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2 Project Abstract

Utilizing various modalities, such as images, text, and more, has become crucial for
addressing real-world challenges. For instance, CLIP [7] is a large-scale model that
identifies shared representations between text and images. There are emerging fields
dedicated to tackling the difficulties of multimodal machine learning, where one or more
modalities may be unbalanced, absent, noisy, lacking annotated data, or have unreliable
labels. Our goal is to examine how the model performs in the face of these obstacles and
identify methods to enhance the learned representations of the data.

One such approach involves leveraging knowledge from a resource-rich modality to
benefit a resource-poor modality, through the transfer of knowledge between modalities,
including their representations and predictive models. We aim to comprehend these
models and employ counterfactual modeling to investigate the impact of each modality
on straightforward downstream tasks.

This project will consist of multiple phases, and based on the progress made, we may
conduct either a general analysis or address specific limitations.

3 Background and Motivation

Recent advancements in self-supervised representation learning have led to significant
performance improvements in various domains. For instance, the development of con-
trastive learning techniques such as SimCLR [2] and MoCo [5] have demonstrated re-
markable results in learning visual representations. Similarly, BERT [3] and GPT [8]
have revolutionized the natural language processing landscape by showcasing the power
of self-supervised learning in the textual domain. However, most of these approaches
are designed to learn representations within a single modality, and their extensions to
multimodal scenarios are non-trivial. Some recent studies have attempted to bridge
this gap by proposing multimodal self-supervised learning frameworks such as CLIP [7],
ViLBERT [6], and LXMERT [10], which learn joint representations for images and text.
Despite these successes, there is still much room for improvement and exploration in the
realm of self-supervised multimodal representation learning[1],[4], [9].
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4 Technical Prerequisites

• Good background in machine learning and deep learning

• Experienced in PyTorch

• Experienced in Python

• Familiar with MONAI Framework

5 Benefits

• Weekly supervision and discussions

• Possible novelty of the research

• The results of this work are intended to be published in a conference or journal

6 Work packages and Time-plan

* The dates are adopted from the previous year and are not finalized yet.

Description # Students From To

WP1 Familiarizing with the literature. Scoping of datasets. 4 10.05 17.05

WP2 Implementing the baselines on toy datasets. Download of real dataset(s). 4 17.05 31.05

WP3 Improving the baselines and validation on relevant dataset(s). 4 31.05 14.06

Midterm Presentation 4 14.06 23.06

WP4 Implementing the model 4 14.06 07.07

WP5 Finalizing the results and evaluation 4 07.07 21.07

Final Presentation 4 21.07 28.07

Table 1: Project Timeline
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