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Motivation comes from spatial biology

Can we extract meaningful features that capture 
the spatial interaction of different types of cells?

à Looks like a problem for TDA!
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What can we do with colored points?

• Can we capture 
something about 
the interaction of 
the two colors?
• e.g., blue loops 
filled by orange
points
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Blue loops filled
by orange points?
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Computing kernel, image, cokernel PH

• Algorithm in [1] (2009)
• Setting for the algorithm

• simplicial complex !
• subcomplex " ≤ !
• filtration function $ on !
• " filtered by the restriction of $

[1] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov, “Persistent homology for kernels, images, and cokernels,” 
in Proc. 20th Ann. ACM-SIAM Sympos. Discrete Alg., 2009, pp. 1011–1020



Computing kernel, image, cokernel PH

• Algorithm in [1] (2009)
• Setting for the algorithm

• simplicial complex !
• subcomplex " ≤ !
• filtration function $ on !
• " filtered by the restriction of $

[1] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov, “Persistent homology for kernels, images, and cokernels,” 
in Proc. 20th Ann. ACM-SIAM Sympos. Discrete Alg., 2009, pp. 1011–1020

Br(A0 [A1) Kr

Br(A0) Lr

'

'

 Kr = f�1[0, r], Lr = L \ f�1[0, r]



Computing kernel, image, cokernel PH

Br(A0 [A1) Kr

Br(A0) Lr

'

'

 Kr = f�1[0, r], Lr = L \ f�1[0, r]

Čech complex? yes, but too big standard Delaunay/alpha complex? no



Computing kernel, image, cokernel PH

Br(A0 [A1) Kr

Br(A0) Lr

'

'

 Kr = f�1[0, r], Lr = L \ f�1[0, r]

Chromatic Alpha Complex*

(*) For two colors defined by Y. Reani and O. Bobrowski as “A coupled alpha complex” in 2021. We generalize the 
construction to any number of colors.
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Chromatic Delaunay complex, Del(%)

' ∈ Del())
iff

exists empty sphere passing 
through its vertices

' ∈ Del(%)
iff

exists stack of empty spheres 
passing through its vertices

• ) is a point set,   * is a set of colors,    % ∶ ) → * is a chromatic point set
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Chromatic alpha complex

• stack radius = radius of its largest sphere
• Every ! ∈ Del(') has a unique smallest

empty stack passing through it
• minimum of a strictly convex function over a 

convex region

Rad ∶ Del ' → ℝ
Radius function assigns to every !
the smallest radius of an empty 
stack passing through it

Chromatic alpha complex for / ∈ ℝ is
Alf2 ' = Rad45 0, /

Alf2 8 ⊆ Alf2 '
Alf2 8: ⊆ Alf2 ' ,
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Chromatic alpha cplx ≃ union of balls
• definition of chromatic alpha complex as the nerve of Voronoi balls
• a Voronoi ball of " is a ball #$(") clipped by the Voronoi domain of "
• in chromatic case we clip by Vor domain of " w.r.t. its color '(")
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Chromatic alpha cplx ≃ union of balls
• Alf% & is the nerve of chromatic Voronoi balls of radius '
• the union of chromatic Voronoi balls = the union of balls
• Nerve Theorem  ⇒ Alf% & ≃ ⋃*∈,-%(/)
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Computation
• As in mono-chromatic case, two steps:
• Compute chromatic Delaunay complex
• Compute the radius function

stacks ↔ spheres

Del % = Del((′)
where (′ is the lifting of (



Lifting in general
• Chromatic set ! ∶ # → %,  # ⊆ ℝ(
• Lift #) ⊆ ℝ(*#,-.



The radius function is GDMF
• ! simplicial complex, " ∶ ! → ℝ monotonic
• &, ( is an interval of " if ∀* ∈ &, * : " * = " &
• " is generalized discrete Morse function

if the maximal intervals of " partition !

The radius function Rad ∶ Del 4 → ℝ is 
a generalized discrete Morse function.
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Short exact sequences in a six-pack

0 kerp i⇤r Hp(Lr) imp i⇤r 0

0 imp i⇤r Hp(Kr) cokp i⇤r 0

0 cokp i⇤r Hp(Kr, Lr) kerp�1 i⇤r 0

kDgmp(fL)k1 = kDgmp(ker fL ! fK)k
1
+ kDgmp(im fL ! fK)k

1

kDgmp(fK)k
1
= kDgmp(im fL ! fK)k

1
+ kDgmp(cok fL ! fK)k

1

kDgmp(fK,L)k1 = kDgmp(cok fL ! fK)k
1
+ kDgmp�1(ker fL ! fK)k

1



Five do not determine the sixth
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More than two colors?
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More than two colors?
• Six-pack is defined for some subcomplex
• A meaningful choice: !-chromatic subcomplex

" = $ ∈ Del ) #)($) ≤ !}
• For three colors we have three options:
• mono-chromatic à everything
• bi-chromatic à everything
• mono-chromatic à bi-chromatic

• Fourth option – relative:
• bi-chr. / mono-chr. à everything / mono-chr.
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