

Chair for Computer Aided Medical Procedures (CAMP)
Master Praktikum on
Machine Learning in Medical Imaging

Ashkan Khakzar, Shahrooz Faghihroohi, Azade Farshad, Anees Kazi, Yousef Yeganeh Prof. Dr. Nassir Navab

Chair for Computer Aided Medical Procedures & Augmented Reality

Team

Shahrooz Faghihroohi

PhD
shahrooz.faghihroohi@tum.de

PhD anees.kazi@tum.de

Anees Kazi

Azade Farshad

PhD Candidate
azade.farshad@tum.de

Yousef Yeganeh

Research Scientist
y.yeganeh@tum.de

Ashkan Khakzar

PhD Candidate
ashkan.khakzar@tum.de

Chair for Computer Aided Medical Procedures (CAMP)
Master Praktikum on
Machine Learning in Medical Imaging

Course Regulations

Basic Info about the course

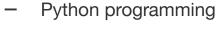
Type: Master Practical Course Module (IN2016)

• **Language**: English

• **SWS**: 6

ECTS: 10 Credits

Webpage:


https://wiki.tum.de/display/mlmi/MLMI%3A+Summer+2022

• Time:

Thursdays, 16-18

Location:

- Virtual Meeting Room (Zoom)
- CAMP Seminar Room (03.13.010)
- Requirements:
 - Background in machine/deep learning
 - Knowledge of software engineering principles (eg. version control, ...)

Objective

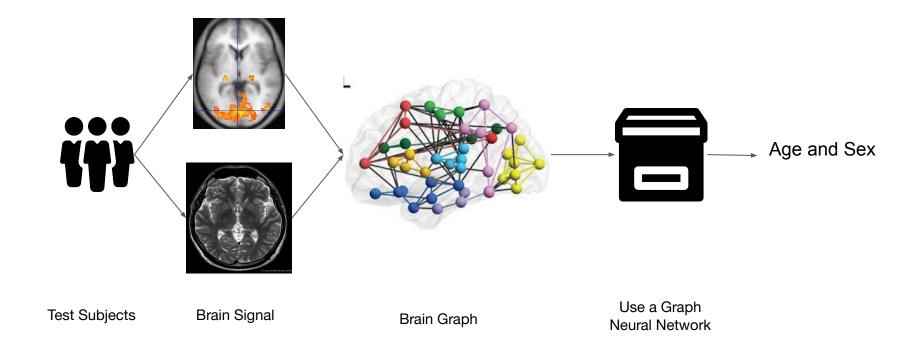
- Learn through practice:
 - Solving problems in Medical Imaging using machine learning methods
- The course is divided into:
 - A few introductory lectures on machine/deep learning and its application in different problems involving medical imaging
 - A number of hands-on sessions to apply these methods to a given dataset, and
 - A project involving a machine learning solution to a medical imaging problem

Content

Lectures on

- DL for Medical Image Diagnosis and Segmentation
- Semi-Supervised Methods
- Explainable DL
- Generative Models
- Graph Neural Networks
- Transformers
- A few Lectures by Invited Speakers

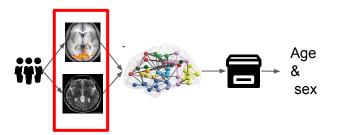
Projects


Structure:

- 5 or 6 Groups of 4 students (max. 20 to 24 students)
- Weekly meeting with your supervisor

Example: (Previous semester)

Project	Tutors	Description
Representation Learning for Semantic Image Manipulation Using Scene Graphs	Azade, Yousef	MLMI_WiSe21_Proposal1.pdf
Inpainting in Medical Imaging	Azade, Yousef	MLMI_WiSe21_Proposal2.pdf
CheXplaining in Style	Matthias, Kristina, Ashkan	MLMI_CheXplaining in Style.docx.pdf
Weakly Supervised Prostate Cancer Score Prediction	Farid, Ashkan, Thomas	MLMI_Weakly Supervised Prostate Cancer Score Prediction .docx.pdf
Graph Convolutional Network for Multi-label Classification Task	Mahsa, Anees	MLMI_Project_WS21_Roger.pdf
Learning Segmentation with Unlabeled and Noisy Labeled Examples	Roger	Multi-label-GCN-MLMI.pdf



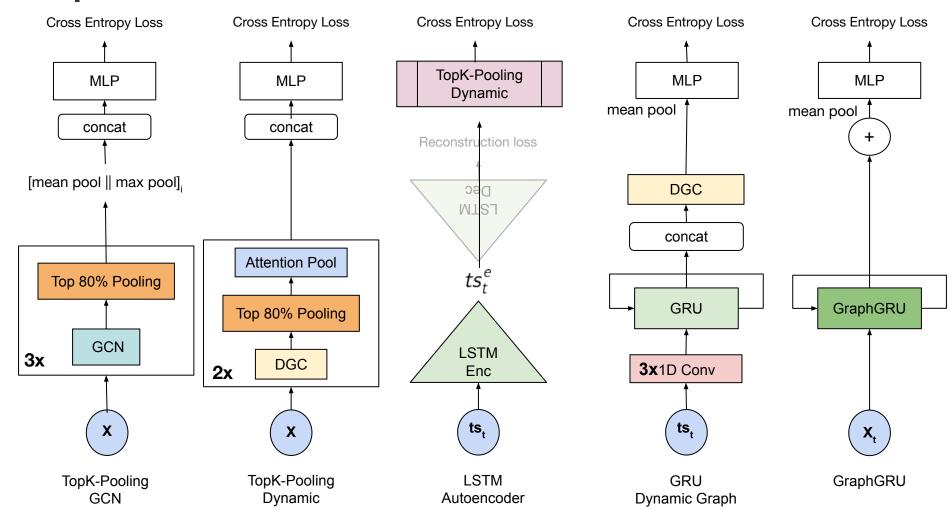
Box & people icons made by Smashicons & Pixel perfect from www.flaticon.com fMRI: wikipedia.com; Version 8.25 from Textbook OpenStax Anatomy and Physiology Brain Graph: Cohen, J. R., and M. D'Esposito. "The Segregation and Integration of Distinct Brain Networks and Their Relationship to Cognition." *Journal of Neuroscience* 36, no. 48 (November 30, 2016):

Two dataset

Dataset	Num. subjects	Features	Age labels	Task	Task structure
HCP	1003	fMRI time series	4 classes	age & sex prediction	graph classification
UK Biobank	14503	MRI + fMRI features	44-80y μ = 52.7 ± 7.5	age & sex prediction	node classification

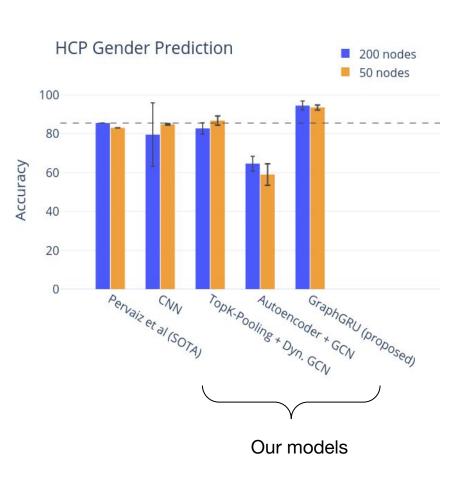
Previous work fMRI: age & sex

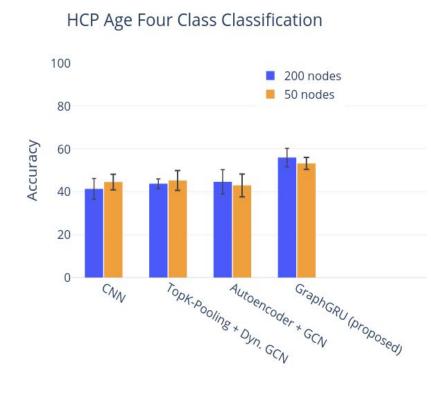
Paper	Modality	Model	Dataset	Gender	Age	Why interesting?
Arslan et al [AR18]	fMRI	GCN	UK Biobank 44-88y (N=14503)	88%	Missing	Best result only of fMRI
Pervaiz et al [PS20]	fMRI	Elastic Net	НСР	85.5%	58% prediction correlation	Best result on HCP fMRI
Xing et al [XS19]	T1 MRI + fMRI	GC-LSTM	ADNI2 (55-90)	89%	3 MAE	Similar network structure


[AR18]Arslan, Salim, Sofia Ira Ktena, Ben Glocker, and Daniel Rueckert. "Graph Saliency Maps through Spectral Convolutional Networks: Application to Sex Classification with Brain Connectivity." *ArXiv:1806.01764 [Cs]*, June 5, 2018.

[XS19] Xing, Xiaodan, Qingfeng Li, Hao Wei, Minqing Zhang, Yiqiang Zhan, Xiang Sean Zhou, Zhong Xue, and Feng Shi. "Dynamic Spectral Graph Convolution Networks with Assistant Task Training for Early MCI Diagnosis." *MICCAI 2019*,

[PS20]Pervaiz, Usama, Diego Vidaurre, Mark W. Woolrich, and Stephen M. Smith. "Optimising Network Modelling Methods for FMRI." NeuroImage 211, May 1, 2020


Proposed Models



Results HCP (fMRI)

EfficientNet with Robust Training: MICCAI ISIC challenge

Introduction: SIIM-ISIC Melanoma Classification Challenge

Society for Imaging Informatics in Medicine (SIIM)

+
International Skin Imaging Collaboration (ISIC)

Goal:

Develop computer vision algorithms to help with the classification of dermoscopic images of skin lesions

MICCAI Skin Cancer Analysis, SS 2020

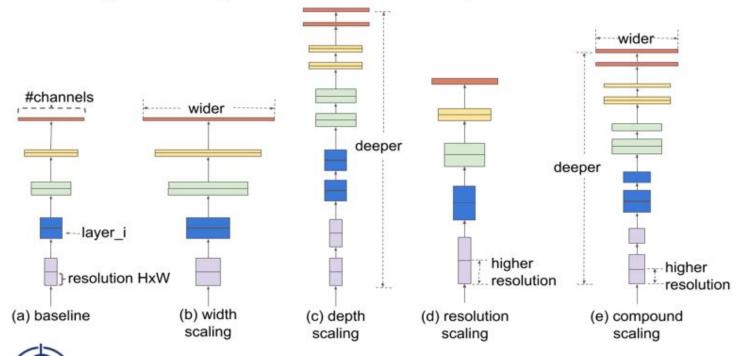
Problem Statement

Melanoma is the least common skin cancer, but also the most serious type. It is responsible for **75%** of skin cancer deaths

benign

malignant

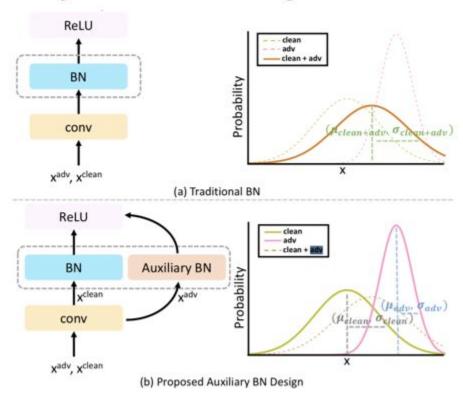
Goal: Using images within the same patient, determine which are likely to represent a melanoma

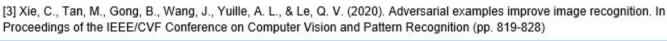



MICCAI Skin Cancer Analysis, SS 2020

EfficientNet [2]: Compound Scaling and AutoML

- Neural architecture search to develop the baseline network
- Compound scaling to scale the model structurally in all dimensions




MICCAI Skin Cancer Analysis, SS 2020

AdvProp [3]: Approach

Using auxiliary batch norm to disentangle mixed distribution

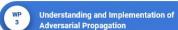
MICCAI Skin Cancer Analysis, SS 2020

RandAugment^[4] for learning better augmentations

- Using Data Augmentations increase performance but finding proper set of augmentations requires expertise and domain knowledge
- Learning policies for choosing data augmentations on a proxy (smaller) task (AutoAugment)^[7] is not always scalable to the task at hand.
- RandAugment proposes to simply find a set of transformations and the corresponding magnitude through Grid Search on the main task.

[4] CVPRW2020: Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q. V. (2020). Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (pp. 702-703)

[7] Cubuk, Ekin D., et al. "Autoaugment: Learning augmentation strategies from data." Proceedings of the IEEE conference on computer vision and pattern recognition. 2019.


MICCAI Skin Cancer Analysis, SS 2020

· Getting familiar with Tensorflow

- Familiar with clinical data (challenge dataset)
 - Implementing data reading Data pre-processing

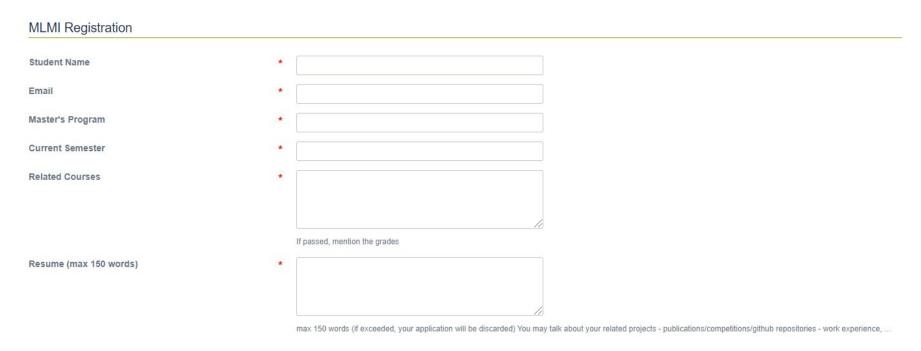
- Understanding the EfficientNet
- · Getting familiar with pretrained
- Tried and failed with Tensorflow version, started to use PyTorch
- Understanding and Implementation of RandAugment

- Implement and evaluate WP3 on challenge dataset
 - · Adversarial Propagation
- **Evaluation on validation set**
 - · Optimization of models

- Implement and Evaluate WP4 on challenge dataset
 - Rand Augment

- Test set results
- Documentation

Evaluation


Project: 100%

- Progress: 50%
 - Weekly supervision sessions with the tutors
 - Define a list of ToDo's
 - Share a code repository
 - Student's contribution will be monitored on LRZ Git
 - Evaluated by the tutor
- Presentation: 50%
 - Intermediate Presentation (15 mins + 5 mins. Q&A)
 - Final Presentations (20 mins + 5 mins. Q&A)
 - Evaluated by the all tutors

How can you apply?

• Submit the registration form (on course webpage)

Deadline for the registration form: Same as the Matching System

Important Dates

Deadline for submitting the registration form:

Same as matching system

You can find these slides and other info on the course website:

https://wiki.tum.de/display/mlmi/MLMI%3A+Summer+2022

Don't forget to register at TUM matching system

Register via matching.in.tum.de

Check the deadline of the Matching System

