Chromatic alpha complexes

Ondřej Draganov

Talk at TU Munich, 18. 7. 2023

Joint work with S. Cultrera di Montesano,

H. Edelsbrunner, and M. Saghafian

Motivation comes from spatial biology

- CD8 T cells
- Connective
- Endothelial
- Epithelial
- Macrophages
- Mast cells
- Smooth muscle

Motivation comes from spatial biology

Can we extract meaningful features that capture the spatial interaction of different types of cells?

Standard persistent homology pipeline

Standard persistent homology pipeline

• Can we capture something about the *interaction* of the two colors?

• Can we capture something about the *interaction* of the two colors?

- Can we capture something about the *interaction* of the two colors?
- e.g., blue loops filled by orange points

 $\cdots \longrightarrow \ker(i_r^*) \longrightarrow \ker(i_{r'}^*) \longrightarrow \cdots$

- Algorithm in [1] (2009)
- Setting for the algorithm
 - simplicial complex K
 - subcomplex $L \leq K$
 - filtration function f on K
 - L filtered by the restriction of f

- Algorithm in [1] (2009)
- Setting for the algorithm
 - simplicial complex K
 - subcomplex $L \leq K$
 - filtration function f on K
 - *L* filtered by the restriction of f

$$B_r(A_0 \cup A_1) \xrightarrow{\simeq} K_r$$

$$\uparrow \qquad \qquad \uparrow^{\vee}$$

$$B_r(A_0) \xrightarrow{\simeq} L_r$$

$$K_r = f^{-1}[0,r], \ L_r = L \cap f^{-1}[0,r]$$

[1] D. Cohen-Steiner, H. Edelsbrunner, J. Harer, and D. Morozov, "*Persistent homology for kernels, images, and cokernels*," in Proc. 20th Ann. ACM-SIAM Sympos. Discrete Alg., 2009, pp. 1011–1020

standard Delaunay/alpha complex? no

$$K_r = f^{-1}[0,r], \ L_r = L \cap f^{-1}[0,r]$$

$$B_r(A_0 \cup A_1) \xrightarrow{\simeq} K_r$$

$$\uparrow \qquad \qquad \uparrow^{\vee}$$

$$B_r(A_0) \xrightarrow{\simeq} L_r$$

$$K_r = f^{-1}[0, r], \ L_r = L \cap f^{-1}[0, r]$$

(*) For two colors defined by Y. Reani and O. Bobrowski as "A coupled alpha complex" in 2021. We generalize the construction to any number of colors.

Chromatic Alpha Complex

Chromatic Delaunay complex, $Del(\chi)$

• A is a point set, σ is a set of colors, $\chi : A \to \sigma$ is a chromatic point set

Chromatic Delaunay complex, $Del(\chi)$

• A is a point set, σ is a set of colors, $\chi : A \to \sigma$ is a chromatic point set

 $\nu \in \text{Del}(A)$ iff exists empty sphere passing through its vertices ×

Chromatic Delaunay complex, $Del(\chi)$

• A is a point set, σ is a set of colors, $\chi : A \to \sigma$ is a chromatic point set

ν ∈ Del(A)
iff
exists empty sphere passing
through its vertices

×

 $\nu \in \mathrm{Del}(\chi)$ iff

exists stack of empty spheres passing through its vertices

σ -stack of (d-1)-spheres in \mathbb{R}^d

- concentric spheres, one for each color
 - possibly with radius 0
- is empty if
 - each sphere empty of points of its color
- passes through points v if
 - the *s*-colored points of ν lie on the *s*-colored sphere for each color $s \in \sigma$

σ -stack of (d-1)-spheres in \mathbb{R}^d

- concentric spheres, one for each color
 - possibly with radius 0
- is empty if
 - each sphere empty of points of its color
- passes through points v if
 - the *s*-colored points of ν lie on the *s*-colored sphere for each color $s \in \sigma$

centers of empty stacks passing through ν = intersection of Voronoi cells of all colors

σ -stack of (d-1)-spheres in \mathbb{R}^d

- concentric spheres, one for each color
 - possibly with radius 0
- is empty if
 - each sphere empty of points of its color
- passes through points v if
 - the *s*-colored points of ν lie on the *s*-colored sphere for each color $s \in \sigma$

centers of empty stacks passing through ν = intersection of Voronoi cells of all colors

σ -stack of (d-1)-spheres in \mathbb{R}^d

- concentric spheres, one for each color
 - possibly with radius 0
- is empty if
 - each sphere empty of points of its color
- passes through points v if
 - the *s*-colored points of ν lie on the *s*-colored sphere for each color $s \in \sigma$

centers of empty stacks passing through ν = intersection of Voronoi cells of all colors

Stack radius

- stack radius = radius of its largest sphere
- Every $\nu \in \text{Del}(\chi)$ has a unique *smallest* empty stack passing through it
 - minimum of a strictly convex function over a convex region

Stack radius

- stack radius = radius of its largest sphere
- Every ν ∈ Del(χ) has a unique smallest empty stack passing through it
 - minimum of a strictly convex function over a convex region

Rad : $Del(\chi) \to \mathbb{R}$

Radius function assigns to every v the smallest radius of an empty stack passing through it

Chromatic alpha complex

- stack radius = radius of its largest sphere
- Every ν ∈ Del(χ) has a unique smallest empty stack passing through it
 - minimum of a strictly convex function over a convex region

Rad : $Del(\chi) \to \mathbb{R}$

Radius function assigns to every ν the smallest radius of an empty stack passing through it

Chromatic alpha complex for $r \in \mathbb{R}$ is Alf_r(χ) = Rad⁻¹[0, r]

Chromatic alpha complex

- stack radius = radius of its largest sphere
- Every ν ∈ Del(χ) has a unique smallest empty stack passing through it
 - minimum of a strictly convex function over a convex region

Rad : $Del(\chi) \to \mathbb{R}$

Radius function assigns to every ν the smallest radius of an empty stack passing through it

Chromatic alpha complex for $r \in \mathbb{R}$ is Alf_r(χ) = Rad⁻¹[0, r]

 $Alf_{r}(A) \subseteq Alf_{r}(\chi)$ $Alf_{r}(A_{i}) \subseteq Alf_{r}(\chi),$

• definition of chromatic alpha complex as the nerve of Voronoi balls

- definition of chromatic alpha complex as the nerve of Voronoi balls
- a Voronoi ball of a is a ball $B_r(a)$ clipped by the Voronoi domain of a

- definition of chromatic alpha complex as the nerve of Voronoi balls
- a Voronoi ball of a is a ball $B_r(a)$ clipped by the Voronoi domain of a
- in chromatic case we clip by Vor domain of a w.r.t. its color $\chi(a)$

- $\operatorname{Alf}_r(\chi)$ is the nerve of chromatic Voronoi balls of radius r
- the union of chromatic Voronoi balls = the union of balls
- Nerve Theorem $\Rightarrow \left[\operatorname{Alf}_r(\chi) \simeq \bigcup_{a \in A} B_r(a)\right]$

Computation

- As in mono-chromatic case, two steps:
- Compute chromatic Delaunay complex
- Compute the radius function

Computation

- As in mono-chromatic case, two steps:
- Compute chromatic Delaunay complex
- Compute the radius function

Computation

- As in mono-chromatic case, two steps:
- Compute chromatic Delaunay complex
- Compute the radius function

Lifting in general

- Chromatic set $\chi : A \to \sigma$, $A \subseteq \mathbb{R}^d$
- Lift $A' \subseteq \mathbb{R}^{d+\#\sigma-1}$

The radius function is GDMF

- *K* simplicial complex, $f : K \to \mathbb{R}$ monotonic
- $[\alpha, \gamma]$ is an *interval of* f if $\forall \beta \in [\alpha, \beta]$: $f(\beta) = f(\alpha)$
- *f* is generalized discrete Morse function

if the maximal intervals of *f* partition *K*

The radius function Rad $: Del(\chi) \rightarrow \mathbb{R}$ is a generalized discrete Morse function.

Five do not determine the sixth

- Six-pack is defined for some subcomplex
- A meaningful choice: *k*-chromatic subcomplex

 $L = \{ \nu \in \text{Del}(\chi) \mid \#\chi(\nu) \le k \}$

- Six-pack is defined for some subcomplex
- A meaningful choice: *k*-chromatic subcomplex

 $L = \{ \nu \in \text{Del}(\chi) \mid \#\chi(\nu) \le k \}$

- For three colors we have three options:
 - mono-chromatic \rightarrow everything
 - bi-chromatic \rightarrow everything
 - mono-chromatic \rightarrow bi-chromatic

- Six-pack is defined for some subcomplex
- A meaningful choice: *k*-chromatic subcomplex

 $L = \{ \nu \in \text{Del}(\chi) \mid \#\chi(\nu) \le k \}$

- For three colors we have three options:
 - mono-chromatic \rightarrow everything
 - bi-chromatic \rightarrow everything
 - mono-chromatic \rightarrow bi-chromatic
- Fourth option relative:
 - bi-chr. / mono-chr. \rightarrow everything / mono-chr.

3-color examples

bi -> tri

bi -> tri

bi -> tri

