Chair for Computer Aided Medical Procedures (CAMP) Master Praktikum on Machine Learning in Medical Imaging

Ashkan Khakzar, Shahrooz Faghi Roohi, Azade Farshad, Anees Kazi, Prof. Dr. Nassir Navab

Chair for Computer Aided Medical Procedures \& Augmented Reality

Team

Shahrooz Faghih Roohi

Senior Research Scientist
shahrooz.faghihroohi@tum.de

Anees Kazi
Senior Research Scientist anees.kazi@tum.de

Azade Farshad
PhD Candidate
azade.farshad@tum.de

Ashkan Khakzar
PhD Candidate ashkan.khakzar@tum.de

Chair for Computer Aided Medical Procedures (CAMP) Master Praktikum on Machine Learning in Medical Imaging

Course Regulations

Basic Info about the course

- Type: Master Practical Course Module (IN2016)
- Language: English
- SWS: 6
- ECTS: 10 Credits
- Webpage:
- https://wiki.tum.de/display/mlmi/MLMI\%3A+Summer+2021
- Time:
- Thursdays, 16-18
- Location:
- Virtual Meeting Room (Zoom)
-GAMP Seminar Room (03.13.010)
- Requirements:
- Background in machine/deep learning
- Knowledge of software engineering principles (eg. version control, ...)
- Python programming

Objective

- Learn through practice:
- Solving problems in Medical Imaging using machine learning methods
- The course is divided into:
- A few introductory lectures on machine/deep learning and its application in different problems involving medical imaging
- A number of hands-on sessions to apply these methods to a given dataset, and
- A project involving a machine learning solution to a medical imaging problem

Content

Lectures on

- DL for Medical Image Diagnosis and Segmentation
- DL for Medical Image Reconstruction
- Explainable DL
- Generative Models
- Graph Neural Networks
- Robustness

Projects

Structure:

- 5 Groups of 4 students (max. 20 students)
- Weekly meeting with your supervisor

Example: (Previous semester)

ID	Project	Tutor
	Dissection of Covid-19 Prediction Models	Ashkan, Seong Tae
Interpreting Covid-19 Prediction Models using Information Bottleneck	Ashkan, Seong Tae	
AutoML? in Federated Learning	Azade, Yousef	
Unsupervised multimodal image registration using generative networks between imbalanced domains	Farid	
Brain signal analysis using graph convolutional networks	Anees, Shahrooz	

Examples of Projects in Previous Semester

EfficientNet with Robust Training: MICCAI ISIC challenge

Introduction: SIIM-ISIC Melanoma Classification Challenge

Examples of Projects in Previous Semester

Problem Statement

Melanoma is the least common skin cancer, but also the most serious type. It is responsible for $\mathbf{7 5 \%}$ of skin cancer deaths

benign

malignant

Goal: Using images within the same patient, determine which are likely to represent a melanoma

Examples of Projects in Previous Semester

EfficientNet ${ }^{[2]}$: Compound Scaling and AutoML

- Neural architecture search to develop the baseline network
- Compound scaling to scale the model structurally in all dimensions

[2] Tan, M. and Le, Q.V., 2019. Efficientnet Rethinking model scaling for convolutional neural networks. ICML

MICCAI Skin Cancer Analysis, SS 2020

Examples of Projects in Previous Semester

AdvProp ${ }^{[3]}$: Approach

- Using auxiliary batch norm to disentangle mixed distribution

(a) Traditional BN

(b) Proposed Auxiliary BN Design

Examples of Projects in Previous Semester

RandAugment ${ }^{[4]}$ for learning better augmentations

- Using Data Augmentations increase performance but finding proper set of augmentations requires expertise and domain knowledge
- Learning policies for choosing data augmentations on a proxy (smaller) task (AutoAugment) ${ }^{[7]}$ is not always scalable to the task at hand.
- RandAugment proposes to simply find a set of transformations and the corresponding magnitude through Grid Search on the main task.
[4] CVPRW2020: Cubuk, E. D., Zoph, B., Shlens, J., \& Le, Q. V. (2020). Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 702-703)
[7] Cubuk, Ekin D., et al. "Autosugment Learning augmentation strategies from data." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.

Examples of Projects in Previous Semester

Read and Familiar with Literature

- Getting familiar with Tensorflow

Understanding and Implementation of Adversarial Propagation

Understanding the EfficientNet

- Getting familiar with pretrained models
- Tried and failed with Tensorflow version, started to use PyTorch

Understanding and Implementation of RandAugment

Implement and evaluate WP3 on challenge dataset

- Adversarial Propagation

Evaluation on validation set

- Optimization of models

Implement and Evaluate WP4 on challenge dataset

- Rand Augment
- Test set results
- Documentation

Evaluation

Project: 100\%

- Progress: 50\%
- Weekly supervision sessions with the tutors
- Define a list of ToDo's
- Share a code repository
- Student's contribution will be monitored on LRZ Git
- Evaluated by the tutor
- Presentation: 50\%
- Intermediate Presentation (10 mins + 3 mins. Q\&A)
- Final Presentations (20 mins +5 mins. Q\&A)
- Evaluated by the all tutors

How can you apply?

- Submit the registration form (on course webpage)

MLMI Registration

Student Name

Email
Master's Program
Current Semester
Related Courses

Resume (max 150 words)

If passed, mention the grades
\square
max 150 words (if exceeded, your application will be discarded) You may talk about your related projects - publications/competitions/github repositories - work experience,
Deadline for the registration form: 16.02.2021, 11:59 pm

Important Dates

Deadline for submitting the registration form: 16.02, 11:59 pm

You can find these slides and other info on the course website:
https://wiki.tum.de/display/mlmi/MLMI\%3A+Summer+2021

Don't forget to register at TUM matching system
Register via matching.in.tum.de
11.02 to 16.02.2021

