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Ogata’s construction of an index for SPT phases



The quasi-adiabatic evolution a.k.a. the spectral flow
Consider (I', d) and H, = C"™, as before.

We will use a class of F-functions of the form F(r) = Fo(r)e*"”e,
a> 0,0 € (0,1]. Let B, g be the Banach space of interactions with finite
F-norm.

Suppose Py and ®; are two interactions with an interpolating
continuously differentiable curve ®(s), s € [0,1]. We assume
s+ ®(s, X) is C* and

1
sup ———— [e(X, s)]| + [X[[|[®'(X, s)|| < oo.
x,yelr F(d(X,_)/) X;O(r)

x,yeX

Let B;’e([o, 1]) denote the Banach space of such curves of interactions.



Locality, Quasi-Locality, Almost-Locality
Locality is a crucial notion for many-body systems. Observables in Aj,
are called local, those in Ar quasi-local.

By construction, for all A € Ar and any sequence A, 1T, there exist
Ap, 2 A — A. A concrete sequence of local approximations of any
A € Ar can be obtained by using the conditional expectations [Mx:

Ma =1ida, ® p [4r,, Where p is the tracial state.



For any f, positive and decreasing to 0, we can define
1Ar = |All +sup f(n)"H[|A = T, (A)]].
n
Then, Ar = {A € Ar|||Allr < oo} is a Banach *-algebra for this norm
(e.g., Moon-Ogata 2019).

Lieb-Robinson bounds provide an estimate for commutators. Due to the
following inequalities, they are useful to measure locality of observables:

[A=Ta(A)[[ <  sup  [[A B]]| <2[|A—TA(A)].
BeArn,[|Bll=1



Telescopic sums: given A, 1T and decay function f, A € Ay, consider
the identity

A=To(A) + |3 M4(A) ~ M1 (A)| + A My(A)

n=1

Note ||M,(A) — Ma—1(A)|| < JJA||l¢(F(n) + f(n—1)). If f is summable, we
obtain an absolutely convergent series for A:

A=Tp(A) + > [Ma(A) = My1(A)].



The Hastings generator of the ‘quasi-adiabatic evolution’ (Hastings 2004,
Hastings-Wen 2005, Bachmann-Michalakis-N-Sims 2012) is defined by the
‘interaction’

W)= [ o) [ 720 (Gouls)) duet
altl

with w,(t) a specific function of almost exponential decay ~ e (ezale)? |
with a > 0.

Using LRBs, we can show \TIX(S) € Ay, for a stretched exponential f.

Using a telescopic sum and conditional expectations [, (), we can
construct a true interaction W € By 4([0, 1]), equivalent to W.



Theorem (Bachmann, Michalakis, N, Sims, 2012)

(i) The automorphisms as for s € [0, 1], generated by W(s) with s as the
‘time’-parameter, are a strongly continuous cocycle of quasi-local
automorphisms, satisfying Lieb-Robinson bounds with F of stretched
exponential decay.

(ii) If, in addition, o and ®; and the interpolating differentiable curve
®(s) are interactions with a unique gapped ground state ws with gap
>~ >0, and we pick a < 2v/7 in w,, we have ws = wpo s, s € [0,1].

>

Lieb-Robinson bounds are essential to construct true interaction and
to show existence of the thermodynamic limit.

s inherits any symmetries of the curve ®(s).
Uniqueness of the ground state can be relaxed.

Decay classes other than stretched exponentials have been
considered.



Stability of Spectral Gaps

WHAT DO YOU MEAN

BY 'STABILITY'?
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Stability of the bulk gap
Suppose {hy}xer defines generator § with (for simplicity) a unique
ground state w and a gap o > O:

w(A*5(A)) > vow(A*A), A € dom §, with w(A) =0 < gap(H.,) > 7o.
Define perturbations of the form

hy(s) = hy + s®,,s e R, &, = Zd)(bx(n)), with [[®(bc(n))|| < g(n).

The gap of the model is stable under such perturbations if for all
v € (0,7), there exists sp(7y) > 0 such that the gap for the perturbed
model, s, satisfies

Vs 2 7, for all |s| < so(7)-



11

Stability theorem for frustration free finite range
interactions

We consider perturbations of finite-range (R) frustration-free models
with Hamiltonians of the form

HA(S) = hets Y d(b(n) =Y (s, X).

xEN x€N,n>0 XCA

with uniformly bounded h, € A, (g, sup, ||h|| < oo. I C R¥, Delone.
C1: There are C > 0,q > 0 such that gap(Hp,()(0)) > Cn~9 (non-zero
edge modes do not vanish faster than a power law).

C2: gap(H.,) =7 > 0.

C3: || ®(by(n))|| < [|®]le="", for some a > 0,6 > 0.

C4: LTQO. Denote by Pa the projection onto ker Hy(0). There exists a
positive decreasing function Go for which, for all A € Ay (4,

1Pt (m) AP, (m) — wo(A) Py, (my || < [ All(k + 1)” Go(m — k).

and
Z nP Go(n) < oo, some p > 4v +q
n>1
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Not assuming a uniform gap in finite volume!

3 5

o
(a)
FIG. 7. (a) The radius is 15, ()

Figure: Penrose tiling. Ammann-Beenker tiling. Edges state or not? (T. Loring,
J. Math. Phys. 60, 081903 (2019))
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Theorem (Stability of the bulk gap, N-Sims-Young, arXiv:2102.07209)

If conditions C1-C4 are satisfied, then, for all v € (0,7), there is a
constant 3 > 0, such that the ground state, ws, for ®(s), with

Y — 7
sl < —
ol < B0

is unique, and the gap of H,,. > . For 8 can take

B=Coy n"Go(n).

n

Proved using the strategy of Bravyi-Hastings-Michalakis (2010) and
Michalakis-Zwolak (2013), applied to the GNS Hamiltonian.
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For a model with a gap above the ground state to represent a gapped
phase, the gap should be stable under a broad class of perturbations.

H/\(S) = H/\(O) + SV/\

E) t s

The spectral gap of Ha(s) above the ‘ground state’ is at least ~ for all
0<s< s,’y\.

Stability means that there is a A-independent lower bound for sz\.
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Gapped Ground State Phases

Consider, for a fixed choice of I' and n,, x € T, the set B2 of all
interactions ® € B, 9, some a > 0,6 € (0, 1], such that 5® has a finite set
of gapped ground states. Further restrictions can be imposed
(uniqueness, symmetries ...).

Then, a gapped ground state phase is an equivalence class for an
equivalence relation defined on B&4PPe?.
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Mathematical definitions

Suppose @y and ®; are two interactions in the class B, ¢, with ground
state sets S® and S*1, respectively.

Definition 1. (Equivalence of interactions)

The interactions g and ®; belong to the same phase if there exists a
differentiable curve of interactions [0,1] 3 s — ®(s) in B, such that

L. ®(0) = ®o, d(1) = ¥y;
2. There exists a constant 7/ > 0, such that for all s € [0, 1] ®(s) has
gapped ground states with gap ' > 0.

3. There exist a’ > 0,6’ € (0, 1], such that ®(-) € B}, 4 ([0, 1]), defined
as the Banach space of interactions for which, with

F(r)=e="" Fo(r),

1
Sup =———~ (X, s)|| + [X][|®(X, s)]
28 F000) 327 e

is a bounded by a bounded measurable function of s.
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Suppose Sy and S; are two finite sets of pure states of Ar.
Definition 2. (Equivalence of states)
The sets of states Sp and Sy are automorphically equivalent (in the
stretched exponential locality class) if there exists a continuous curve of
interactions [0,1] 3 s — W(s) such that
1. There exist a’ > 0,0’ € (0, 1], such that for all s € [0, 1],
V(s) € By g;
2. [0,1] > s — W(s) is piecewise continuous in the norm of
By 6:([0,1]);
3. The family of automorphisms «s o generated by W(s) satisfies

S = {WOOALO | w ES()}.

It is easy to show that these two definitions define equivalence relations.

We would like to define a gapped ground state phase as an equivalence
class. Which definition should we use?
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Theorem (Equivalence of the Defs 1 and 2, N arXiv:2205.10460)

(i) (Def 2 = Def 1) Let Sy be a set of mutually disjoint pure ground
states gap bounded below by ~y > 0 for the dynamics with generator dg
defined by an interaction &g € B, ¢, for some a > 0,60 € (0,1]. If a set of
states Sy is automorphically equivalent to Sy in the stretched exponential
locality class, then there exists a differentiable curve of interactions of
class BY, 4/([0,1]), for some a’ > 0,6" € (0,1], ®(s), s € [0, 1], with

®(0) = &y, and such that Sy are gapped ground states with gap
bounded below by ~y for the dynamics generated by $(1).

(ii) (Def 1 = Def 2) Suppose s — ®(s) is a differentiable curve of
interactions of class 8379([0, 1]), such that there exists v > 0 and sets of
mutually disjoint pure gapped ground states S, s € [0, 1], with gap
bounded below by ~y. Then, there exists as strongly continuous curve of
automorphisms as of class By ¢/([0,1]), such that

Ss ={woasg|we So}.

This a mathematical version of the definition of ‘gapped phase’ given in
Xie Chen, Zheng-Cheng Gu, Xiao-Gang Wen, Phys. Rev. B 82, 155138 (2010).
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Ogata’s construction of an invariant for Symmetry
Protected Topologic (SPT) Phases

SPT phases are gapped ground state phases defined by restricting to

o c Bgapped that share a symmetry given by a representation of a group
G, and aIso requiring that the interpolating curves have that symmetry at
every point.

Bgapped (

Furthermore, one focusses on the trivial phase in without

symmetry condition).

The same invariant (index) was proposed by several authors:
Chen-Gu-Wen 2010-11, Pollmann-Turner-Berg-Oshikawa 2010-11, ....
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Example
The AKLT chain (Affleck-Kennedy-Lieb-Tasaki 1987-88) is the spin-1 chain
with nearest neighbor interaction given by

PANT = J14 28, St + £(S- el
which is a 5-dim projection. In (Bachmann-N 2014) we constructed a
Cl-curve of projections P(s) such that P(1) = PAKLT and the model
with nn interaction P(0) has a unique product ground state in the TL
and we show a uniform positive lower bound for the gap for s € [0, 1].
This implies that the AKLT chain belongs to the same phase as the
model with a unique product ground state (the trivial phase).

In contrast, if we one restricts interpolations that respect spin rotation
symmetry about 1 axis and an additional Z; symmetry, an index
argument shows that any curve connecting the AKLT model with a
model in the trivial phase, must pass through a phase transition where
the gap closes (Tasaki 2018, Ogata 2019-20). This implies that the AKLT
chain belongs to a SPT phase distinct from the trivial phase.



2l

The
‘Chen-Gu-Wen-Pollmann-Turner-Berg-Oshikawa-Ogata’
index

1. The AKLT chain

2. Ogata's general construction
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Ogata’s construction of an SPT invariant for quantum
spin chains

Setting: [ = Z, an interaction ® with a unique gapped ground state in
the trivial phase.

Concretely, ® € Bfigpped, and @ is connected by a differentiable gapped
path to ®g, defined by

®o(X) =0, unless X = {x},x €T, and ¢({x}) = (1 —10)(0])x-

®y has a unique gapped ground state given by the product state
(0l - 0).
X

® is assumed to have a local symmetry given by unitary representations
Ux(g) of a group G. For the infinite chain this symmetry is described by
the automorphisms

Bg(A) = (® Ux(g)*) A <® Ux(g)> 7A S .AZ~
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For Symmetry Protected Phases, we define equivalence by only using
differentiable paths of interactions that all have the same G-symmetry.

We want an invariant for the resulting equivalence classes of
G-symmetric interactions with a unique gapped ground state which is
equivalent to ®q (without the symmetry).

Theorem (Ogata, TAMS 2021)

There exists an H*>(G, U(1))-valued invariant for the SPT equivalence
classes.

Coincides with the invariants given by Pollmann-Turner-Berg-Oshikawa,
2010-11 and Chen-Gu-Wen, 2010-11 in a more restricted context.

The H?(G, U(1))-valued invariant classifies the projective representations
of G. The proof of the theorem is by constructing such a representation.

Inspired by what we found for the AKLT chain, we look for a unitary
implementation of the symmetry G on a half-chain.
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Starting point: ® ~ ®q implies the existence of a gapped interpolating

path ®(s),s € [0,1], ®(0) = &g, d(1) = ¥, and an associated interaction

W(s), that generates the quasi-adiabatic evolution «as. In particular

W1 = Wp © Q1.
Important property: W € By ¢/([0,1]), i.e., of fast decay. This means
V(s) can be decoupled by a bounded perturbation.
Define ', = (—00,0] and ' = [1,00) and V(s)s. t
Y(s) = V(s)+ V(s), with
W(s,X) = W(s,X)if X CT,or X C g, 0otherwise.
Considering V/(s) as a perturbation and using interaction picture gives

unitaries U(s) s.t
as = &s o AdU(s)

U(s) is the solution of

da(sl

Vit (s)U(s), U(0) =1

and Vint = d;l(V(s))Q_.—-



alt @ ak, we have

Since wyq is product and as =
P —
w1 = wp ooy =wgo dyoAdU;.

In other words, we have states w and wR of the half-chains such that
(1)

w1 = whk @wlk o AdUy
In particular wy ~ wh ® Wi and then also wy 0 Bz ~ (WE @ wl)o B
p 1 1 1 1°Pg W1 1 s

Next, recall wy o Bg =wi and By = ﬂé— ® ﬁg.

Therefore,
(wi ®wf) 0 Bg = (wi 0 B) @ (wf 0 BF) ~ w1 ~ Wi ®wf

This gives
R _ gR R
wp © ﬂg : 1

and also
L R _ oR L R
wy @ (wy 0 Bg) ~wp ®uwy ~ w1

The lefthand side is unitarily equivalent to w; o A%, due to (1).
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Conclusion:
R
wy 0 By ~ w1

This means that Sf is implemented by a unitary UF in the GNS
representation of wy:

w1 0 BF(A) = (Q, (US)*m(A)UZQ).
Since 7 is an irreducible representation and
(UR) (US) m()UFUR = m o Bgn = (Ugy) (- Ugh

whence
Uge (UR) (U 7 () URUR (UG = = (),

we must gave c(g, h) € U(1) s.t.
UFUR(UE)" = clgo )1

with ¢ belonging to an equivalence class of 2-cycles labeled by an
element of H?(G, U(1)).



2l

Second cohomology group H?(G, U(1)) of a finite group.
Let G be a finite group, H a complex Hilbert space, and U : G — B(H)

such that
)Uge‘) = clg: h)U(gh).

with c(g, h) € U(1). U is called a prOJectlve representation of G.

Given such U and any ¢ : G — U(1), U(g) := ¢(g)U(g) also defines
projective representation of G. When two projective representations are
related in this way, we call them equivalent.

It is possible that there exists ¢ such that U is a (proper) unitary
representation of G.

The associativity of group multiplication implies the 2 co-cyle property of
c(g, h): for g,h,k e G

c(gh, k)c(g, h)U(ghk) = U(gh)U(k) = U(g)U(hk) = c(g, hk)c(h, k)U(ghk)

Hence
c(gh. k)c(g. h) = c(g, hk)c(h, k), g, h k€ G.
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The equivalence relation for U's becomes an equivalence relation for 2
co-cycles: ¢ and ¢ are equivalent if there exists ¢ : G — U(1) for which

« _ wg)e(h)

The set of equivalence classes of 2-co-cycles is an abelian group for
pointwise multiplication: H2(G, U(1)).

g, heG.

For example: H?(Z,, U(1)) = {0}, H*(Za x Zy, U(1)) = Z,.

The equivalence class of projective representations of G are in 1-1.
correspondence with the elements of H2(G, U(1)).
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Remarks

| 4

Similar invariants for fermion models and in 2 two dimensions Ogata,
Bourne-Ogata, Sopenko

There are other approaches focussing on states rather than the
interactions Kapustin-Sopenko-Wang, ... 2019-22

Discrete analogue: one replaces the automorphisms by finite depth
circuits (many authors)

MPS and TNS states served as an inspiration for many of the ideas



