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Causation

Democritus (460-390 BC)
(aka the laughing philosopher because he emphasized the value of
cheerfulness)

“I would rather discover a single causal relationship than be king of
Persia”
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The potential outcomes framework: philosophy

Hume (1748) An Enquiry Concerning Human Understanding:

We may define a cause to be an object followed by another, and
where all the objects, similar to the first, are followed by objects
similar to the second, . . .

. . . where, if the first object had not been the second never had
existed.

Note: this is not one of the 3(!) causal theories Hume is famous for.
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Causation

Agricultural field trials: wish to know which seed varieties produce
(cause) the greatest yield... but different plots (of land) have
different fertility, drainage etc.,
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The potential outcomes framework: crop trials

Jerzy Neyman (1923):

To compare v varieties [on m plots] we will consider numbers:

plots︷ ︸︸ ︷
U11 . . . U1m

...
...

Uv1 . . . Uvm

 varieties

Uij is crop yield that would be observed if variety i were planted in plot j.

Physical constraints only allow one variety to be planted in a given plot in
any given growing season⇒ Observe only one number per col.
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Application to clinical trials

Each patient in study is assigned to either:
I Treatment (aka Drug) (X = 1)
I Control (aka Placebo) (X = 0)

For each patient we observe one outcome (Y), either:
I Good e.g. Recover (Y = 1)
I Bad e.g. Die (Y = 0)

Plots in a field⇒ Patients; Kg of wheat⇒ Live or Die
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Potential outcomes with binary treatment and outcome

For binary treatment X, we define two potential outcome variables:

Y(x = 0): the value of Y that would be observed for a given
unit if assigned X = 0;

Y(x = 1): the value of Y that would be observed for a given
unit if assigned X = 1;

Y(x = 0) and Y(x = 1) are two different random variables
(not different realizations of the same variable).

Notation: We will use Y(xi) as an abbreviation for Y(x = i)

Popularized by Rubin (1974); sometimes called the
‘Neyman-Rubin causal model’.
Alternative notations for Y(x = i) used by other authors: Yx=i or Yx=i.
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Potential Outcomes

Unit Potential Outcomes
Y(x = 0) Y(x = 1)

1 0 1
2 0 1
3 0 0
4 1 1
5 1 0
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Potential Outcomes

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 0 1 1
2 0 1 0
3 0 0 1
4 1 1 1
5 1 0 0
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Potential Outcomes

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 0 1 1 1
2 0 1 0 0
3 0 0 1 0
4 1 1 1 1
5 1 0 0 1
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Consistency Axiom

Y = (1 − X) · Y(x = 0) + X · Y(x = 1)

equivalently:
X = x ⇒ Y = Y(x).

In words, we have the following tautology:

For an individual who has X = x, their observed response Y is
equal to the response Y(x) that would be observed had X been x.

Thomas Richardson Lecture 1: Intro to Potential Outcomes Slide 12



Drug Response Types:

In the simplest case where Y is a binary outcome we can think of
patients as belonging to one of 4 ‘types’:

Y(x0) Y(x1) Name
0 0 Never Recover
0 1 Helped
1 0 Hurt
1 1 Always Recover
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Actual vs. Potential outcomes

Key Distinction
X is the treatment that a given patient gets;
thus far, this need not be randomly assigned, and could result
from doctor and patient choices;

Y is the observed response for a given patient;

Y(x) is the response that would be observed for a given
paitent if (possibly counter to fact) they received X = x.

Thomas Richardson Lecture 1: Intro to Potential Outcomes Slide 14



Potential Outcomes and Missing Data

Fundamental Problem of Causal Inference:
We never observe both Y(x=0) and Y(x=1).

Unit Potential Outcomes Observed
Y(x = 0) Y(x = 1) X Y

1 ? 1 1 1
2 0 ? 0 0
3 ? 0 1 0
4 ? 1 1 1
5 1 ? 0 1
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Stable Unit Treatment Value Assumption (SUTVA)

Y(x = 0): the value of Y that would be observed for a given
unit if assigned X = 0;

Y(x = 1): the value of Y that would be observed for a given
unit if assigned X = 1;

Implicit Assumption: these outcomes, Y(x = 0), Y(x = 1) are
‘well-defined’. Specifically:

Only one version of X = 1 and X = 0;
(only one version of ‘drug’ and ‘placebo’)

Subject’s outcome only depends on what they receive:
no ‘interference’ between units (SUTVA).
(Might not hold in a vaccine trial for an infectious disease if
subjects are in contact.)
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Average Causal Effect (ACE) of X on Y

ACE(X→ Y) ≡ E[Y(x1) − Y(x0)]

= p(Helped) − p(Hurt) ∈ [−1, 1]

Thus ACE(X→ Y) is the difference in % recovering if
everybody treated (X = 1) vs. if nobody treated (X = 0).
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Identification of the ACE under randomization

If X is assigned randomly then

X ⊥⊥ Y(x0) and X ⊥⊥ Y(x1) (1)

P(Y(xi) = 1) = P(Y(xi) = 1 | X = i) (Why?)

= P(Y = 1 | X = i) (Why?)

Thus:

ACE(X→ Y) = E[Y(x1) − Y(x0)]

= E[Y(x1)] − E[Y(x0)]

= E[Y(x1) | X = 1] − E[Y(x0) | X = 0]

= E[Y | X = 1] − E[Y | X = 0].

Thus if (1) holds then ACE(X→ Y) is identified from P(Y | X).
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Two-way Table

Under randomization, the relationship between the counterfactual
distribution P(Y(x0), Y(x1)) and the observed distributions
{P(Y | x0),P(Y | x1)} is:

col sums
P(Y=0 | X=0) P(Y=1 | X=0)

P(Y=0 | X=1) P(Y(x0)=0, Y(x1)=0) P(Y(x0)=1, Y(x1)=0)row
sums P(Y=1 | X=1) P(Y(x0)=0, Y(x1)=1) P(Y(x0)=1, Y(x1)=1)

Here P(Y= i | X= j) = P(Y(xj)= i) due to randomization.

Equivalently we may write this in terms of types

P(Y=0 | X=0) P(Y=1 | X=0)

P(Y=0 | X=1) P(NR) P(HU)

P(Y=1 | X=1) P(HE) P(AR)
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Identification Problem

Want: P(Y(x0), Y(x1)); Given: P(Y | X=0),P(Y | X=1)

Under randomization, as before: X ⊥⊥ Y(xi) implies:

P(Y(xi) = 1) = P(Y(xi) = 1 | X = i) = P(Y = 1 | X = i).

Thus the observed joint P(Y|X) puts two restrictions on
P(Y(x0), Y(x1)):

P(Y=1 | X=0) = P(Y(x0)=1, Y(x1)=0) + P(Y(x0)=1, Y(x1)=1)

P(Y=1 | X=1) = P(Y(x0)=0, Y(x1)=1) + P(Y(x0)=1, Y(x1)=1).

Each restriction implies a 2-d subset in ∆3.
Intersection forms a 1-d subset on which ACE is constant.
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Graphing Calculator Plot

In this plot:
P(Y=1 | X=0) = P(Y(x0) = 1) = %HU+ %AR = 0.3, (yellow)
P(Y=1 | X=1) = P(Y(x1) = 1) = %HE+ %AR = 0.6, (blue)
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Fréchet inequalities

Equation for line segment in simplex:
P(1, 1) = t

P(1, 0) = c0 − t
P(0, 1) = c1 − t
P(0, 0) = 1 − c0 − c1 + t

t ∈
[
max {0, (c0 + c1) − 1} , min {c0, c1}

]
c0≡P(Y=1 | X=0)
c1≡P(Y=1 | X=1)

 .

Extreme points are given by ‘Fréchet inequalities’.
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Example of Fréchet inequalities
P(1, 1) = t

P(1, 0) = c0 − t
P(0, 1) = c1 − t
P(0, 0) = 1 − c0 − c1 + t

t ∈
[
max {0, (c0 + c1) − 1} , min {c0, c1}

]
c0≡P(Y=1 | X=0)
c1≡P(Y=1 | X=1)

 .

Q: Suppose in a large RCT, 30% survive with Placebo, and 60%
survive with Treatment, find bounds on the % Helped and Hurt
A: c0=0.3, c1=0.6
⇒ t ∈

[
max {0, 0.3 + 0.6 − 1} , min {0.3, 0.6}

]
= [0, 0.3].

%HE = P(Y(x0)=0, Y(x1)=1) ∈ [c1 − 0.3, c1 − 0] = [0.3, 0.6],
so 0.3 6 %HE 6 0.6.

%HU = P(Y(x0)=1, Y(x1)=0) ∈ [c0 − 0.3, c0 − 0] = [0, 0.3]

Q: Explain why %HE and %HU are not identified but
ACE = %HE− %HU is identified.
Hint: ACE = (%HE+ %AR) − (%HU+ %AR)
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Big Picture: Connecting Distributions in Experiment

P(Y(x0), Y(x1))

∆3

Counterfactual

{P(Y | x0),P(Y | x1)}

= {P(Y(x0)),P(Y(x1))}
(by Randomization)

∆1 × ∆1

Observed

7→

→

7→{%HE, %HU, %NR, %AR} {%HU+ %AR, %HE+ %AR}
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Identification Problem under Experiment

P(Y(x0), Y(x1))

∆3

Counterfactual

{P(Y | x0),P(Y | x1)}

= {P(Y(x0)),P(Y(x1))}
(by Randomization)

∆1 × ∆1

Observed

•

7→

→

7→{%HE, %HU, %NR, %AR} {%HU+ %AR, %HE+ %AR}
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Observational study; no randomization

Suppose that we do not know that X⊥⊥ Y(x0) and X⊥⊥ Y(x1).
What can be inferred about the ACE?

P(X,Y) Placebo Drug
X = 0 X = 1

Die: Y = 0 7/20 4/20
Live: Y = 1 3/20 6/20

What is:

The largest proportion of people of type Helped,
P(Y(x0)=0, Y(x1)=1) ? (6 + 7)/20 = 0.65

The smallest proportion of people of type Hurt,
P(Y(x0)=1, Y(x1)=0)? 0

⇒ Max value of ACE: (6 + 7)/20 − 0 = 0.65

Similar logic:

⇒ Min value of ACE: 0 − (4 + 3)/20 = −0.35

(Note, as before, P(Y = 1 |X = 0) = 0.3, P(Y = 1 |X = 1) = 0.6.)
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Inference for the ACE without randomization

Suppose that we do not know that X⊥⊥ Y(x0) and X⊥⊥ Y(x1).

What can be inferred from the observed distribution P(X, Y)?

General case:

−(P(X=0, Y=1) + P(X=1, Y=0))

6 ACE(X→ Y)

6 P(X=0, Y=0) + P(X=1, Y=1)

⇒ Bounds will always include zero.

What further information can we obtain?
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Observational study: one-way table!

Observed Counterfactual

p(X=0,Y=0) p(X=0,Y(x0)=0,Y(x1)=0) p(X=0,Y(x0)=0,Y(x1)=1)

p(X=0,Y=1) p(X=0,Y(x0)=1,Y(x1)=0) p(X=0,Y(x0)=1,Y(x1)=1)

p(X=1,Y=0) p(X=1,Y(x0)=0,Y(x1)=0) p(X=1,Y(x0)=1,Y(x1)=0)

p(X=1,Y=1) p(X=1,Y(x0)=0,Y(x1)=1) p(X=1,Y(x0)=1,Y(x1)=1)

Observed Counterfactual

p(X=0,Y=0) p(X=0, NR) p(X=0, HE)

p(X=0,Y=1) p(X=0, HU) p(X=0, AR)

p(X=1,Y=0) p(X=1, NR) p(X=1, HU)

p(X=1,Y=1) p(X=1, HE) p(X=1, AR)
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Identification Problem

P(X, Y(x0), Y(x1))

∆7

Counterfactual

P(X, Y)

∆3

Observed

•

7→

→

Wish to know set of P(Y(x0), Y(x1)) margins of distns P(X, Y(x0), Y(x1))
mapping to a given observed distribution P(X, Y).
Want: P(Y(x0), Y(x1)); Given: P(X, Y)
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Bounds on joints P(Y(x0), Y(x1))

Observed Counterfactual

p(X=0,Y=0) p(X=0, NR) p(X=0, HE)

p(X=0,Y=1) p(X=0, HU) p(X=0, AR)

p(X=1,Y=0) p(X=1, NR) p(X=1, HU)

p(X=1,Y=1) p(X=1, HE) p(X=1, AR)

0 6 %HE 6 P(X = 0, Y = 0) + P(X = 1, Y = 1)

0 6 %HU 6 P(X = 0, Y = 1) + P(X = 1, Y = 0)

0 6 %NR 6 P(X = 0, Y = 0) + P(X = 1, Y = 0) = P(Y = 0)

0 6 %AR 6 P(X = 0, Y = 1) + P(X = 1, Y = 1) = P(Y = 1)
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Bounds on margins P(Y(xi))

Observed Counterfactual

p(X=0,Y=0) p(X=0, NR) p(X=0, HE)

p(X=0,Y=1) p(X=0, HU) p(X=0, AR)

p(X=1,Y=0) p(X=1, NR) p(X=1, HU)

p(X=1,Y=1) p(X=1, HE) p(X=1, AR)

We also have the following inequalities on the marginals:

P(Y(x0) = 1) = P(HU) + P(AR)

P(Y(x1) = 1) = P(HE) + P(AR)

P(X = 0, Y = 1) 6 P(Y(x0) = 1) 6 1 − P(X = 0, Y = 0)

P(X = 1, Y = 1) 6 P(Y(x1) = 1) 6 1 − P(X = 1, Y = 0)

Thus we have 6 pairs of parallel planes.
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Polytope for observational study

Set of margins P(Y(x0), Y(x1)) compatible with the Obs. Study.

%H
E

%HU

%
A
R

Obs study
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Checking ACE bounds

%
H
E

%HU%A
R

Observational study

1

1

0
0 0.35

0.65

%HE

This confirms the ACE bounds we derived earlier.
(But why is this helpful!?)
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Summary so far

Causal contrasts compare the potential outcomes of the same
units under different treatments.

In our observed data, for each unit one outcome will be
‘actual’; the others will be ‘counterfactual’.
(Exceptions in fields where cross-over designs are possible.)

The potential outcome framework allows
Causation to be ‘reduced’ to Missing Data
⇒ Conceptual progress!

The ACE is identified if X⊥⊥ Y(xi) for all values xi.

Randomization of treatment assignment implies X⊥⊥ Y(xi).
Without independence the ACE is not identified, and cannot
be bounded away from zero.
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