a) in two steps:

(1) (Node splitting): For every A ∈ A split the node into a random
node A and a fixed node a:

A

· · ·

· · ·

⇒ A

a

Splitting: Schematic Illustrating the Splitting of Node A

The random half inherits all edges directed into A in G;

The fixed half inherits all edges directed out of A in G.
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Single World Intervention Template Construction (2)

(2) Relabel descendants of fixed nodes:

a ⇒
A

B C

D

FE

X

T

Y

Z

· · ·

· · ·

· · ·

· · ·

a

A(. . .)

B(a, . . .) C(a, . . .)

D(a, . . .)

F(a, . . .)E(a, . . .)

X(. . .)

T(. . .)

Y(. . .)

Z(. . .)

· · ·

· · ·

· · ·

· · ·
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Relating Observed and Potential Outcome Distributions

Original graph G : observed distribution P(V)
SWIG G(ã) : counterfactual distribution P(V(ã))

Note that under minimal labeling variables in V(ã) may be not labelled
with the full set ã.

Factorization of counterfactual variables: Distribution P(V(ã)) over
the variables in G(ã) factorizes with respect to the SWIG G(ã)
(ignoring fixed nodes):

Modularity: P(V(ã)) and P(V) are linked as follows:
The conditional density associated with Y(ã) in G(ã) is just the conditional
density associated with Y in G after substituting ãi for any Ai ∈ A that is
a parent of Y.

Consequence: if P(V) is observed then P(V(ã)) is identified.
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Applying d-separation to the graph G(a) (Part 1)
We extend the definition of d-connection to SWIGs as follows:

A red (fixed) node is always blocked if it occurs as a non-endpoint
on a path;

A path on which one endpoint is a red (fixed) node can d-connect
that node to a random node if it satisfies the usual conditions on
colliders and non-colliders;

In G(ã) if subsets B(ã) and C(ã) of random nodes are d-separated by
D(ã), then B(ã) and C(ã) are conditionally independent given D(ã) in the
associated distribution P(V(ã)).

B(ã) is d-separated from C(ã) given D(ã) in G(ã) (1)

⇒ B(ã) ⊥⊥ C(ã) | D(ã) [P(V(ã))].
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Labelling Schemes
Sometimes it is useful to use different labeling schemes:

A B CDAG

Uniform A(a,b) a B(a,b) b C(a,b)

Temporal A a B(a) b C(a,b)

Ancestral A a B(a) b C(b)

Uniform: no equalities between potential outcomes, also when considering several SWIGs

Temporal: time order; missing edges correspond to no direct effect at population level

Ancestral: time order; missing edges correspond to no direct effect at individual level
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SWIG Local Markov Property
Let

PA ≡ {p(V(a)) | a ∈ XA} , P
⊆
A ≡

⋃
D⊆A

PD (2)

Definition

A set of potential outcome distributions PA obeys the SWIG
ordered local Markov property for DAG G under ≺ if for all i ∈ V ,
a ∈ XA, and w ∈ Xpre≺(i),

p(Xi(a) | Xpre≺(i)(a)=w) (3)

is a function only of apaG(i)∩A and wpaG(i)\A.

Thus after intervening on A, the distn. of Xi(a) given its predecessors
depends solely on the values of interventions on targets in A that are
parents of i, and by any other (random) variables that are parents of i but
that are not intervened on (hence not in A)
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Consequences

Lemma

If P⊆A obeys distributional consistency and PA obeys the SWIG
ordered local Markov property for DAG G under ≺ then:

p(Xi(a) | Xpre(i)(a)) (4)

= p(Xi(apre(i)∩A) | Xpre(i)(apre(i)∩A)) (5)

= p(Xi(apa(i)∩A) | Xpre(i)(apa(i)∩A)) (6)

= p(Xi(apa(i)∩A) | Xpa(i)(apa(i)∩A)) (7)

= p(Xi(apa(i)∩A) | Xpa(i)\A(apa(i)∩A)). (8)
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Adjustment for Confounding
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Adjusting for confounding

X Y

L

X x̃ Y(x̃)

L

Here we can read directly from the template that

X ⊥⊥ Y(x̃) | L.

P[Y(x̃) = y] =
∑
l

P[Y(x̃) = y | L = l]P(L = l)

=
∑
l

P[Y(x̃) = y | L = l,X = x̃]P(L = l) indep

=
∑
l

P[Y = y | L = l,X = x̃]P(L = l) consistency
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More Examples (I)

X Y

L

H

(a-i)

X x Y(x)

L

H

(a-ii)

Here we can read directly from the template that

X ⊥⊥ Y(x) | L.
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More Examples (II)

X Y

L

H

(b-i)

X x Y(x)

L

H

(b-ii)

Here we can read directly from the template that

X ⊥⊥ Y(x) | L.
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Connection to Pearl’s do-calculus

Factorization and modularity are sufficient to imply all of the
identification results that hold in the do-calculus of Pearl (1995);
see also Spirtes et al. (1993):

P(Y = y | do(A = a)) is identified ⇔ P(Y(a) = y) is identified.
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Relating Counterfactuals and ‘do’ notation
Expressions in terms of ‘do’ can be expressed in terms of
counterfactuals:

P(Y(x) = y) ≡ P(Y = y | do(X = x))

Pearl’s ‘do’ notation is a special case of the g-notation introduced
in Robins(1986).
Counterfactual notation is more general than ‘do’ notation (but not
g-notation!).
Ex. Distribution of outcomes that would arise among those who
took treatment (X = 1) had counter-to-fact they not received
treatment:

P(Y(x = 0) = y | X = 1)

If treatment is randomized, so X ⊥⊥ Y(x = 0) then this equals
P(Y(x = 0) = y), but in an observational study these may be
different.
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Relating Counterfactuals and Structural Equations

Potential outcomes can be seen as a different notation for
Non-Parametric Structural Equation Models (NPSEMs).

In an NPSEM model associated with a graph each variable is given by an
equation expressing the variable as a function of its parents + error term

M YX

X = fX(εX)

M = fM(X, εM)

Y = fY(X,M, εY)
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Relating Counterfactuals and Structural Equations
In an NPSEM model associated with a graph each variable is given by an
equation expressing the variable as a function of its parents + error term

M YX

But it is clearer to express with potential outcomes

X = fX(εX) X = fX(εX)

M = fM(X, εM) ⇒ M(x) = fM(x, εM)

Y = fY(X,M, εY) Y(x,m) = fY(x,mεY)

observed variables are given by: M = M(X), Y = Y(X,M(X)).
Counterfactuals make clear equations represent invariant relationships:
intervening to set X and M to 0, the value for Y will be: fY(0, 0, εY).
(Alternative approach via crossing out equations, but this can be confusing since “Y” in the

new system is not “Y” in the old system.)
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Two important caveats:

NPSEMs typically assume all variables are seen as being
subject to well-defined interventions (not so with potential
outcomes)

Pearl’s approach to unifying graphs and counterfactuals
simply associates with a DAG the counterfactual model
corresponding to an NPSEMs with Independent Errors
(NPSEM-IEs) with DAGs.
Pearl: DAGs and Potential Outcomes are ‘equivalent theories’.

However, any counterfactual independences that can be read
from a SWIG will hold under the NPSEM-IE model.
(Though in general the NPSEM-IE will imply extra
independences.)
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Simplifying the do-Calculus
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Applying d-separation to the graph G(a) (Part 2)
(Malinsky, Shpitser, R, 2019; Robins 2018)

We extend the definition of d-connection to SWIGs as follows:

A red (fixed) node is always blocked if it occurs as a non-endpoint
on a path;

A path on which one endpoint is a red (fixed) node can d-connect
that node to a random node if it satisfies the usual conditions on
colliders and non-colliders;

In G(ã,d), if fixed node d is d-separated from B(ã,d) given C(ã, d) then

P(B(ã,d) | C(ã,d)) = P(B(ã,d ′) | C(ã, d ′)). (9)

In other words, the conditional distribution of B given C after intervening
on A and D does not depend on the value assigned to D.

Thomas Richardson Lecture 3: SWIGs Slide 30



Example of d-separation from fixed nodes

A B C G

⇒ A a B(a) C(a) G(a)

The fixed node a is d-separated from C(a) given B(a).
Consequently it follows that

P(C(ã) | B(ã)) = P(C(a∗) | B(a∗))

for any values ã, a∗. This may alternatively be derived:

P(C(ã) | B(ã)) =d,G(ã) P(C(ã) | B(ã),A = ã)

=c P(C | B,A = ã) =d,G P(C | B,A = a∗)

=c P(C(a∗) | B(a∗),A = a∗) =d,G(ã) P(C(a∗) | B(a∗))

via consistency and d-separation in G(ã) and G.
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do-calculus
Pearl (1995) formulated a set of rules that give graphical conditions
allowing three transformations:

1: Removing observations

p(y | z,w, do(x)) = p(y | w, do(x))

⇔ p(Y(x) | Z(x),W(x)) = p(Y(x) | W(x))

2: Interchanging observation and intervention

p(y | z,w, do(x)) = p(y | w, do(z), do(x))

⇔ p(Y(x) | Z(x),W(x)) = p(Y(x, z) | W(x, z))

3: Removing interventions:

p(y | w, do(z), do(x)) = p(y | w, do(x))

⇔ p(Y(x, z) | W(x, z)) = p(Y(x) | W(x))
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Do-calculus (details)

Pearl’s do-calculus as originally formulated:

1 : p(y | z,w, do(x)) = p(y | w, do(x))

if (Y ⊥⊥ Z | W,X)GX

2 : p(y | z,w, do(x)) = p(y | w, do(z), do(x))

if (Y ⊥⊥ Z | W,X)GX,Z

3 : p(y | w, do(z), do(x)) = p(y | w, do(x))

if (Y ⊥⊥ Z | W,X)G
X,Z(W)

where GX denotes the graph obtained from G by removing all
edges with arrowheads into X, GZ denotes the graph obtained
from G by removing all directed edges out of Z, and Z(W) is all
elements in Z that are not ancestors of W in GX.
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Potential Outcomes (PO) Calculus (Malinsky, Shpitser, R, 2019; Shpitser,

R, Robins, 2020)

Can use SWIGs to formulate (simpler, wlog) counterfactual
versions of Pearl’s rules.

1: If Y(x) is d-separated from Z(x) given W(x) in G(x) then

p(Y(x) | Z(x),W(x)) = p(Y(x) | W(x))

2: If Y(x, z) is d-separated from Z(x, z) given W(x, z) in G(x, z)
then

p(Y(x, z) | W(x, z)) = p(Y(x) | W(x),Z(x) = z)

3: If z has no directed path to Y(x, z) in G(x, z) then

p(Y(x, z)) = p(Y(x))

Note: here we use non-minimal labelings: e.g. Z(x,z) is the random node for Z in

G(x,z). (This is just to make explicit which node is in which graph.)
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Potential Outcomes Calculus: TL;DR versions
Suppressing the intervention on X to reduce clutter:

1: If Y is d-separated from Z given W in G then

p(Y | Z,W) = p(Y | W) (Markov property).

2: If Y(z) is d-separated from Z(z) given W(z) in G(z) then

p(Y(z) | W(z)) = p(Y | W,Z = z) (generalized ignorability).

3: If z has no directed path to Y(z) in G(z) then

p(Y(z)) = p(Y) (causal irrelevance).

po-calculus = d-separation + ignorability
+ interventions only affect causal descendants

(!)
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Example Derivation (Front-Door)

A M Y

UG

A a M(a) Y(a)

UG(a)

A a M(a) m Y(a,m)

UG(a,m)

A M m Y(m)

UG(m)

A
p(Y(a))

=p
∑
m

p(Y(a)|M(a) = m)p(M(a) = m)

=2,G(a)
∑
m

p(Y(a)|M(a) = m)p(M = m|A = a)

=2,G(a,m)
∑
m

p(Y(a,m))p(m|a)

=3,G(a,m)
∑
m

p(Y(m))p(m|a)

=p
∑
m

p(m|a)
∑
a′

p(Y(m)|a ′)p(a ′)

=2,G(m)
∑
m

p(m|a)
∑
a′

p(Y|m,a ′)p(a ′)
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Joint Independence

We saw earlier that the causal DAG X→ Y implied:

X ⊥⊥ Y(x0) and X ⊥⊥ Y(x1)

However, joint independence relations such as:

X ⊥⊥ {Y(x0), Y(x1)}

never follow from our SWIG transformation:
There is no way via node-splitting to construct a graph with both
Y(x0), and Y(x1).
This has important consequences for the identification of direct
effects.
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Inferential Problem Redux:

A Z

H B

Y
A

a
Z(a)

H

B(a)

b

Y(a,b)

Pearl (2009), Ex. 11.3.3, claims the causal DAG above does not imply:

Y(a,b) ⊥⊥ B | Z,A = a. (10)

The SWIG shows that (10) does hold; Pearl is incorrect.
Specifically, we see from the SWIG:

Y(a,b) ⊥⊥ B(a) | Z(a),A (11)

⇒ Y(a,b) ⊥⊥ B(a) | Z(a),A = a (12)

This last condition is then equivalent to (10) via consistency.
(Pearl infers a claim of Robins is false since if true then (10) would hold).
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Pearl’s twin network for the same problem

A

Z

H

B

Y

A

Z

H

B

Y

a

Z(a,b)

H(a,b)

b

Y(a,b)

UZ

UH

UY

The twin network fails to reveal that Y(a,b) ⊥⊥ B | Z,A = a.
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Pearl’s twin network for the same problem

A

Z

H

B

Y

A

Z

H

B

Y

a

Z(a,b)

H(a,b)

b

Y(a,b)

UZ

UH

UY

The twin network fails to reveal that Y(a,b) ⊥⊥ B | Z,A = a.
This ‘extra’ independence holds in spite of d-connection because (by
consistency) when A = a, then Z = Z(a) = Z(a,b).
Note that Y(a,b) 6⊥⊥ B | Z,A 6= a.

Shpitser & Pearl (2008) introduce a pre-processing step to address this.
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Multiple Treatments
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Sequentially randomized experiment (I)

A B C D

H

A and C are treatments;

H is unobserved;

B is a time varying confounder;

D is the final response;

Treatment C is assigned randomly conditional on the observed
history, A and B;

Want to know P(D(ã, c̃)).
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Sequentially randomized experiment (I)

A B C D

H

If the following holds:

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

General result of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).

Does it??
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Sequentially randomized experiment (II)

A ã B(ã) C(ã) c̃ D(ã, c̃)

H

d-separation:

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

g-formula of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).
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Another example

A B C D

H2H1

A ã B(ã) C(ã) c̃ D(ã, c̃)

H1 H2

A ⊥⊥ D(ã, c̃)

C(ã) ⊥⊥ D(ã, c̃) | B(ã),A

g-formula of Robins (1986) then implies:

P(D(ã, c̃)=d) =
∑
b

P(B=b | A= ã)P(D=d | A= ã,B=b,C= c̃).

Can also see that this identification fails if there is a B→ D edge.
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Model dimensions
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How many counterfactual independences? (I)

Z M Y

There are 7 counterfactual random variables:

Z, M(z0),M(z1), Y(m0, z0), Y(m0, z1), Y(m1, z0), Y(m1, z1)

Dimension of models:

No assumptions (allowing confounding): 127 = 27 − 1;

SWIG (no confounding): 113

Pearl’s NPSEM with indep. errors (no confounding), aka SCM:
19

Number of extra counterfactual independence assumptions: 94
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How many counterfactual independences? (II)

No. Actual Vars. 2 3 4 K

Dim. P(V) 3 7 15 2K − 1
No. Counterfactual Vars. 3 7 15 2K − 1

Dim. Counterfactual Dist. 7 127 32767 2(2K−1) − 1

Dim. FFRCISTG 5 113 32697 (2(2K−1) − 1) −
∑K−1

j=1 (4j − 2j)

Dim. NPSEM-IE / SCM 4 19 274
∑K−1

j=0 (22j

− 1)

Difference 1 94 32423 O(22K−2)

Table: Dimensions of counterfactual models associated with complete
graphs with binary variables.
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Summary so Far
SWIGs provide a simple way to unify graphs and counterfactuals via
node-splitting

The approach works via linking the factorizations associated with
the two graphs.

The new graph represents a counterfactual distribution that is
identified from the distribution in the original DAG.

This provides a language that allows counterfactual and graphical
people to communicate.

(Not covered) Leads to a complete identification algorithm
(Extended ID)

I “Fixing” operation⇒ Splitting + Marginalization

(Not covered) Can combine information on the absence of individual
and population level direct effects.

(Not covered) Permits formulation of models where interventions on
only some variables are well-defined.
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Distributional Consistency

Definition

The set of distributions P
⊆
A will be said to obey distributional

consistency if, given Bi ∈ A and C ⊆ A \ {Bi}, where C may be
empty, for all y, b, c:

p(Y(b, c)=y,Bi(b, c)=b) = p(Y(c)=y,Bi(c)=b), (13)

where Y = V \ {Bi}. As a special case, if C is empty then for all y,
b:

p(Y(b)=y,Bi(b)=b) = p(Y=y,Bi=b). (14)
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