The Localized Union-of-Balls Bifiltration

Michael Kerber and Matthias Söls

TU Graz
accepted for the
39th International Symposium on Computational Geometry
(SoCG 2023)

Goal

Given a finite point set $P \subseteq \mathbb{R}^{d}$ and a center $q \in \mathbb{R}^{d}$, we want to study the homology of the union of balls centered in P locally around q.

Goal

Given a finite point set $P \subseteq \mathbb{R}^{d}$ and a center $q \in \mathbb{R}^{d}$, we want to study the homology of the union of balls centered in P locally around q.

We want to do this for varying radii of the balls as well as varying scope of locality.

Outline

(1) Define an absolute bifiltration where the union of balls is restricted to $B_{r}(q)$ and compute a homologous simplicial bifiltration.

Outline

(1) Define an absolute bifiltration where the union of balls is restricted to $B_{r}(q)$ and compute a homologous simplicial bifiltration.
(2) Define a relative bifiltration where the union of balls is restricted to the q-ball and homology is taken relative to the boundary of the q-ball. Compute a homologous simplicial bifiltration.

Outline

(1) Define an absolute bifiltration where the union of balls is restricted to $B_{r}(q)$ and compute a homologous simplicial bifiltration.
(2) Define a relative bifiltration where the union of balls is restricted to the q-ball and homology is taken relative to the boundary of the q-ball. Compute a homologous simplicial bifiltration.

Bifiltrations

For $s, s^{\prime}, r, r^{\prime} \in \mathbb{R}$ write $(s, r) \leq\left(s^{\prime}, r^{\prime}\right)$ if $s \leq s^{\prime}$ and $r \leq r^{\prime}$.

Bifiltrations

For $s, s^{\prime}, r, r^{\prime} \in \mathbb{R}$ write $(s, r) \leq\left(s^{\prime}, r^{\prime}\right)$ if $s \leq s^{\prime}$ and $r \leq r^{\prime}$.
$X:=\left(X_{s, r}\right)_{s, r \geq 0}$ collection of topological spaces (or abstract simplicial complexes).
X is a (simplicial) bifiltration if $X_{s, r} \subseteq X_{s^{\prime}, r^{\prime}}$ whenever $(s, r) \leq\left(s^{\prime}, r^{\prime}\right)$.

Bifiltrations

For $s, s^{\prime}, r, r^{\prime} \in \mathbb{R}$ write $(s, r) \leq\left(s^{\prime}, r^{\prime}\right)$ if $s \leq s^{\prime}$ and $r \leq r^{\prime}$.
$X:=\left(X_{s, r}\right)_{s, r \geq 0}$ collection of topological spaces (or abstract simplicial complexes).
X is a (simplicial) bifiltration if $X_{s, r} \subseteq X_{s^{\prime}, r^{\prime}}$ whenever $(s, r) \leq\left(s^{\prime}, r^{\prime}\right)$.
Two bifiltrations X and Y are equivalent whenever there are homotopy equivalences $\phi_{s, r}: X_{s, r} \rightarrow Y_{s, r}$ that commute with the inclusion maps.

Part 1: The absolute case

The absolute localized bifiltration

Input: $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ and a center $q \in \mathbb{R}^{d}$.

The absolute localized bifiltration

Input: $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ and a center $q \in \mathbb{R}^{d}$.

$$
L_{s, r}:=\left(\bigcup_{p \in P} B_{s}(p)\right) \cap B_{r}(q)
$$

The absolute localized bifiltration

 Input: $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ and a center $q \in \mathbb{R}^{d}$.$$
L_{s, r}:=\left(\bigcup_{p \in P} B_{s}(p)\right) \cap B_{r}(q)
$$

We call $L:=\left(L_{s, r}\right)_{s, r \geq 0}$ the absolute localized bifiltration.

The absolute localized bifiltration

The absolute localized bifiltration corresponds to the diagram $\mathbb{R}^{2} \rightarrow$ Top:

Computing the absolute localized bifiltration
 Define a bifiltration of abstract simplicial complexes which is equivalent to the absolute localized bifiltration by the persistent nerve theorem.

Computing the absolute localized bifiltration

Define a bifiltration of abstract simplicial complexes which is equivalent to the absolute localized bifiltration by the persistent nerve theorem.

Canonical choice: Restricted Čech filtration. Take the simplicial bifiltration $K:=\left(K_{s, r}\right)_{s, r \geq 0}$ where $K_{s, r}:=\operatorname{Nrv}\left\{B_{s}(p) \cap B_{r}(q)\right\}_{p \in P}$

Computing the absolute localized bifiltration

Problem: Even for small ambient dimensions, the Čech complex is getting pretty large.

Computing the absolute localized bifiltration

Problem: Even for small ambient dimensions, the Čech complex is getting pretty large.

Solution: Use restricted alpha complexes instead.

Computing the absolute localized bifiltration

Problem: Even for small ambient dimensions, the Čech complex is getting pretty large.

Solution: Use restricted alpha complexes instead.

The localized alpha bifiltration

For a point $p \in P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ define its Voronoi region as

$$
\operatorname{Vor}(p):=\left\{x \in \mathbb{R}^{d} \mid\|x-p\| \leq\left\|x-p^{\prime}\right\| \forall p^{\prime} \in P\right\}
$$

The localized alpha bifiltration

For a point $p \in P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ define its Voronoi region as

$$
\operatorname{Vor}(p):=\left\{x \in \mathbb{R}^{d} \mid\|x-p\| \leq\left\|x-p^{\prime}\right\| \forall p^{\prime} \in P\right\}
$$

The Voronoi diagram of P is the collection of all its Voronoi regions and their boundaries.

The localized alpha bifiltration

For a point $p \in P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ define its Voronoi region as

$$
\operatorname{Vor}(p):=\left\{x \in \mathbb{R}^{d} \mid\|x-p\| \leq\left\|x-p^{\prime}\right\| \forall p^{\prime} \in P\right\}
$$

The Voronoi diagram of P is the collection of all its Voronoi regions and their boundaries.

The Delaunay triangulation is the nerve of the family of Voronoi regions of P.

The alpha complex

For a point $p \in P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ and radius $s \in \mathbb{R}_{\geq 0}$ we define its alpha cell as $R_{s}(p):=\operatorname{Vor}(p) \cap B_{s}(p)$.

The alpha complex

For a point $p \in P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}$ and radius $s \in \mathbb{R}_{\geq 0}$ we define its alpha cell as $R_{s}(p):=\operatorname{Vor}(p) \cap B_{s}(p)$.

The alpha complex is $A_{s}=\left\{\left\{p_{1}, \ldots, p_{k}\right\} \subseteq P \mid R_{s}\left(p_{1}\right) \cap \cdots \cap R_{s}\left(p_{k}\right) \neq \emptyset\right\}$ and the alpha filtration is a filtration of alpha complexes.

The localized alpha complex

Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}, q \in \mathbb{R}^{d}$.

The localized alpha complex

Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}, q \in \mathbb{R}^{d}$.

For $p \in P$, define restricted alpha cells: $U_{s, r}(p):=B_{s}(p) \cap \operatorname{Vor}(p) \cap B_{r}(q)$

The localized alpha complex
Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}, q \in \mathbb{R}^{d}$.
For $p \in P$, define restricted alpha cells: $U_{s, r}(p):=B_{s}(p) \cap \operatorname{Vor}(p) \cap B_{r}(q)$

The localized alpha complex
Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}, q \in \mathbb{R}^{d}$.
For $p \in P$, define restricted alpha cells: $U_{s, r}(p):=B_{s}(p) \cap \operatorname{Vor}(p) \cap B_{r}(q)$

The localized alpha complex
Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}, q \in \mathbb{R}^{d}$.
For $p \in P$, define restricted alpha cells: $U_{s, r}(p):=B_{s}(p) \cap \operatorname{Vor}(p) \cap B_{r}(q)$

The localized alpha complex is $A_{s, r}=\operatorname{Nrv}\left(\left\{U_{s, r}(p)\right\}_{p \in P}\right)$.

The localized alpha complex
Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{d}, q \in \mathbb{R}^{d}$.
For $p \in P$, define restricted alpha cells: $U_{s, r}(p):=B_{s}(p) \cap \operatorname{Vor}(p) \cap B_{r}(q)$
The localized alpha complex is $A_{s, r}=\operatorname{Nrv}\left(\left\{U_{s, r}(p)\right\}_{p \in P}\right)$.

The localized alpha bifiltration

These localized alpha complexes form the localized alpha bifiltration $A:=\left\{A_{s, r}\right\}_{s, r \geq 0}$.

The localized alpha bifiltration

These localized alpha complexes form the localized alpha bifiltration $A:=\left\{A_{s, r}\right\}_{s, r \geq 0}$.

By the persistent nerve theorem, $H_{k}\left(L_{s, r}\right) \cong H_{k}\left(A_{s, r}\right)$ and these isomorphisms commute with the inclusion maps of $L_{s, r}$ and $A_{s, r}$. Therefore L and A are equivalent

Active regions

We can compute the localized alpha bifiltration $A=\left\{A_{s, r}\right\}_{s, r \geq 0}$ if we know for each possible simplex $\sigma \in A$ (that is, each simplex in the Delaunay triangulation) its active region

$$
R_{\sigma}=\left\{(s, r) \in \mathbb{R}^{2} \mid \sigma \in A_{s, r}\right\}
$$

Active regions

$A_{s, r}:=\left\{\left\{p_{1}, \ldots, p_{k}\right\} \subseteq P \mid U_{s, r}\left(p_{1}\right) \cap \cdots \cap U_{s, r}\left(p_{k}\right) \neq \emptyset\right\}$ where $U_{s, r}(p):=B_{s}(p) \cap \operatorname{Vor}(p) \cap B_{r}(q)$

For $\sigma=\left\{p_{1}, \ldots, p_{k}\right\}$ write $V_{\sigma}=\operatorname{Vor}\left(p_{1}\right) \cap \cdots \cap \operatorname{Vor}\left(p_{k}\right)$ and $p=p_{1}$. Then, $\sigma \in A_{s, r}$ if and only if $V_{\sigma} \cap B_{s}(p) \cap B_{r}(q) \neq \emptyset$.

Active regions

$$
\sigma \in A_{s, r} \text { if and only if } V_{\sigma} \cap B_{s}(p) \cap B_{r}(q) \neq \emptyset \text {. }
$$

Remember: Active region: $R_{\sigma}=\left\{(s, r) \in \mathbb{R}^{2} \mid \sigma \in A_{s, r}\right\}$

Active regions

$$
\sigma \in A_{s, r} \text { if and only if } V_{\sigma} \cap B_{s}(p) \cap B_{r}(q) \neq \emptyset \text {. }
$$

Remember: Active region: $R_{\sigma}=\left\{(s, r) \in \mathbb{R}^{2} \mid \sigma \in A_{s, r}\right\}$

Active regions

$\sigma \in A_{s, r}$ if and only if $V_{\sigma} \cap B_{s}(p) \cap B_{r}(q) \neq \emptyset$.
Remember: Active region: $R_{\sigma}=\left\{(s, r) \in \mathbb{R}^{2} \mid \sigma \in A_{s, r}\right\}$

Minimizing paths

We are interested in the boundary of the active region R_{σ} for $s \in\left[s_{0}, s_{1}\right]$. This curve is, for $s \in\left[s_{0}, s_{1}\right]$, the minimal r-value such that $\sigma \in A_{s, r}$ which is the distance of q to the set $V_{\sigma} \cap B_{s}(p)$.

Minimizing paths

For $s \in\left[s_{0}, s_{1}\right]$ let γ_{s} be the closest point to q in $V_{\sigma} \cap B_{s}(p)$.

Minimizing paths

For $s \in\left[s_{0}, s_{1}\right]$ let γ_{s} be the closest point to q in $V_{\sigma} \cap B_{s}(p)$.
Defines a function $\gamma:\left[s_{0}, s_{1}\right] \rightarrow \mathbb{R}^{d}$ where $s \mapsto \gamma_{s}$, the minimizing path.

Minimizing paths

For $s \in\left[s_{0}, s_{1}\right]$ let γ_{s} be the closest point to q in $V_{\sigma} \cap B_{s}(p)$.
Defines a function $\gamma:\left[s_{0}, s_{1}\right] \rightarrow \mathbb{R}^{d}$ where $s \mapsto \gamma_{s}$, the minimizing path.
The minimizing path is continuous and injective.

Minimizing paths

For $s \in\left[s_{0}, s_{1}\right]$ let γ_{s} be the closest point to q in $V_{\sigma} \cap B_{s}(p)$.
Defines a function $\gamma:\left[s_{0}, s_{1}\right] \rightarrow \mathbb{R}^{d}$ where $s \mapsto \gamma_{s}$, the minimizing path.
The minimizing path is continuous and injective.

Computing the minimizing path

$V_{\sigma} \cap \overline{p q}$ is called the bridge of $\left(V_{\sigma}, p, q\right)$.

Computing the minimizing path

$V_{\sigma} \cap \overline{p q}$ is called the bridge of $\left(V_{\sigma}, p, q\right)$.
Each point on γ lies on the brige or on ∂V_{σ}.

Computing the minimizing path

$V_{\sigma} \cap \overline{p q}$ is called the bridge of $\left(V_{\sigma}, p, q\right)$.
Each point on γ lies on the brige or on ∂V_{σ}.

If a point lies on ∂V, then it either lies on the bridge of the minimizing path of ∂V regarding the projections of p, q onto the supporting hyperplane of ∂V or on $\partial(\partial V)$.

Computing the minimizing path

$V_{\sigma} \cap \overline{p q}$ is called the bridge of $\left(V_{\sigma}, p, q\right)$. Each point on γ lies on the brige or on ∂V_{σ}.

If a point lies on ∂V, then it either lies on the bridge of the minimizing path of ∂V regarding the projections of p, q onto the supporting hyperplane of ∂V or on $\partial(\partial V)$.

Theorem Every point on the minimizing path lies on a bridge. The minimizing path is a polygonal chain starting in \hat{p} and ending in \hat{q}.

Computing the minimizing path

Implementation

Let V_{σ} be the Voronoi polytope of the Delaunay simplex σ.

Implementation

Let V_{σ} be the Voronoi polytope of the Delaunay simplex σ.
Compute all bridges of V_{σ} and of its faces f. Build directed graph such that distance to p increases along every bridge.

Implementation

Let V_{σ} be the Voronoi polytope of the Delaunay simplex σ.
Compute all bridges of V_{σ} and of its faces f. Build directed graph such that distance to p increases along every bridge.

Complexity

Delaunay triangulation of size N.

Complexity

Delaunay triangulation of size N.

Computing all bridges: $O(N)$.

Complexity

Delaunay triangulation of size N.

Computing all bridges: $O(N)$.
f faces, constructed graph has $O(f)$ faces and the traversal is done in $O(f)$ time as well.

Complexity

Delaunay triangulation of size N.
Computing all bridges: $O(N)$.
f faces, constructed graph has $O(f)$ faces and the traversal is done in $O(f)$ time as well.

Theorem Let P be n points in general position in \mathbb{R}^{d} where d is constant. Let N be the size of the Delaunay triangulation of P. We can compute the entry curves of all Delaunay simplices in time $O(N)$.

Active regions

For a line segment $\overline{a b}$ of the minimizing path γ, set $s=\| p-\left((1-t) a+t b \|^{2}\right.$
$r=\| q-\left((1-t) a+t b \|^{2}\right.$
For $t \in[0,1]$ this yields an parabola or line.

∞-criticality

Part 2: The relative case

The relative localized bifiltration

$$
(s, r) \leq\left(s^{\prime}, r^{\prime}\right) \text { if } s \leq s^{\prime} \text { and } r \geq r^{\prime} \text {. }
$$

The relative localized persistence bimodule

The relative localized persistence bimodule

The rows correspond (by excision) to the persistence module
$\cdots \rightarrow H_{k}\left(L_{s} \cap B_{r}(q), L_{s} \cap \partial B_{r}(q)\right) \rightarrow H_{k}\left(L_{s^{\prime}} \cap B_{r}(q), L_{s^{\prime}} \cap \partial B_{r}(q)\right) \rightarrow \cdots$
which was studied in

- Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Inferring Local Homology from Sampled Stratified Spaces. (FOCS 2007)
- Paul Bendich, Bei Wang, and Sayan Mukherjee. Local Homology Transfer and Stratification Learning. (SODA 2012)
- Primoz Skraba and Bei Wang. Approximating Local Homology from Samples. (SODA 2014)

Computing the relative localized persistence bimodule

(X, A) pair of topological spaces.
\mathcal{U}_{X} cover of X and \mathcal{U}_{A} cover of A induced by restricting the elements of \mathcal{U}_{X} to A.

Computing the relative localized persistence bimodule

(X, A) pair of topological spaces.
\mathcal{U}_{X} cover of X and \mathcal{U}_{A} cover of A induced by restricting the elements of \mathcal{U}_{X} to A.

We want to find \mathcal{U}_{X} such that both \mathcal{U}_{X} and \mathcal{U}_{A} are good.

Computing the relative localized persistence bimodule

(X, A) pair of topological spaces.
\mathcal{U}_{X} cover of X and \mathcal{U}_{A} cover of A induced by restricting the elements of \mathcal{U}_{X} to A.

We want to find \mathcal{U}_{X} such that both \mathcal{U}_{X} and \mathcal{U}_{A} are good.

In that case there is a homotopy equivalence $\phi: X \rightarrow \operatorname{Nrv} \mathcal{U}_{X}$ which restricts on A to a homotopy equivalence $A \rightarrow \operatorname{Nrv} \mathcal{U}_{X}$.

A good cover in \mathbb{R}^{2}

A good cover in \mathbb{R}^{2}

Further work

- Subdivision scheme in relative case for higher dimensions?
- Computation of minimal presentations for ∞-critical bifiltrations?
- Consider a sample of centers and analyse ensemble of localized bifiltrations?
- Applications?

