Gapped Ground State Phases of Quantum Spin Systems Examples.

Bruno Nachtergaele (UC Davis)

Examples

- 1. Spin-1/2 Heisenberg chain
- 2. The AKLT chain
- 3. Other AKLT models
- 4. The XXZ model
- 5. The Toric Code Hamiltonian
- 6. -P(0) chains with dimerization; O(n) spin chains
- 7. Haldane Pseudo-potential model for $\nu=1/3$ Fractional Quantum Hall Effect
- 8. Product Vacua with Boundary States

The spin-1/2 **Heisenberg chain** $\Gamma = \mathbb{Z}$, $n_x = 2$ for all *x*, nearest neighbor interaction:

$$H_{[a,b]} = -J \sum_{x=a}^{b-1} \mathbf{S}_x \cdot \mathbf{S}_{x+1}$$

J > 0 is the ferromagnetic chain: all translation-invariant states of the form $\omega_{\phi} = \bigotimes_{x} \langle \phi, \cdot \phi \rangle$, $\phi \in \mathbb{C}^{2}$, are ground states.

Goldstone Thm implies these states are gapless: $spec(H_{\omega_{\phi}}) = [0, \infty)$. For finite volumes [0, L] gap is $O(L^{-2})$.

J < 0 is the antiferromagnetic chain: unique ground state in infinite volume. Lieb-Schultz-Mattis Thm implies gapless spectrum. For finite volumes [0, L] gap $\leq C/L$.

Ferromagnetic XXZ model on $\Gamma = \mathbb{Z}^{\nu}$ $S = 1/2, \Delta > 1.$

$$H_{\Lambda} = -\sum_{\substack{x,y \in \Lambda \\ |x-y|=1}} S_x^1 S_{x+1}^1 + S_x^2 S_{x+1}^2 + \Delta S_x^3 S_{x+1}^3.$$

This model has two translation invariant ground states and infinite families of interface ground states for all $\nu \ge 1$.

For $\nu = 1$ all these states have a positive ground state gap $= \Delta - 1$.

For $\nu > 1$, the gap above the translation invariant ground states is $\nu(\Delta - 1)$, while the spectrum above the interface ground states is gapless. Gottstein-Werner 1995, N-Koma 1996, Matsui 1997, Bolina-Contucci-N-Starr 2000, N-Spitzer-Starr 2007, ...

Generalization for spin S, S = 1/2, 1, 3/2, ... have also been studied (Alcaraz-Salinas-Wreszinksi 1995, Koma-N 2001, ...).

The AKLT chain

Most famous example of isotropic gapped spin chain: the AKLT spin-1 chain (Affleck-Kennedy-Lieb-Tasaki, 1987-88).

$$\begin{aligned} \mathcal{F} &= \mathbb{Z}, \ \mathcal{H}_{x} = \mathbb{C}^{3}; \\ \mathcal{H}_{[1,L]} &= \sum_{x=1}^{L-1} \left(\frac{1}{3} \mathbb{1} + \frac{1}{2} \mathbf{S}_{x} \cdot \mathbf{S}_{x+1} + \frac{1}{6} (\mathbf{S}_{x} \cdot \mathbf{S}_{x+1})^{2} \right) = \sum_{x=1}^{L-1} P_{x,x+1}^{(2)} \end{aligned}$$

dim ker $H_{[1,L]} = 4$ for all $L \ge 2$.

In the limit of the infinite chain, the ground state is unique, has a finite correlation length, and there is a non-vanishing gap in the spectrum above the ground state, and represents an Symmetry Protected Topological Phase (the Haldane phase).

Ground state is given by a Matrix Product State (MPS).

AKLT models

Affleck, Kennedy, Lieb, and Tasaki (1987-88) introduced a class of nearest neighbor Hamiltonians on regular lattices, later generalized by Kirillov and Korepin (1989) to general graphs G. For each $x \in G$, $\mathcal{H}_x = \mathbb{C}^{d_x}$, with $d_x =$ degree of x + 1. The d_{x^-} dimensional irrep of SU(2) acts on \mathcal{H}_x . Let z(e) denote the sum of the degrees of the vertices of the an edge e in G. Then

$$H_G^{AKLT} = \sum_{edges \ e \ in \ G} P_e^{(z(e)/2)},$$

where $P_e^{(j)}$ denoted the orthogonal projection on the states on the edge e of total spin j. Recall

$$V_{j_1}\otimes V_{j_2}=igoplus_{j=|j_1-j_2|}^{j_1+j_2}V_j.$$

AKLT model on hexagonal (honeycomb) lattice At each vertex sits a spin of magnitude S = 3/2 ($\mathcal{H}_x = \mathbb{C}^4$). Hamiltonian:

$$H^{AKLT} = \sum_{\text{edges } \{x,y\}} h_{x,y}^{AKLT}.$$

The AKLT model on *n*-decorated honeycomb.

E.g.: 2-decorated hexagonal lattice:

Theorem (AbdulRahman-Lemm-Lucia-N-Young, 2020)

For all $n \ge 3$, there exist $\gamma_n > 0$, such that spectral gap above the ground state of the AKLT model on an n-decorated hexagonal lattice is bounded below by γ_n .

Toric Code Hamiltonian (Kitaev 2006) $\Gamma = \mathcal{E}(\mathbb{Z}^2)$, the edges of the square lattice; $\mathcal{A}_x = \mathbb{C}^2$, for all $x \in \Gamma$ W $H = \sum_{v} (\mathbb{1} - A_v)$ x $+\sum_{f}(1 - B_{f})$ $A_{\rm v} = \sigma_{\rm w}^1 \sigma_{\rm v}^1 \sigma_{\rm v}^1 \sigma_{\rm v}^1$ $B_f = \sigma_a^3 \sigma_b^3 \sigma_c^3 \sigma_d^3$

On a finite finite torus $\mathbb{Z}/(L_1\mathbb{Z}) \times \mathbb{Z}/(L_1\mathbb{Z})$, the spectrum is $\{0, 4, 8, 12, \ldots\}$, and the multiplicity of the eigenvalue 0 is 4.

O(n) spin chains

O(n) chains: $\Gamma = \mathbb{Z}$, $\mathcal{H}_x = \mathbb{C}^n$. Recall AKLT model, n = 3: nearest neighbor interaction $\Phi(\{x, x + 1\}) = h_{x,x+1} = \frac{1}{2} S_x \cdot S_{x+1} + \frac{1}{6} (S_x \cdot S_{x+1})^2 + \frac{1}{3} \mathbb{1} = P_{x,x+1}^{(2)}$. The general isotropic nearest neighbor interaction for n = 3: $h_{x,x+1} = \cos \phi S_x \cdot S_{x+1} + \sin \phi (S_x \cdot S_{x+1})^2$. Alternative way to represent the AKLT Hamiltonian in terms of 'swap' operator, T, and a rank-1 projection:

$$2P^{(2)} = T - 2P^{(0)} + 1,$$

where $P^{(0)}$ projects onto the singlet state. There is an o.n. basis e_1, e_0, e_{-1} such that

$$\psi = \frac{1}{\sqrt{3}}(e_1 \otimes e_1 + e_0 \otimes e_0 + e_{-1} \otimes e_{-1}).$$

This generalizes to n-dimensional spins and arbitrary coupling constants as follows

$$uT + vQ, \quad u, v \in \mathbb{R}$$

where Q is the projection to

$$\psi = \frac{1}{\sqrt{n}} \sum_{\alpha=1}^{n} |\alpha, \alpha\rangle.$$

Figure: Ground state phase diagram for the S = 1 chain (n = 3) with nearest-neighbor interactions $\cos \phi S_x \cdot S_{x+1} + \sin \phi (S_x \cdot S_{x+1})^2$.

- ► tan φ = 1/3, AKLT point (Affleck-Kennedy-Lieb-Tasaki, 1987,1988), FF, MPS, gapped
- $\tan \phi = 1$, solvable, gapless, SU(3) invariant, (Sutherland, 1975)
- $\phi \in [\pi/2, 3\pi/2]$, ferromagnetic, FF, gapless
- ▶ φ = −π/2, solvable, SU(3) invariant, Temperley-Lieb algebra, dimerized, gapped (Klümper; Affleck,1990)
- ▶ $\phi = -\pi/4$ gapless, Bethe-ansatz, (Takhtajan; Babujian, 1982)

Figure: Ground state phase diagram for the chain with nearest-neighbor interactions uT + vQ for $n \ge 3$, studied by Tu & Zhang, 2008. v = −2nu/(n − 2), n ≥ 3, Bethe ansatz point (Reshetikhin, 1983)

- v = -2u: frustration free point, equivalent to ⊥ projection onto symmetric vectors ⊖ one. Unique g.s. if n odd; two 2-periodic g.s. for even n; spectral gap in all cases and stable phase (N-Sims-Young, 2021).
- ▶ u = 0, v = -1. Equivalent to the $SU(n) P^{(0)}$ models aka Temperley-Lieb chain; Affleck, 1990, Nepomechie-Pimenta 2016). Dimerized for all $n \ge 3$ (Aizenman, Duminil-Copin, Warzel, 2020); 'Stability' for large n(Björnberg-Mühlbacher-N-Ueltschi, 2021).

Pseudo-potential Hamiltonian for the $\nu = 1/3$ Fractional Quantum Hall Effect

Truncated Haldane model for a 1/3-filled first Landau level in a cylinder geometry:

The one-particle eigenstates ψ_n (Landau orbitals) have a Gaussian shape and are lined up along the cylinder at a spacing given by ℓ^2/R , $\ell = \sqrt{\hbar/(eB)}$, $n \in \mathbb{Z}$.

One-dimensional spin-1/2 (or spinless Fermion) Hamiltonian models the opening up of the gap in the spectrum due to interactions.

Hamilttonian with parameters $\kappa \geq 0$ and $\lambda \in \mathbb{C}$:

$$H = \sum_{x} \left(n_x n_{x+2} + \kappa \ q_x^* q_x \right)$$

Dipole-preserving hopping: $q_x := c_{x+1}c_{x+2} - \lambda c_x c_{x+3}$

Theorem (N-Young-Warzel 2020 & 2021, Young-Warzel 2022) For all $\lambda \neq 0$ with $|\lambda| < 5.3548$, $\kappa \ge 0$ there is a constant $f(|\lambda|^2) < 1/3$ for which

$$\begin{split} & \liminf_{L \to \infty} \operatorname{gap} \mathcal{H}_{[1,L]} \\ & \geq \frac{1}{3} \min \left\{ 1, \frac{\kappa}{2 + 2\kappa |\lambda|^2}, \frac{\kappa}{1 + \kappa}, \frac{\kappa}{2(1 + 2|\lambda|^2)} \left(1 - \sqrt{3f(|\lambda|^2)} \right)^2 \right\} > 0 \,. \end{split}$$

Note that the physical range is $|\lambda| \in [0, 3]$.

Product Vacua with Boundary States (PVBS)

A model with a gap when defined on $\mathbb{Z}^{\nu},\nu\geq$ 2, but gapless spectrum on certain half-spaces:

At each site $n_x = 2$; o.n.b. $\{|0\rangle, |1\rangle\}$, Let e_1, \ldots, e_ν be the canonical basis vectors of $\mathbb{Z}^\nu \subset \mathbb{R}^\nu$. The interaction is nearest neighbor: $h_{x,x+e_j}$, with $j = 1, \ldots, \nu$, such that $x, x + e_j \in \Lambda$. depending on parameters $\lambda_j \in (0, \infty), j = 1, \ldots, \nu$, and are defined by

$$h_{x,x+e_j} = |\phi^{(\lambda_j)}\rangle\langle\phi^{(\lambda_j)}| + |11\rangle\langle11|, \tag{1}$$

where $\phi^{(\lambda)} = (|01\rangle - \lambda |10\rangle)/\sqrt{1 + \lambda^2}$, for $\lambda \in (0, \infty)$. The Hamiltonian is then

$$H_{\Lambda} = \sum_{j=1}^{\nu} \sum_{x \in \Lambda \atop \text{s.t. } x + e_j \in \Lambda} h_{x, x + e_j}, \qquad (2)$$

which is frustration-free and translation invariant.

Let γ_D be the ground state gap of the GNS Hamiltonian, H^D , in the unique ground state of this model defined on infinite half spaces bounded by a hyperplane containing the origin, that is subsets $D \subset \mathbb{Z}^{\nu}$ determined by a unit vector $m \in \mathbb{R}^{\nu}$ (the inward normal) as follows: $D := \{x \in \mathbb{Z}^{\nu} : m \cdot x \ge 0\}.$ If $\nu = 1$, the model is gapless if $\lambda = 1$ and gapped otherwise (Bachmann-N, 2012).

For $\nu \ge 2$, the positivity of $\gamma(D)$ is determined by the angle, θ , between the vectors m and $-\log \lambda$. Define $c(\nu) := \min\{|\nu_i| : \nu_i \ne 0\}, \nu \in \mathbb{R}^{\nu}$.

Theorem (Bachmann-Hamza-N-Young 2015, Bishop-N-Young 2016) (i) For all $\nu \ge 2$, $\lambda_1, \ldots, \lambda_{\nu} \in (0, \infty)$, and unit vectors $m \in \mathbb{R}^{\nu}$ such that $m \cdot \log \lambda < 0$, one has the following upper bound:

$$\gamma(D) \le \frac{2(d-1)}{c(m)c(\boldsymbol{\lambda})^2} \|\log \boldsymbol{\lambda}\| |\sin(\theta)|, \tag{3}$$

where θ is the angle between the vectors -m and $\log \lambda$. In particular, the gap vanishes if $\theta = 0$. (ii) If $\log \lambda \neq -\|\log \lambda\|m$, then $\gamma(D) > 0$.