Gapped Ground State Phases of Quantum Spin Systems Examples.

1

Bruno Nachtergaele (UC Davis)

Examples

- 1. Spin-1/2 Heisenberg chain
- 2. The AKLT chain
- 3. Other AKLT models
- 4. The XXZ model
- 5. The Toric Code Hamiltonian
- 6. $-P(0)$ chains with dimerization; $O(n)$ spin chains
- 7. Haldane Pseudo-potential model for $\nu = 1/3$ Fractional Quantum Hall Effect
- 8. Product Vacua with Boundary States

The spin-1/2 Heisenberg chain $\Gamma = \mathbb{Z}$, $n_x = 2$ for all x, nearest neighbor interaction:

$$
\mathit{H}_{[a,b]}=-\mathit{J}\sum_{x=a}^{b-1}\mathbf{S}_{x}\cdot\mathbf{S}_{x+1}
$$

 $J > 0$ is the ferromagnetic chain: all translation-invariant states of the form $\omega_{\phi} = \bigotimes_{\mathsf{x}} \langle \phi, \cdot \phi \rangle$, $\phi \in \mathbb{C}^2$, are ground states.

Goldstone Thm implies these states are gapless: $spec(H_{\omega_{\phi}})=[0,\infty).$ For finite volumes $[0, L]$ gap is $O(L^{-2})$.

 $J < 0$ is the antiferromagnetic chain: unique ground state in infinite volume. Lieb-Schultz-Mattis Thm implies gapless spectrum. For finite volumes [0, L] gap $\leq C/L$.

Ferromagnetic XXZ model on $\Gamma = \mathbb{Z}^{\nu}$ $S = 1/2, \Delta > 1.$

$$
H_{\Lambda}=-\sum_{x,y\in \Lambda\atop |x-y|=1} S^1_xS^1_{x+1}+S^2_xS^2_{x+1}+\Delta S^3_xS^3_{x+1}.
$$

This model has two translation invariant ground states and infinite families of interface ground states for all $\nu > 1$.

For $\nu = 1$ all these states have a positive ground state gap = $\Delta - 1$.

For $\nu > 1$, the gap above the translation invariant ground states is $\nu(\Delta-1)$, while the spectrum above the interface ground states is gapless. Gottstein-Werner 1995, N-Koma 1996, Matsui 1997, Bolina-Contucci-N-Starr 2000, N-Spitzer-Starr 2007, ...

Generalization for spin S , $S = 1/2, 1, 3/2, \dots$ have also been studied (Alcaraz-Salinas-Wreszinksi 1995, Koma-N 2001, ...).

The AKLT chain

Most famous example of isotropic gapped spin chain: the AKLT spin-1 chain (Affleck-Kennedy-Lieb-Tasaki, 1987-88).

 $Γ = Z, H_x = \mathbb{C}^3;$ $H_{[1,L]}=\sum^{L-1}\left(\frac{1}{2}\right)$ $x=1$ $\frac{1}{3}$ 1 + $\frac{1}{2}$ $\frac{1}{2}$ S_x · S_{x+1} + $\frac{1}{6}$ $\frac{1}{6}({\sf S}_x\cdot{\sf S}_{x+1})^2\bigg)=\sum_{x=1}^{L-1}$ $x=1$ $P_{x,x+1}^{(2)}$

dim ker $H_{[1,L]} = 4$ for all $L \geq 2$.

In the limit of the infinite chain, the ground state is unique, has a finite correlation length, and there is a non-vanishing gap in the spectrum above the ground state, and represents an Symmetry Protected Topological Phase (the Haldane phase).

Ground state is given by a Matrix Product State (MPS).

AKLT models

Affleck, Kennedy, Lieb, and Tasaki (1987-88) introduced a class of nearest neighbor Hamiltonians on regular lattices, later generalized by Kirillov and Korepin (1989) to general graphs $G.$ For each $x\in G$, $\mathcal{H}_x=\mathbb{C}^{d_x}$, with d_x = degree of x +1. The d_x - dimensional irrep of $SU(2)$ acts on \mathcal{H}_x . Let $z(e)$ denote the sum of the degrees of the vertices of the an edge e in G. Then

$$
H_G^{\text{AKLT}} = \sum_{\text{edges } e \text{ in } G} P_e^{(z(e)/2)},
$$

where $P_e^{(j)}$ denoted the orthogonal projection on the states on the edge ϵ of total spin j. Recall

$$
V_{j_1}\otimes V_{j_2}=\bigoplus_{j=|j_1-j_2|}^{j_1+j_2}V_j.
$$

AKLT model on hexagonal (honeycomb) lattice At each vertex sits a spin of magnitude $\mathcal{S}=3/2$ $(\mathcal{H}_\mathsf{x}=\mathbb{C}^4).$ Hamiltonian:

7

$$
H^{AKLT} = \sum_{\text{edges } \{x,y\}} h_{x,y}^{AKLT}.
$$

The AKLT model on n-decorated honeycomb.

E.g.: 2-decorated hexagonal lattice:

Theorem (AbdulRahman-Lemm-Lucia-N-Young, 2020)

For all $n \geq 3$, there exist $\gamma_n > 0$, such that spectral gap above the ground state of the AKLT model on an n-decorated hexagonal lattice is bounded below by γ_n .

Toric Code Hamiltonian (Kitaev 2006) $\Gamma = \mathcal{E}(\mathbb{Z}^2)$, the edges of the square lattice; $\mathcal{A}_x = \mathbb{C}^2$, for all $x \in \Gamma$

On a finite finite torus $\mathbb{Z}/(L_1\mathbb{Z}) \times \mathbb{Z}/(L_1\mathbb{Z})$, the spectrum is $\{0, 4, 8, 12, \ldots\}$, and the multiplicity of the eigenvalue 0 is 4.

$O(n)$ spin chains

 $O(n)$ chains: $Γ = Z$, $H_x = \mathbb{C}^n$. Recall AKLT model, $n = 3$: nearest neighbor interaction $\Phi({x, x + 1}) = h_{x, x+1} = \frac{1}{2} S_x \cdot S_{x+1} + \frac{1}{6} (S_x \cdot S_{x+1})^2 + \frac{1}{3} \mathbb{1} = P_{x, x+1}^{(2)}$ The general isotropic nearest neighbor interaction for $n = 3$: $h_{x,x+1} = \cos \phi \mathbf{S}_x \cdot \mathbf{S}_{x+1} + \sin \phi (\mathbf{S}_x \cdot \mathbf{S}_{x+1})^2.$ Alternative way to represent the AKLT Hamiltonian in terms of 'swap' operator, T , and a rank-1 projection:

$$
2P^{(2)} = T - 2P^{(0)} + 1,
$$

where $\mathit{P}^{(0)}$ projects onto the singlet state. There is an o.n. basis e_1, e_0, e_{-1} such that

$$
\psi=\frac{1}{\sqrt{3}}(e_1\otimes e_1+e_0\otimes e_0+e_{-1}\otimes e_{-1}).
$$

This generalizes to n-dimensional spins and arbitrary coupling constants as follows

$$
uT + vQ, \quad u, v \in \mathbb{R}
$$

where Q is the projection to

$$
\psi = \frac{1}{\sqrt{n}} \sum_{\alpha=1}^n |\alpha,\alpha\rangle.
$$

Figure: Ground state phase diagram for the $S = 1$ chain $(n = 3)$ with nearest-neighbor interactions $\cos\phi \boldsymbol S_\mathsf{x}\cdot \boldsymbol S_{\mathsf{x}+1} + \sin\phi (\boldsymbol S_\mathsf{x}\cdot \boldsymbol S_{\mathsf{x}+1})^2.$

- $\triangleright \phi = 0$ Heisenberg AF chain, Haldane phase (Haldane, 1983)
- \blacktriangleright tan $\phi = 1/3$, AKLT point (Affleck-Kennedy-Lieb-Tasaki, 1987,1988), FF, MPS, gapped
- **Le** tan $\phi = 1$, solvable, gapless, SU(3) invariant, (Sutherland, 1975)
- $\blacktriangleright \phi \in [\pi/2, 3\pi/2]$, ferromagnetic, FF, gapless
- $\rightarrow \phi = -\pi/2$, solvable, SU(3) invariant, Temperley-Lieb algebra, dimerized, gapped (Klümper; Affleck, 1990)
- $\rightarrow \phi = -\pi/4$ gapless, Bethe-ansatz, (Takhtajan; Babujian, 1982)

Figure: Ground state phase diagram for the chain with nearest-neighbor interactions $uT + vQ$ for $n > 3$, studied by Tu & Zhang, 2008.

 \triangleright v = $-2nu/(n-2)$, n > 3, Bethe ansatz point (Reshetikhin, 1983)

- \blacktriangleright v = $-2u$: frustration free point, equivalent to \perp projection onto symmetric vectors \ominus one. Unique g.s. if n odd; two 2-periodic g.s. for even n ; spectral gap in all cases and stable phase (N-Sims-Young, 2021).
- $u = 0, v = -1$. Equivalent to the $SU(n) - P^{(0)}$ models aka Temperley-Lieb chain; Affleck, 1990, Nepomechie-Pimenta 2016). Dimerized for all $n > 3$ (Aizenman, Duminil-Copin, Warzel, 2020); 'Stability' for large n (Björnberg-Mühlbacher-N-Ueltschi, 2021).

Pseudo-potential Hamiltonian for the $\nu = 1/3$ Fractional Quantum Hall Effect

Truncated Haldane model for a 1/3-filled first Landau level in a cylinder geometry:

The one-particle eigenstates ψ_n (Landau orbitals) have a Gaussian shape and are lined up along the cylinder at a spacing given by $\ell^2/R,$ $\ell = \sqrt{\hbar/(eB)}$, $n \in \mathbb{Z}$.

One-dimensional spin-1/2 (or spinless Fermion) Hamiltonian models the opening up of the gap in the spectrum due to interactions.

Hamilttonian with parameters $\kappa > 0$ and $\lambda \in \mathbb{C}$:

$$
H=\sum_{x}\left(n_{x}n_{x+2}+\kappa\ q_{x}^{*}q_{x}\right)
$$

Creation/annihilation c_x^* , c_x of Landau orbital at $x \in \mathbb{Z}$ Number operator: $n_x := c_x^* c_x$

Dipole-preserving hopping: $q_x := c_{x+1}c_{x+2} - \lambda c_x c_{x+3}$

Theorem (N-Young-Warzel 2020 & 2021, Young-Warzel 2022) For all $\lambda \neq 0$ with $|\lambda| <$ 5.3548, $\kappa \geq 0$ there is a constant $f\left(|\lambda|^2\right) < 1/3$ for which

$$
\liminf_{L\to\infty} \operatorname{gap}H_{[1,L]}
$$
\n
$$
\geq \frac{1}{3} \min \left\{ 1, \frac{\kappa}{2 + 2\kappa |\lambda|^2}, \frac{\kappa}{1 + \kappa}, \frac{\kappa}{2(1 + 2|\lambda|^2)} \left(1 - \sqrt{3f(|\lambda|^2)} \right)^2 \right\} > 0.
$$

Note that the physical range is $|\lambda| \in [0, 3]$.

Product Vacua with Boundary States (PVBS)

A model with a gap when defined on $\mathbb{Z}^{\nu}, \nu \geq 2$, but gapless spectrum on certain half-spaces:

At each site $n_x = 2$; o.n.b. $\{|0\rangle, |1\rangle\}$, Let e_1, \ldots, e_{ν} be the canonical basis vectors of $\mathbb{Z}^{\nu} \subset \mathbb{R}^{\nu}$. The interaction is nearest neighbor: $h_{x,x+e_j},$ with $j = 1, \ldots, \nu$, such that $x, x + e_j \in \Lambda$. depending on parameters $\lambda_i \in (0, \infty)$, $j = 1, \ldots, \nu$, and are defined by

$$
h_{x,x+e_j} = |\phi^{(\lambda_j)}\rangle\langle\phi^{(\lambda_j)}| + |11\rangle\langle11|,\tag{1}
$$

where $\phi^{(\lambda)}=(|01\rangle-\lambda|10\rangle)/\sqrt{1+\lambda^2}$, for $\lambda\in(0,\infty).$ The Hamiltonian is then

$$
H_{\Lambda} = \sum_{j=1}^{\nu} \sum_{\boldsymbol{x} \in \Lambda \atop \boldsymbol{s}, \boldsymbol{t}, \ \boldsymbol{x} + \boldsymbol{e}_j \in \Lambda} h_{\boldsymbol{x}, \boldsymbol{x} + \boldsymbol{e}_j}, \tag{2}
$$

which is frustration-free and translation invariant.

Let γ_D be the ground state gap of the GNS Hamiltonian, H^D , in the unique ground state of this model defined on infinite half spaces bounded by a hyperplane containing the origin, that is subsets $D \subset \mathbb{Z}^\nu$ determined by a unit vector $m \in \mathbb{R}^{\nu}$ (the inward normal) as follows: $D := \{x \in \mathbb{Z}^{\nu} : m \cdot x \geq 0\}.$

If $\nu = 1$, the model is gapless if $\lambda = 1$ and gapped otherwise (Bachmann-N, 2012).

For $\nu \geq 2$, the positivity of $\gamma(D)$ is determined by the angle, θ , between the vectors m and $-\log \lambda$. Define $c(v) := \min\{|v_j| : v_j \neq 0\}, v \in \mathbb{R}^{\nu}$.

Theorem (Bachmann-Hamza-N-Young 2015, Bishop-N-Young 2016)

(i) For all $\nu \geq 2$, $\lambda_1, \ldots, \lambda_\nu \in (0, \infty)$, and unit vectors $m \in \mathbb{R}^\nu$ such that $m \cdot \log \lambda < 0$, one has the following upper bound:

$$
\gamma(D) \leq \frac{2(d-1)}{c(m)c(\lambda)^2} ||\log \lambda|| |\sin(\theta)|,
$$
 (3)

where θ is the angle between the vectors $-m$ and $\log \lambda$. In particular, the gap vanishes if $\theta = 0$. (ii) If $\log \lambda \neq -\|\log \lambda\|$ m, then $\gamma(D) > 0$.