The Localized Union-of-Balls Bifiltration

Michael Kerber and Matthias Söls

TU Graz

accepted for the 39th International Symposium on Computational Geometry (SoCG 2023)

ヨト イヨト

< A > <

Given a finite point set $P \subseteq \mathbb{R}^d$ and a *center* $q \in \mathbb{R}^d$, we want to study the homology of the union of balls centered in P locally around q.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Given a finite point set $P \subseteq \mathbb{R}^d$ and a *center* $q \in \mathbb{R}^d$, we want to study the homology of the union of balls centered in P locally around q.

We want to do this for varying radii of the balls as well as varying scope of locality.

- 4 回 ト 4 三 ト 4 三 ト

Outline

(1) Define an *absolute* bifiltration where the union of balls is restricted to $B_r(q)$ and compute a homologous simplicial bifiltration.

э

イロト イヨト イヨト

Outline

(1) Define an *absolute* bifiltration where the union of balls is restricted to $B_r(q)$ and compute a homologous simplicial bifiltration.

(2) Define a *relative* bifiltration where the union of balls is restricted to the q-ball and homology is taken relative to the boundary of the q-ball. Compute a homologous simplicial bifiltration.

イロト イヨト イヨト ・

Outline

(1) Define an *absolute* bifiltration where the union of balls is restricted to $B_r(q)$ and compute a homologous simplicial bifiltration.

(2) Define a *relative* bifiltration where the union of balls is restricted to the q-ball and homology is taken relative to the boundary of the q-ball. Compute a homologous simplicial bifiltration.

A B A A B A

Bifiltrations

For $s, s', r, r' \in \mathbb{R}$ write $(s, r) \leq (s', r')$ if $s \leq s'$ and $r \leq r'$.

э

イロン イヨン イヨン

Bifiltrations

For $s, s', r, r' \in \mathbb{R}$ write $(s, r) \leq (s', r')$ if $s \leq s'$ and $r \leq r'$.

 $X := (X_{s,r})_{s,r \ge 0}$ collection of topological spaces (or abstract simplicial complexes).

X is a (simplicial) bifiltration if $X_{s,r} \subseteq X_{s',r'}$ whenever $(s,r) \leq (s',r')$.

イロト 不得下 イヨト イヨト 二日

Bifiltrations

For $s, s', r, r' \in \mathbb{R}$ write $(s, r) \leq (s', r')$ if $s \leq s'$ and $r \leq r'$.

 $X := (X_{s,r})_{s,r \ge 0}$ collection of topological spaces (or abstract simplicial complexes).

X is a (simplicial) bifiltration if $X_{s,r} \subseteq X_{s',r'}$ whenever $(s,r) \leq (s',r')$.

Two bifiltrations X and Y are *equivalent* whenever there are homotopy equivalences $\phi_{s,r} : X_{s,r} \to Y_{s,r}$ that commute with the inclusion maps.

イロト 不得 トイヨト イヨト 二日

Part 1: The absolute case

э

< □ > < 同 > < 回 > < 回 > < 回 >

Input: $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ and a *center* $q \in \mathbb{R}^d$.

э

イロト 不得 トイヨト イヨト

Input: $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ and a center $q \in \mathbb{R}^d$.

$$L_{s,r} := \left(\bigcup_{p \in P} B_s(p)\right) \cap B_r(q)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Input: $P = \{p_1, \ldots, p_n\} \subseteq \mathbb{R}^d$ and a center $q \in \mathbb{R}^d$.

$$L_{s,r} := \left(\bigcup_{p \in P} B_s(p)\right) \cap B_r(q)$$

We call $L := (L_{s,r})_{s,r \ge 0}$ the absolute localized bifiltration.

The absolute localized bifiltration corresponds to the diagram $\mathbb{R}^2 \to \mathbf{Top}$:

<ロ> <四> <四> <四> <四> <四</p>

Define a bifiltration of abstract simplicial complexes which is equivalent to the absolute localized bifiltration by the persistent nerve theorem.

< (17) > < (17) > <

Define a bifiltration of abstract simplicial complexes which is equivalent to the absolute localized bifiltration by the persistent nerve theorem.

Canonical choice: Restricted Čech filtration. Take the simplicial bifiltration $K := (K_{s,r})_{s,r \ge 0}$ where $K_{s,r} := Nrv \{B_s(p) \cap B_r(q)\}_{p \in P}$

Problem: Even for small ambient dimensions, the Čech complex is getting pretty large.

< 4 → <

Problem: Even for small ambient dimensions, the Čech complex is getting pretty large.

Solution: Use restricted alpha complexes instead.

Problem: Even for small ambient dimensions, the Čech complex is getting pretty large.

Solution: Use restricted alpha complexes instead.

For a point $p \in P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ define its Voronoi region as

$$\operatorname{Vor}(p) := \{ x \in \mathbb{R}^d \mid ||x - p|| \le ||x - p'|| \, \forall p' \in P \}$$

э

글 에 에 글 어

For a point $p \in P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ define its Voronoi region as

$$\operatorname{Vor}(p) := \{ x \in \mathbb{R}^d \mid \|x - p\| \le \|x - p'\| \,\, \forall p' \in P \}$$

The *Voronoi diagram* of P is the collection of all its Voronoi regions and their boundaries.

For a point $p \in P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ define its Voronoi region as

$$\operatorname{Vor}(p) := \{x \in \mathbb{R}^d \mid \|x - p\| \le \|x - p'\| \,\, \forall p' \in P\}$$

The *Voronoi diagram* of P is the collection of all its Voronoi regions and their boundaries.

The *Delaunay triangulation* is the nerve of the family of Voronoi regions of *P*.

The alpha complex

For a point $p \in P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ and radius $s \in \mathbb{R}_{\geq 0}$ we define its alpha cell as $R_s(p) := \operatorname{Vor}(p) \cap B_s(p)$.

< ∃⇒

The alpha complex

For a point $p \in P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ and radius $s \in \mathbb{R}_{\geq 0}$ we define its alpha cell as $R_s(p) := \operatorname{Vor}(p) \cap B_s(p)$.

The alpha complex is $A_s = \{\{p_1, \dots, p_k\} \subseteq P \mid R_s(p_1) \cap \dots \cap R_s(p_k) \neq \emptyset\}$ and the alpha filtration is a filtration of alpha complexes.

- 4 回 ト 4 ヨ ト 4 ヨ ト

3

イロン イヨン イヨン

For $p \in P$, define restricted alpha cells: $U_{s,r}(p) := B_s(p) \cap Vor(p) \cap B_r(q)$

3

(日)

For $p \in P$, define restricted alpha cells: $U_{s,r}(p) := B_s(p) \cap Vor(p) \cap B_r(q)$

For $p \in P$, define restricted alpha cells: $U_{s,r}(p) := B_s(p) \cap Vor(p) \cap B_r(q)$

3

(日)

For $p \in P$, define restricted alpha cells: $U_{s,r}(p) := B_s(p) \cap Vor(p) \cap B_r(q)$

The localized alpha complex is $A_{s,r} = \operatorname{Nrv}(\{U_{s,r}(p)\}_{p \in P})$.

3

For $p \in P$, define restricted alpha cells: $U_{s,r}(p) := B_s(p) \cap Vor(p) \cap B_r(q)$

The localized alpha complex is $A_{s,r} = Nrv(\{U_{s,r}(p)\}_{p \in P})$.

These localized alpha complexes form the *localized alpha bifiltration* $A := \{A_{s,r}\}_{s,r \ge 0}$.

These localized alpha complexes form the *localized alpha bifiltration* $A := \{A_{s,r}\}_{s,r \ge 0}$.

By the persistent nerve theorem, $H_k(L_{s,r}) \cong H_k(A_{s,r})$ and these isomorphisms commute with the inclusion maps of $L_{s,r}$ and $A_{s,r}$. Therefore L and A are *equivalent*

We can compute the localized alpha bifiltration $A = \{A_{s,r}\}_{s,r\geq 0}$ if we know for each possible simplex $\sigma \in A$ (that is, each simplex in the Delaunay triangulation) its *active region*

 $R_{\sigma} = \{(s, r) \in \mathbb{R}^2 \mid \sigma \in A_{s, r}\}$

< 回 > < 回 > < 回 >

 $\begin{aligned} A_{s,r} &:= \{\{p_1, \dots, p_k\} \subseteq P \mid U_{s,r}(p_1) \cap \dots \cap U_{s,r}(p_k) \neq \emptyset\} \\ \text{where } U_{s,r}(p) &:= B_s(p) \cap Vor(p) \cap B_r(q) \end{aligned}$

For $\sigma = \{p_1, \ldots, p_k\}$ write $V_{\sigma} = \operatorname{Vor}(p_1) \cap \cdots \cap \operatorname{Vor}(p_k)$ and $p = p_1$. Then, $\sigma \in A_{s,r}$ if and only if $V_{\sigma} \cap B_s(p) \cap B_r(q) \neq \emptyset$.

 $\sigma \in A_{s,r}$ if and only if $V_{\sigma} \cap B_s(p) \cap B_r(q) \neq \emptyset$.

Remember: Active region: $R_{\sigma} = \{(s, r) \in \mathbb{R}^2 \mid \sigma \in A_{s,r}\}$

Matthias Söls (TU Graz))
-----------------	----------	---

 $\sigma \in A_{s,r}$ if and only if $V_{\sigma} \cap B_s(p) \cap B_r(q) \neq \emptyset$.

Remember: Active region: $R_{\sigma} = \{(s, r) \in \mathbb{R}^2 \mid \sigma \in A_{s,r}\}$

< 1 k

 $\sigma \in A_{s,r}$ if and only if $V_{\sigma} \cap B_s(p) \cap B_r(q) \neq \emptyset$. Remember: Active region: $R_{\sigma} = \{(s,r) \in \mathbb{R}^2 \mid \sigma \in A_{s,r}\}$

- 4 回 ト 4 三 ト 4 三 ト

We are interested in the boundary of the active region R_{σ} for $s \in [s_0, s_1]$. This curve is, for $s \in [s_0, s_1]$, the minimal *r*-value such that $\sigma \in A_{s,r}$ which is the distance of *q* to the set $V_{\sigma} \cap B_s(p)$.

For $s \in [s_0, s_1]$ let γ_s be the closest point to q in $V_\sigma \cap B_s(p)$.

3

イロン イヨン イヨン

For $s \in [s_0, s_1]$ let γ_s be the closest point to q in $V_\sigma \cap B_s(p)$.

Defines a function $\gamma : [s_0, s_1] \to \mathbb{R}^d$ where $s \mapsto \gamma_s$, the *minimizing path*.

イロト イポト イヨト イヨト 二日

For $s \in [s_0, s_1]$ let γ_s be the closest point to q in $V_\sigma \cap B_s(p)$.

Defines a function $\gamma : [s_0, s_1] \to \mathbb{R}^d$ where $s \mapsto \gamma_s$, the *minimizing path*.

The minimizing path is continuous and injective.

イロト イポト イヨト イヨト 二日

For $s \in [s_0, s_1]$ let γ_s be the closest point to q in $V_\sigma \cap B_s(p)$.

Defines a function $\gamma : [s_0, s_1] \to \mathbb{R}^d$ where $s \mapsto \gamma_s$, the *minimizing path*.

The minimizing path is continuous and injective.

Computing the minimizing path $V_{\sigma} \cap \overline{pq}$ is called the *bridge* of (V_{σ}, p, q) .

 $V_{\sigma} \cap \overline{pq}$ is called the *bridge* of (V_{σ}, p, q) . Each point on γ lies on the brige or on ∂V_{σ} .

< 47 ▶

 $V_{\sigma} \cap \overline{pq}$ is called the *bridge* of (V_{σ}, p, q) . Each point on γ lies on the brige or on ∂V_{σ} .

If a point lies on ∂V , then it either lies on the bridge of the minimizing path of ∂V regarding the projections of p, q onto the supporting hyperplane of ∂V or on $\partial(\partial V)$.

 $V_{\sigma} \cap \overline{pq}$ is called the *bridge* of (V_{σ}, p, q) . Each point on γ lies on the brige or on ∂V_{σ} .

If a point lies on ∂V , then it either lies on the bridge of the minimizing path of ∂V regarding the projections of p, q onto the supporting hyperplane of ∂V or on $\partial(\partial V)$.

Theorem Every point on the minimizing path lies on a bridge. The minimizing path is a polygonal chain starting in \hat{p} and ending in \hat{q} .

æ

イロト イヨト イヨト イヨト

æ

イロト イポト イヨト イヨト

æ

イロン 不聞 とくほとう ほとう

æ

イロト イヨト イヨト イヨト

æ

イロン イ理 とく ヨン イ ヨン

Implementation

Let V_{σ} be the Voronoi polytope of the Delaunay simplex σ .

∃ >

Image: A mathematical states and a mathem

э

Implementation

Let V_{σ} be the Voronoi polytope of the Delaunay simplex σ .

Compute all bridges of V_{σ} and of its faces f. Build directed graph such that distance to p increases along every bridge.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Implementation

Let V_{σ} be the Voronoi polytope of the Delaunay simplex σ .

Compute all bridges of V_{σ} and of its faces f. Build directed graph such that distance to p increases along every bridge.

Delaunay triangulation of size N.

æ

イロト イヨト イヨト

Delaunay triangulation of size N.

Computing all bridges: O(N).

æ

イロン イヨン イヨン

Delaunay triangulation of size N.

Computing all bridges: O(N).

f faces, constructed graph has O(f) faces and the traversal is done in O(f) time as well.

3

(日)

Delaunay triangulation of size N.

Computing all bridges: O(N).

f faces, constructed graph has O(f) faces and the traversal is done in O(f) time as well.

Theorem Let *P* be *n* points in general position in \mathbb{R}^d where *d* is constant. Let *N* be the size of the Delaunay triangulation of *P*. We can compute the entry curves of all Delaunay simplices in time O(N).

For a line segment \overline{ab} of the minimizing path γ , set $s = \|p - ((1 - t)a + tb)\|^2$ $r = \|q - ((1 - t)a + tb)\|^2$ For $t \in [0, 1]$ this yields an parabola or line.

・ 何 ト ・ ヨ ト ・ ヨ ト

∞ -criticality

<ロ> <四> <四> <四> <四> <四</p>

Part 2: The relative case

æ

・ロト ・四ト ・ヨト ・ヨト

The relative localized bifiltration

The relative localized persistence bimodule

The relative localized persistence bimodule

The rows correspond (by excision) to the persistence module

 $\cdots \rightarrow H_k(L_s \cap B_r(q), L_s \cap \partial B_r(q)) \rightarrow H_k(L_{s'} \cap B_r(q), L_{s'} \cap \partial B_r(q)) \rightarrow \cdots$

which was studied in

- Paul Bendich, David Cohen-Steiner, Herbert Edelsbrunner, John Harer, and Dmitriy Morozov. Inferring Local Homology from Sampled Stratified Spaces. (FOCS 2007)
- Paul Bendich, Bei Wang, and Sayan Mukherjee. Local Homology Transfer and Stratification Learning. (SODA 2012)
- Primoz Skraba and Bei Wang. Approximating Local Homology from Samples. (SODA 2014)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Computing the relative localized persistence bimodule

(X, A) pair of topological spaces.

 \mathcal{U}_X cover of X and \mathcal{U}_A cover of A induced by restricting the elements of \mathcal{U}_X to A.

Computing the relative localized persistence bimodule

(X, A) pair of topological spaces.

 \mathcal{U}_X cover of X and \mathcal{U}_A cover of A induced by restricting the elements of \mathcal{U}_X to A.

We want to find \mathcal{U}_X such that both \mathcal{U}_X and \mathcal{U}_A are good.

Computing the relative localized persistence bimodule

(X, A) pair of topological spaces.

 \mathcal{U}_X cover of X and \mathcal{U}_A cover of A induced by restricting the elements of \mathcal{U}_X to A.

We want to find \mathcal{U}_X such that both \mathcal{U}_X and \mathcal{U}_A are good.

In that case there is a homotopy equivalence $\phi : X \to \operatorname{Nrv} \mathcal{U}_X$ which restricts on A to a homotopy equivalence $A \to \operatorname{Nrv} \mathcal{U}_X$.

< □ > < □ > < □ > < □ > < □ > < □ >

A good cover in \mathbb{R}^2

3

イロト イヨト イヨト イヨト

A good cover in \mathbb{R}^2

<ロ> <四> <四> <四> <四> <四</p>

Further work

- Subdivision scheme in relative case for higher dimensions?
- \bullet Computation of minimal presentations for $\infty\mbox{-critical bifiltrations}?$
- Consider a sample of centers and analyse ensemble of localized bifiltrations?
- Applications?