
Non-Compliance & Instrumental Variables

Thomas Richardson

TUM Short Course Lecture II



Collaborators

Robin Evans
Oxford

F. Richard Guo
Berkeley

Cambridge
James M. Robins

Harvard

Thomas Richardson Lecture 2: Instrumental Variables Slide 2



Outline

Review:
I Randomized experiments
I Observational studies

Instrumental variable model
I Non-compliance
I Combining observational studies
I Bounds on the ACE; Testing the IV model

Approaches to Statistical Inference
I Bayesian: Naive vs. ‘Transparent’
I Frequentist approaches
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Features and Caveats

Strengths:

The approach will make minimal assumptions;

Will be valid even if the instrument is ‘weak’.

Weaknesses:

Only consider binary treatment and outcome;

Will obtain bounds, not point identification.

Disclaimer: There is a huge literature on Instrumental Variables,
here we focus on categorical treatment and outcome
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Summary so far . . .

X

Randomized study

Y

X⊥⊥ Y(x0) & X⊥⊥ Y(x1)

P(Y(x0)) and P(Y(x1)) identified

P(Y(x0), Y(x1)) is a 1-d set

ACE identified

X

Observational study
with confounding

H

Y

X 6⊥⊥ Y(x0) or X 6⊥⊥ Y(x1)

P(Y(x0)), P(Y(x1)) not identified

P(Y(x0), Y(x1)) is a 3-d set

ACE bounds of length 1

Unobserved
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Instrumental Variable Models
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Motivation: Non-Compliance
Oral ganciclovir fails to prevent CMV in HIV trial, The Lancet, (News
Section), September 30, 1995

Oral ganciclovir has failed to prevent symptomatic cytomegalovirus (CMV) infections in a
double-blind, placebo-controlled trial involving 994 patients with advanced HIV infection.
The results of this US National Institute of Allergy and Infectious Diseases’ Community
Programs for Clinical Research on AIDS (CPCRA) study seems to contradict those of a
similar trial indicating that oral ganciclovir significantly reduces CMV disease in HIV-infected
patients. That study, conducted by the drug’s manufacturer Syntex Research (now Roche
Bioscience), was halted in 1994, after an interim analysis found that only 16 percent had
developed CMV disease, compared with 30 percent in the placebo group.

In the CPCRA (protocol 023) study 662 volunteers were assigned to a treatment group and
332 to a placebo. Participants had to have CD4 cell counts of 100 or fewer per microliter of
blood, evidence of CMV infection (by serology or culture) but no CMV disease. Patients in
the treatment group took 3g ganciclovir daily. The primary endpoint of the trial was
symptomatic CMV disease, defined as CMV retinal disease, diagnosed by ophthalmological
examination, or CMV gastrointestinal mucosal disease, diagnosed on biopsy or on
necropsy. Average follow-up was 15 months.

“Oral ganciclovir did not prevent symptomatic CMV disease to a clinically or statistically
significant degree”, the NIAID concluded in its Sept 18 announcement. Also, oral
ganciclovir caused significantly more adverse effects than did placebo.
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What the Lancet Didn’t Say (I)

The CPCRA data analysis used an “intention to treat” method

Examines the differences between those asked to take
Treatment vs. those asked to take Placebo;
(Regardless of what they actually took.)
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What the Lancet Didn’t Say (II)

“After the CPCRA study began, the results of a different study involving
725 subjects became available which showed a 49% decrease in the
number of clinical CMV infections in the group receiving prophylactic oral
ganciclovir”

”Consequently, for ethical reasons the CPCRA allowed the subjects in its
placebo arm to take oral ganciclovir. The intention-to-treat analysis
ignored this fact. The Lancet did not mention this problem”

Hence the study compares the effect of asking people to take drug vs.
placebo, but then giving everyone the drug anyway!

(In fact, the extent of bias is unclear since those in the control arm
averaged 2.1 months of ganciclovir vs. 9.3 months in the treatment arm.)
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Non-compliance: Cholestyramine trial

Z: assignment to treatment or control arm (randomized);
X: whether patient takes (more than certain amount of) drug;
Y: patient’s health outcome.

Z X Y count
0 0 0 158
0 0 1 14
0 1 0 0
0 1 1 0

1 0 0 52
1 0 1 12
1 1 0 23
1 1 1 78

(Data originally considered by Efron and Feldman (1991); dichotomized by Pearl.)

We wish to find ACE(X→ Y). Note Z = 0 ⇒ X = 0
Idea: Analyze each Z arm as an observational study.
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Each Z Arm

%H
E

%HU

%
A
R

Lipid Data, Z=0 Arm

%H
E

%HU

%
A
R

Lipid Data, Z=1 Arm

Z=0 Arm Z=1 Arm

Z = 0 arm polytope is 2-d since Z = 0 ⇒ X = 0
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Combining the Arms
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Lipid Data, Both Arms
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Lipid Data, Intersection

Both Z Arms Intersection
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Obtaining ACE bounds

%
H
E

%HU
%A
R

Lipid Data, Both Arms

%
H
E

%HU
%A
R

Lipid Data, Intersection

0.78

0.39

Upper bound is: 0.78; lower bound is 0.39
Note: ACE bounds for each arm contain 0, but not when combined. Why?

These are the Balke and Pearl (1993) bounds, obtained via prinicipal strata and

computational algebra;
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Binary Instrumental Variable Model

Z X Y

H

Z is said to be an ‘instrument’ for the effect of treatment X on outcome Y.

Potential outcomes: X(z0),X(z1), Y(x0), Y(x1)
here using xi and zi as shorthand for x = i and z = i.

Randomization Assumption: for all x, z, Z ⊥⊥ {X(z), Y(x)};

Exclusion Assumption: No direct effect of Z on Y, so
Y(x, z = 0) = Y(x, z = 1) ≡ Y(x);
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Outcome Response Types

As before, in their response to the treatment, subjects belong to
one of 4 response ‘types’:

Y(x0) Y(x1) Name
0 0 Never Recover (NR)
0 1 Helped (HE)
1 0 Hurt (HU)
1 1 Always Recover (AR)
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Compliance Types

In their response to the instrument (“assigned treatment”) patients
are also of 4 types:

X(z0) X(z1) Name
1 1 Always Taker (AT)
0 0 Never Taker (NT)
0 1 Complier (CO)
1 0 Defier (DE)
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Two-way table for binary IV model (Z binary)

p(x0,y0 |z0) p(x0,y1 |z0) p(x1,y0 |z0) p(x1,y1 |z0)

p(x0,y0 |z1) p(NT,NR) p(DE,NR) p(DE,HE)
+p(NT,HE)

p(x0,y1 |z1) p(NT,AR) p(DE,HU) p(DE,AR)
+p(NT,HU)

p(x1,y0 |z1) p(CO,NR) p(CO,HU) p(AT,NR)
+p(AT,HU)

p(x1,y1 |z1) p(CO,HE) p(CO,AR) p(AT,AR)
+p(AT,HE)
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Bounds on ACE: Previous results
Robins (1989) and Manski (1990) derived the ‘natural’ bounds:

p(y1 | z1) − p(y1 | z0) − p(y1, x0 | z1) − p(y0, x1 | z0)

6 ACE(X→ Y) 6

p(y1 | z1) − p(y1 | z0) + p(y0, x0 | z1) + p(y1, x1 | z0)

These are not sharp if there are Defiers;

they follow from (and are sharp) under Z⊥⊥Y(x0), Z⊥⊥Y(x1).

Balke and Pearl (1993) derived closed form expression for ACE
bounds via computational algebra;

Resulting expressions are maxima and minima over 8 different
expressions.

Dawid (2002) re-derived these bounds without (explicitly!) using
potential outcomes, again using computational algebra.

An advantage of the approach taken here is that it extends to Z with
finitely many levels.
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Extending to p levels of Z: Identification
Solving the identification problem requires no further work:
Intersect p polytopes.

The set of distributions P(Y(x0), Y(x1)) that are compatible with
P(X, Y|Z) is still given by the following six pairs of parallel planes:

0 6 %NR 6 min
i
p(y0 | zi)

0 6 %AR 6 min
i
p(y1 | zi)

0 6 %HE 6 min
i
{p(x1,y1 | zi) + p(x0,y0 | zi)}

0 6 %HU 6 min
i
{p(x0,y1 | zi) + p(x1,y0 | zi)}

max
i
p(x0,y1 | zi) 6 P(Y(x0)=1) 6 min

i
{1 − p(x0,y0 | zi)}

max
i
p(x1,y1 | zi) 6 P(Y(x1)=1) 6 min

i
{1 − p(x1,y0 | zi)}
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Generalizing to more levels of Z

Theorem (R+Robins 2014)
If X, Y binary and Z with p levels then under the IV model:

1 − g(1, 0) − g(0, 1) 6 ACE(X→Y) 6 g(0, 0) + g(1, 1) − 1,

where

g(i, j) ≡ min
{

min
z

[
P(X= i, Y= j |Z=z) + P(X=1 − i |Z=z)

]
,

min
z,z̃:z 6=z̃

[
P(X= i, Y= j |Z=z) + P(X=1 − i, Y=0 |Z=z)

+ P(X= i, Y= j |Z= z̃) + P(X=1 − i, Y=1 |Z= z̃)
]}

.

This exploits the fact that P(Y(x0) = 1) and P(Y(x1) = 1) are variation
independent.
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Polytopes may not intersect

%H
E

%HU

%
A
R

Both Arms

⇒ Model places testable constraints on P(X, Y | Z).
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Model for observables

For Z binary requiring that the polytopes intersect leads to the following:
If p(X, Y | Z) is compatible with the binary IV model iff

p(Y=0,X=0 | Z=0) + p(Y=1,X=0 | Z=1) 6 1,

p(Y=0,X=0 | Z=1) + p(Y=1,X=0 | Z=0) 6 1,

p(Y=0,X=1 | Z=0) + p(Y=1,X=1 | Z=1) 6 1,

p(Y=0,X=1 | Z=1) + p(Y=1,X=1 | Z=0) 6 1,

This describes a subset of ∆3 × ∆3.

These are the IV inequalities of Pearl (1995) and Bonet (2001);
they provide a falsification test of the binary IV model.

Can be interpreted as bounding away from zero E[Y(z1, x) − Y(z0, x)],
the average direct effect of Z on Y, holding X fixed at x.
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Visualizing the restrictions
Define the following variables:

u00 ≡ p(Y=0,X=0 | Z=0) + p(Y=1,X=0 | Z=1) 6 1,

u01 ≡ p(Y=0,X=0 | Z=1) + p(Y=1,X=0 | Z=0) 6 1,

u10 ≡ p(Y=0,X=1 | Z=0) + p(Y=1,X=1 | Z=1) 6 1,

u11 ≡ p(Y=0,X=1 | Z=1) + p(Y=1,X=1 | Z=0) 6 1,

Since u00 + u01 + u10 + u11 = 2 these variables
live in a 3-d simplex of R4

>0 consisting of points with sum = 2.

u01

0

1

2

u00

0

1

2
u10

0

1

2 ●

●

●

●

●

●

It follows that at most one inequality can be violated (see also Cai, Kuroki, Pearl, Tian, 2008).
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Extensions and related work

Lauritzen & Ramsahai (2011) provide an approach for testing these
restrictions via a likelihood procedure combined with a bootstrap due to
Andrews 2000.

Wang, Robins, R (2016) describe a procedure that allows to test the
restriction of the binary model in the presence of baseline covariates
based on the Gail-Simon test.

With more levels of Z there are additional constraints that involve
probabilities from up to 4 arms; see Bonet (2001); Kédagni, Mourifié
(2019).

Kédagni and Mourifié also provide a testing procedure allowing for
continuous Z using the Sample Splitting Procedure of Chernozhukov et
al. (2015).
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Bayesian Inference
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Bayesian Inference (naive approach)

What about sampling variability?

Bounds were obtained by just plugging in the empirical
p̂(x,y | z) as if it were the truth.

⇒ Simple Bayesian approach (Pearl, 2000, Ch.8):
put a (Dirichlet) prior on the set of distributions:

{P(X(z0),X(z1), Y(x0), Y(x1))}.

⇒ Use MCMC to sample from posterior distribution.
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Marginal Posterior distributions from Lipid Data; Prior Dir(1,...,1)
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ACE(X A Y)

Prior and posterior on ACE(X A Y) for Lipid data

−1.0 −0.5 0.0 0.5 1.0

0
1
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4
5

Uniform & perturbed uniform priors on potential outcomes

Posteriors on ACE(X A Y)
Dir(1,...,1)
Dir(1,...,1,1.2,1,0.8)

Priors on ACE(X A Y)
Dir(1,...,1)
Dir(1,...,1,1.2,1,0.8)

Bounds on ACE(X A Y)
from empirical distribution
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Is the problem caused by the priors not being diffuse
enough?

Try a ‘unit’ information prior:

p({X(z), Y(x)}) ∼ Dir(1/8, . . . , 1/8)

vs.
p({X(z), Y(x)}) ∼ Dir(1/8, . . . , 1/8, 3/16, 1/8, 1/16)

(?Though ‘unit’ of whose information?)
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ACE(X A Y)

Prior and posterior on ACE(X A Y) for Lipid data

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

Unit & perturbed unit priors on potential outcomes

Posteriors on ACE(X A Y)
Dir(1/8,...,1/8)
Dir(1/8,...,1/8,3/16,1/8,1/16)

Priors on ACE(X A Y)
Dir(1/8,...,1/8)
Dir(1/8,...,1/8,3/16,1/8,1/16)

Bounds on ACE(X A Y)
from empirical distribution

Basic problem: 16 types (= 15 params) but data is only 6 dimensional.
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Two-way table for binary IV model (Z binary)

p(x0,y0 |z0) p(x0,y1 |z0) p(x1,y0 |z0) p(x1,y1 |z0)

p(x0,y0 |z1) p(NT,NR) p(DE,NR) p(DE,HE)
+p(NT,HE)

p(x0,y1 |z1) p(NT,AR) p(DE,HU) p(DE,AR)
+p(NT,HU)

p(x1,y0 |z1) p(CO,NR) p(CO,HU) p(AT,NR)
+p(AT,HU)

p(x1,y1 |z1) p(CO,HE) p(CO,AR) p(AT,AR)
+p(AT,HE)
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Better Bayesian approach: transparent re-parametrization

Z X Y

ACE(X→ Y)

θ ℵ

We will re-parameterize:

{P(X(z0),X(z1), Y(x0), Y(x1))} ↔ (θ,ℵ)

θ is a 6 dim. parameter, (completely!) identifiable from P(X, Y |Z).
ℵ is a 9 dim. parameter, (completely!) non-identifiable.

P(θ,ℵ) = P(θ)P(ℵ)
P(θ,ℵ | Z,X, Y) = P(θ|Z,X, Y)p(ℵ)

Note that ℵ⊥⊥Z,X, Y
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Simple implementation

Recall that the binary IV model is defined by the inequalities:

P(Y=0,X=0 | Z=0) + P(Y=1,X=0 | Z=1) 6 1,

P(Y=0,X=0 | Z=1) + P(Y=1,X=0 | Z=0) 6 1,
(1)

P(Y=0,X=1 | Z=0) + P(Y=1,X=1 | Z=1) 6 1,

P(Y=0,X=1 | Z=1) + P(Y=1,X=1 | Z=0) 6 1.

Prior: Dirichlet on P(X, Y |Z) restricted (and re-normalized) to those
distributions obeying (1).

Posterior: The usual Dirichlet posterior, again restricted to those
distributions obeying (1).

Inference may be performed by ‘straight’ Monte-Carlo.
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Bayesian Monte Carlo Algorithm in Detail

To obtain the posterior distribution on the ACE bounds, perform the
following steps:

1 Specify Dirichlet (α00z,α01z,α10z,α11z) priors on p(x,y|z) for
z = 0, 1.

2 Compute the posteriors in the usual way:
Dirichlet (α00z + n00z,α01z + n01z,α10z + n10z,α11z + n11z)
where nijz is the number of observations with X = i, Y = j, Z = z.

3 Simulate p(1)(x,y|z), . . . ,p(N)(x,y|z) from this posterior.

4 Throw out any p(i)(x,y|z) violating the inequalities (1).

5 Compute upper and lower bounds on the ACE from each
distribution p(i)(x,y|z) remaining after step 4.
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Back to Lipid Data. . .

Parametrize IV model as:

p(X, Y | Z) obeying IV inequalities

Priors:
Dir(1, 1) for p(x = 0,y | z = 0), since p(x=1,y |z=0) = 0, (no AT or DE)

Dir(1, 1, 1, 1) for p(x,y | z = 1).

We then truncate and renormalize using the IV inequalities (1).

Model test:

Given uniform prior on the whole simplex, prior probability was 0.5;
Posterior probability that IV model holds: 0.632.
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Bayesian analysis on Bounds

−1.0 −0.5 0.0 0.5 1.0

0
2

4
6

8
10

12
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Perturbing the prior on the observables has very little effect.
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Sensitivity Analysis

12 T. S. Richardson, R. J. Evans & J. M. Robins
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Figure 5: The posterior for the ACE(X → Y ) for the Lipid data displayed as

a function of the (completely) unidentified parameter γ1·
NT: (blue) posterior

median; (red) 2.5% and 97.5% quantiles; (green) simultaneous 95% posterior

region obtained from a 95% HPD region for p(y, x|z); horizontal lines are

bounds on the ACE evaluated at the empirical distribution. A uniform prior

was used on distributions p(y, x | z) that satisfy the inequalities (3).

Here γ1.
NT ≡ P(Y(x1) = 1 |NT), the probability of a good outcome for Never Takers, if

they were to get the drug; this is completely unidentified.
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Frequentist Inference for ACE after testing the IV model

P(Y=0,X=0 | Z=0) + P(Y=1,X=0 | Z=1) 6 1,

P(Y=0,X=0 | Z=1) + P(Y=1,X=0 | Z=0) 6 1,
(1)

P(Y=0,X=1 | Z=0) + P(Y=1,X=1 | Z=1) 6 1,

P(Y=0,X=1 | Z=1) + P(Y=1,X=1 | Z=0) 6 1.

Inference via asymptotic distribution of likelihood ratio test?
(Lauritzen & Ramsahai, 2011)

I But asymptotic distribution is not invariant due to boundaries in
the model...

I “npi > 5” ?

Bootstrap?

I Also fails on the boundary (Andrews 2000)

Sample splitting?

I Separate subsample for each inequality tested.
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Alternative Simple Approach

1. Construct a joint confidence region for the distributions
{p(X, Y | z) for each arm z};

2. Intersect this joint region with the model defining inequalities;

3. Compute bounds on the ACE over the region found in 2.

Subproblem:
Desired Properties for Confidence Region for Multinomial:

Non-asymptotic;

Convex;

“Small”⇒ Approaching the asymptotic region in large
samples;

Easily Computable.
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Confidence Region from Tail-Bound on KL-divergence

Data:
(X1, . . . ,Xk) ∼ Mult(n; (p1, . . . ,pk)), (2)

Find a critical value tα such that for all p ∈ ∆k−1:

P (nD(p̂‖p) > tα) 6 α. (3)

where (p̂1, . . . , p̂k) ≡ (X1/n, . . . ,Xk/n).

(1 − α)% Confidence Region: R ≡ {p : nD(p̂‖p) 6 tα}.
The resulting region is convex.
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Chernoff’s method

Bound the MGF of nD(p̂‖p)):

ϕk,n(λ,p) ≡ Ep exp (λnD(p̂‖p)) , (4)

Now:

ϕk,n(λ,p) =
∑

X1,...,Xk

(
n

X1, . . . ,Xk

) k∏
i=1

pXii

{(
n

X1,...,Xk

)∏k
i=1 p̂

Xi
i(

n
X1,...,Xk

)∏k
i=1 p

Xi
i

}λ

=
∑

X1,...,Xk

(
n

X1, . . . ,Xk

){ k∏
i=1

p̂Xii

}λ{ k∏
i=1

pXii

}1−λ

,

(5)
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Chernoff’s method
Bound the MGF of nD(p̂‖p)):

ϕk,n(λ,p) ≡ Ep exp (λnD(p̂‖p)) , (6)

Now:

ϕk,n(λ,p) =
∑

X1,...,Xk

(
n

X1, . . . ,Xk

) k∏
i=1

pXii

{(
n

X1,...,Xk

)∏k
i=1 p̂

Xi
i(

n
X1,...,Xk

)∏k
i=1 p

Xi
i

}λ

=
∑

X1,...,Xk

(
n

X1, . . . ,Xk

){ k∏
i=1

p̂Xii

}λ{ k∏
i=1

pXii

}1−λ

,

6
∑

X1,...,Xk

(
n

X1, . . . ,Xk

) k∏
i=1

[λp̂i + (1 − λ)pi]
Xi

(7)

This is an upper bound, but it appears to depend on the (unknown) p.
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Happy Fact!

The dependence is illusory:

Gk,n(λ,p) ≡
∑

X1,...,Xk

(
n

X1, . . . ,Xk

) k∏
i=1

[λXi/n+ (1 − λ)pi]
Xi ,

(8)
does not depend on p (!)

First noted in the case k = 2 by Rohit Agrawal (2019); General case: Guo & R (2020).
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General Expression

Theorem (Guo & R 2020)

For k > 2, n > 0 and 0 6 λ 6 1, it holds that

Gk,n(λ) =

n∑
m=0

n!
nm(n−m)!

(
m+ k− 2
k− 2

)
λm. (9)

These are related to Charlier and Laguerre polynomials.

This bound on the MGF ϕk,n(λ,p) is asymptotically tight in the
large deviation sense.
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Optimizing over λ

For any λ ∈ [0, 1], we have

P (nD(p̂k,n‖p) > t) 6 exp(−λt)Gk,n(λ). (10)

Can obtain the tightest bound by minimizing over λ ∈ [0, 1].
⇒ In general a 1-dimensional optimization (albeit non-convex).

Thomas Richardson Lecture 2: Instrumental Variables Slide 47



Other choices for λ

(First idea) Use the value of λ that is optimal for n→∞:

P (nD(p̂k,n‖p) > t) 6 e−tek−1Gk,n

(
1 −

k− 1
t

)
. (11)

(Better idea) One step Newton iteration:
For n > 1, k > 2 and t > k− 1,

P (nD(p̂k,n‖p) > t) 6 exp(−λ̂k,nt)Gk,n(λ̂k,n). (12)

where λ̂k,n := min
{

1 − k−1
t + k

k−1
t−k+1
n , 1

}
.
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New bounds are competitive with the state-of-the art
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Bounds on P(nD(p̂k,n‖p) > t) for k = 6 and t > min(logGk,n(1),k− 1). The y-axis is in logarithmic scale.

The methods compared include: “exact” (from numerical minimization), “correction”, “w/o correction”, Agrawal (2020),

Mardia et al. (2019), and the asymptotic bound that is the exact probability when n→∞; the latter will not be a valid

bound in general and is for reference only.
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Back to the Lipid Data . . .

For the lipid data this allows us to obtain a 95% interval for the
ignorance region: [0.151, 0.907]
In other words, with coverage probability 95% it will contain the interval
[L,U], where L (U) is the lower (upper) bound on the ACE compatible
with the population distribution of the observables.

In constructing this interval we have also directly tested the IV
restrictions in the following sense:
Under the IV model,

P( model not rejected, and interval contains the ACE) > 95%

Falsification test is built in: If the interval is empty then the IV
model is rejected!
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Summary

Instrumental Variable (IV) Models represent an approach to
causal analysis of imperfect experiments

Derived bounds for the IV model by viewing the model as two
observational studies to which participants are randomly
assigned;

Presented a Bayesian approach via a transparent
parametrization that separates identified and non-identified
parameters.
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