

Chair for Computer Aided Medical Procedures (CAMP)
Master Praktikum on
Machine Learning in Medical Imaging

Ashkan Khakzar, Shahrooz Faghi Roohi, Azade Farshad, Anees Kazi, Prof. Dr. Nassir Navab

Chair for Computer Aided Medical Procedures & Augmented Reality

Team

Shahrooz Faghih Roohi shahrooz.faghihroohi@tum.de

Anees Kazi Senior Research Scientist Senior Research Scientist anees.kazi@tum.de

Azade Farshad PhD Candidate azade.farshad@tum.de

Ashkan Khakzar **PhD Candidate** ashkan.khakzar@tum.de

Chair for Computer Aided Medical Procedures (CAMP)
Master Praktikum on
Machine Learning in Medical Imaging

Course Regulations

Basic Info about the course

Type: Master Practical Course Module (IN2016)

Language: English

SWS: 6

ECTS: 10 Credits

Webpage:

https://wiki.tum.de/display/mlmi/MLMI%3A+Summer+2021

Time:

Thursdays, 16-18

Location:

- Virtual Meeting Room (Zoom)
- CAMP Seminar Room (03.13.010)
- Requirements:
 - Background in machine/deep learning
 - Knowledge of software engineering principles (eg. version control, ...)

Objective

- Learn through practice:
 - Solving problems in Medical Imaging using machine learning methods
- The course is divided into:
 - A few introductory lectures on machine/deep learning and its application in different problems involving medical imaging
 - A number of hands-on sessions to apply these methods to a given dataset, and
 - A project involving a machine learning solution to a medical imaging problem

Content

Lectures on

- DL for Medical Image Diagnosis and Segmentation
- DL for Medical Image Reconstruction
- Explainable DL
- Generative Models
- Graph Neural Networks
- Robustness

Projects

Structure:

- 5 Groups of 4 students (max. 20 students)
- Weekly meeting with your supervisor

Example: (Previous semester)

ID	Project	Tutor
	Dissection of Covid-19 Prediction Models	Ashkan, Seong Tae
	Interpreting Covid-19 Prediction Models using Information Bottleneck	Ashkan, Seong Tae
	AutoML? in Federated Learning	Azade, Yousef
	Unsupervised multimodal image registration using generative networks between imbalanced domains	Farid
	Brain signal analysis using graph convolutional networks	Anees, Shahrooz

EfficientNet with Robust Training: MICCAI ISIC challenge

Introduction: SIIM-ISIC Melanoma Classification Challenge

Society for Imaging Informatics in Medicine (SIIM)

International Skin Imaging Collaboration (ISIC)

Goal:

Develop computer vision algorithms to help with the classification of dermoscopic images of skin lesions

MICCAI Skin Cancer Analysis, SS 2020

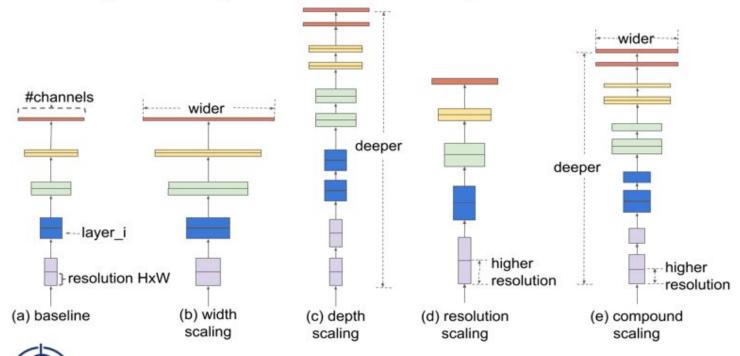
Problem Statement

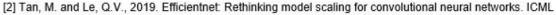
Melanoma is the least common skin cancer, but also the most serious type. It is responsible for **75%** of skin cancer deaths

benign

malignant

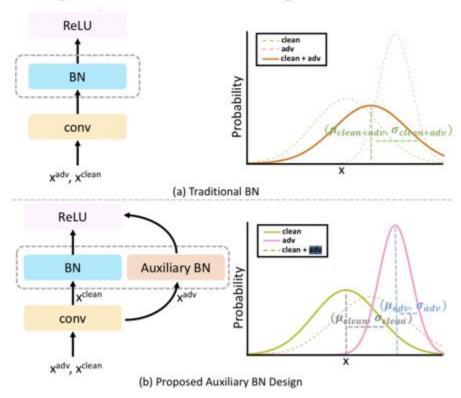
Goal: Using images within the same patient, determine which are likely to represent a melanoma

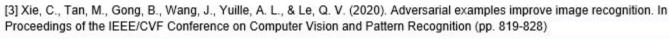



MICCAI Skin Cancer Analysis, SS 2020

EfficientNet [2]: Compound Scaling and AutoML

- Neural architecture search to develop the baseline network
- Compound scaling to scale the model structurally in all dimensions




MICCAI Skin Cancer Analysis, SS 2020

AdvProp [3]: Approach

Using auxiliary batch norm to disentangle mixed distribution

MICCAI Skin Cancer Analysis, SS 2020

RandAugment^[4] for learning better augmentations

- Using Data Augmentations increase performance but finding proper set of augmentations requires expertise and domain knowledge
- Learning policies for choosing data augmentations on a proxy (smaller) task (AutoAugment)^[7] is not always scalable to the task at hand.
- RandAugment proposes to simply find a set of transformations and the corresponding magnitude through Grid Search on the main task.

[4] CVPRW2020: Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2020). Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 702-703)

[7] Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation strategies from data." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.

MICCAI Skin Cancer Analysis, SS 2020

- · Getting familiar with Tensorflow
- Understanding and Implementation of **Adversarial Propagation**
- Familiar with clinical data (challenge dataset)
 - Implementing data reading Data pre-processing

- Understanding the EfficientNet
 - · Getting familiar with pretrained
 - Tried and failed with Tensorflow version, started to use PyTorch
- Understanding and Implementation of RandAugment

- Implement and evaluate WP3 on challenge dataset
 - · Adversarial Propagation
- **Evaluation on validation set**
 - · Optimization of models

- Implement and Evaluate WP4 on challenge dataset
 - Rand Augment
- **Challenge Submission**
 - Test set results
 - Documentation

Evaluation

Project: 100%

- Progress: 50%
 - Weekly supervision sessions with the tutors
 - Define a list of ToDo's
 - Share a code repository
 - Student's contribution will be monitored on LRZ Git
 - Evaluated by the tutor
- Presentation: 50%
 - Intermediate Presentation (10 mins + 3 mins. Q&A)
 - Final Presentations (20 mins + 5 mins. Q&A)
 - Evaluated by the all tutors

How can you apply?

• Submit the registration form (on course webpage)

MLMI Registration	
Student Name	*
Email	*
Master's Program	*
Current Semester	*
Related Courses	*
Resume (max 150 words)	If passed, mention the grades * max 150 words (if exceeded, your application will be discarded) You may talk about your related projects - publications/competitions/github repositories - work experience,

Deadline for the registration form: 16.02.2021, 11:59 pm

Important Dates

Deadline for submitting the registration form:

16.02, 11:59 pm

You can find these slides and other info on the course website:

https://wiki.tum.de/display/mlmi/MLMI%3A+Summer+2021

Don't forget to register at TUM matching system

Register via matching.in.tum.de

11.02 to 16.02.2021

