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Goal

Given a finite point set P ⊆ Rd and a center q ∈ Rd , we want to study
the homology of the union of balls centered in P locally around q.

We want to do this for varying radii of the balls as well as varying scope of
locality.
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Outline

(1) Define an absolute bifiltration where the union of balls is restricted to
Br (q) and compute a homologous simplicial bifiltration.

(2) Define a relative bifiltration where the union of balls is restricted to the
q-ball and homology is taken relative to the boundary of the q-ball.
Compute a homologous simplicial bifiltration.
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Bifiltrations

For s, s ′, r , r ′ ∈ R write (s, r) ≤ (s ′, r ′) if s ≤ s ′ and r ≤ r ′.

X := (Xs,r )s,r≥0 collection of topological spaces (or abstract simplicial
complexes).
X is a (simplicial) bifiltration if Xs,r ⊆ Xs′,r ′ whenever (s, r) ≤ (s ′, r ′).

Two bifiltrations X and Y are equivalent whenever there are homotopy
equivalences ϕs,r : Xs,r → Ys,r that commute with the inclusion maps.
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Part 1: The absolute case
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The absolute localized bifiltration
Input: P = {p1, . . . , pn} ⊆ Rd and a center q ∈ Rd .

Ls,r :=

⋃
p∈P

Bs(p)

 ∩ Br (q)

We call L := (Ls,r )s,r≥0 the absolute localized bifiltration.
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The absolute localized bifiltration

The absolute localized bifiltration corresponds to the diagram R2 → Top:

...
...

· · · Ls,r ′ Ls′,r ′ · · ·

· · · Ls,r Ls′,r · · ·

...
...
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Computing the absolute localized bifiltration
Define a bifiltration of abstract simplicial complexes which is equivalent to
the absolute localized bifiltration by the persistent nerve theorem.

Canonical choice: Restricted Čech filtration. Take the simplicial bifiltration
K := (Ks,r )s,r≥0 where Ks,r := Nrv {Bs(p) ∩ Br (q)}p∈P
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Computing the absolute localized bifiltration

Problem: Even for small ambient dimensions, the Čech complex is getting
pretty large.

Solution: Use restricted alpha complexes instead.
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The localized alpha bifiltration

For a point p ∈ P = {p1, . . . , pn} ⊆ Rd define its Voronoi region as

Vor(p) := {x ∈ Rd | ∥x − p∥ ≤ ∥x − p′∥ ∀p′ ∈ P}

The Voronoi diagram of P is the collection of all its Voronoi regions and
their boundaries.

The Delaunay triangulation is the nerve of the family of Voronoi regions of
P.
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The alpha complex

For a point p ∈ P = {p1, . . . , pn} ⊆ Rd and radius s ∈ R≥0 we define its
alpha cell as Rs(p) := Vor(p) ∩ Bs(p).

The alpha complex is As = {{p1, . . . , pk} ⊆ P | Rs(p1)∩ · · · ∩Rs(pk) ̸= ∅}
and the alpha filtration is a filtration of alpha complexes.
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The localized alpha complex
Let P = {p1, . . . , pn} ⊆ Rd , q ∈ Rd .

For p ∈ P, define restricted alpha cells: Us,r (p) := Bs(p) ∩ Vor(p) ∩ Br (q)
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The localized alpha bifiltration
These localized alpha complexes form the localized alpha bifiltration
A := {As,r}s,r≥0.

By the persistent nerve theorem, Hk(Ls,r ) ∼= Hk(As,r ) and these
isomorphisms commute with the inclusion maps of Ls,r and As,r .
Therefore L and A are equivalent
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Active regions

We can compute the localized alpha bifiltration A = {As,r}s,r≥0 if we
know for each possible simplex σ ∈ A (that is, each simplex in the
Delaunay triangulation) its active region

Rσ = {(s, r) ∈ R2 | σ ∈ As,r}

s

r
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Active regions

As,r := {{p1, . . . , pk} ⊆ P | Us,r (p1) ∩ · · · ∩ Us,r (pk) ̸= ∅}
where Us,r (p) := Bs(p) ∩ Vor(p) ∩ Br (q)

For σ = {p1, . . . , pk} write Vσ = Vor(p1) ∩ · · · ∩Vor(pk) and p = p1.
Then, σ ∈ As,r if and only if Vσ ∩ Bs(p) ∩ Br (q) ̸= ∅.
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Active regions

σ ∈ As,r if and only if Vσ ∩ Bs(p) ∩ Br (q) ̸= ∅.

Remember: Active region: Rσ = {(s, r) ∈ R2 | σ ∈ As,r}
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Minimizing paths

We are interested in the boundary of the active region Rσ for s ∈ [s0, s1].
This curve is, for s ∈ [s0, s1], the minimal r -value such that σ ∈ As,r which
is the distance of q to the set Vσ ∩ Bs(p).
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Minimizing paths
For s ∈ [s0, s1] let γs be the closest point to q in Vσ ∩ Bs(p).

Defines a function γ : [s0, s1] → Rd where s 7→ γs , the minimizing path.

The minimizing path is continuous and injective.

q

p
p̂

q̂

Bs(3)(p) Bs(2)(p) Bs(1)(p)

γs(1)

γs(2)

γs(3)
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Computing the minimizing path
Vσ ∩ pq is called the bridge of (Vσ, p, q).

Each point on γ lies on the brige or on ∂Vσ.

If a point lies on ∂V , then it either lies on the bridge of the minimizing
path of ∂V regarding the projections of p, q onto the supporting
hyperplane of ∂V or on ∂(∂V ).

Theorem Every point on the minimizing path lies on a bridge. The
minimizing path is a polygonal chain starting in p̂ and ending in q̂.

q

p
p̂

q̂

Bs(3)(p) Bs(2)(p) Bs(1)(p)

γs(1)

γs(2)
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Computing the minimizing path
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Computing the minimizing path
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Computing the minimizing path
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Implementation

Let Vσ be the Voronoi polytope of the Delaunay simplex σ.

Compute all bridges of Vσ and of its faces f . Build directed graph such
that distance to p increases along every bridge.
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Complexity

Delaunay triangulation of size N.

Computing all bridges: O(N).

f faces, constructed graph has O(f ) faces and the traversal is done in
O(f ) time as well.

Theorem Let P be n points in general position in Rd where d is constant.
Let N be the size of the Delaunay triangulation of P. We can compute the
entry curves of all Delaunay simplices in time O(N).

Matthias Söls (TU Graz) 25. April 2023 29 / 39



Complexity

Delaunay triangulation of size N.

Computing all bridges: O(N).

f faces, constructed graph has O(f ) faces and the traversal is done in
O(f ) time as well.

Theorem Let P be n points in general position in Rd where d is constant.
Let N be the size of the Delaunay triangulation of P. We can compute the
entry curves of all Delaunay simplices in time O(N).
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Active regions

For a line segment ab of the minimizing path γ, set
s = ∥p − ((1− t)a+ tb∥2
r = ∥q − ((1− t)a+ tb∥2
For t ∈ [0, 1] this yields an parabola or line.

s

r
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∞-criticality

s

r

s

r
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Part 2: The relative case
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The relative localized bifiltration

(s, r) ≤ (s ′, r ′) if s ≤ s ′ and r ≥ r ′.

...
...

· · · (Ls , Ls\Bo
r ′(q)) (Ls′ , Ls′\Bo

r ′(q)) · · ·

· · · (Ls , Ls\Bo
r (q)) (Ls′ , Ls′\Bo

r (q)) · · ·

...
...
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The relative localized persistence bimodule

...
...

· · · Hk(Ls , Ls\Bo
r ′(q)) Hk(Ls′ , Ls′\Bo

r ′(q)) · · ·

· · · Hk(Ls , Ls\Bo
r (q)) Hk(Ls′ , Ls′\Bo

r (q)) · · ·

...
...
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The relative localized persistence bimodule

The rows correspond (by excision) to the persistence module

· · · → Hk(Ls ∩ Br (q), Ls ∩ ∂Br (q)) → Hk(Ls′ ∩ Br (q), Ls′ ∩ ∂Br (q)) → · · ·

which was studied in

Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John
Harer, and Dmitriy Morozov. Inferring Local Homology from Sampled
Stratified Spaces. (FOCS 2007)

Paul Bendich, Bei Wang, and Sayan Mukherjee. Local Homology
Transfer and Stratification Learning. (SODA 2012)

Primoz Skraba and Bei Wang. Approximating Local Homology from
Samples. (SODA 2014)
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Computing the relative localized persistence bimodule

(X ,A) pair of topological spaces.
UX cover of X and UA cover of A induced by restricting the elements of
UX to A.

We want to find UX such that both UX and UA are good.

In that case there is a homotopy equivalence ϕ : X → Nrv UX which
restricts on A to a homotopy equivalence A → Nrv UX .
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A good cover in R2

Br1(q)

Br2(q)

Br3(q)

V1

V2

V3
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Further work

Subdivision scheme in relative case for higher dimensions?

Computation of minimal presentations for ∞-critical bifiltrations?

Consider a sample of centers and analyse ensemble of localized
bifiltrations?

Applications?
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