Chromatic alpha complexes

Ondřej Draganov

Talk at TU Munich, 18. 7. 2023

Joint work with S. Cultrera di Montesano,
H. Edelsbrunner, and M. Saghafian

Motivation comes from spatial biology

- CD8 T cells
- Connective
- Endothelial
- Epithelial
- Macrophages
- Mast cells
- Smooth muscle

Motivation comes from spatial biology

-	CD8 T cells
-	Connective
-	Endothelial
-	Epithelial
-	Macrophages
-	Mast cells
-	Smooth muscle

Can we extract meaningful features that capture the spatial interaction of different types of cells?

\rightarrow Looks like a problem for TDA!

Standard persistent homology pipeline

Standard persistent homology pipeline

$\cdots \longrightarrow \operatorname{Alf}_{r}(A) \longrightarrow \operatorname{Alf}_{r^{\prime}}(A) \longrightarrow \cdots$
$\cdots \longrightarrow \mathrm{H}_{p}\left(\operatorname{Alf}_{r}(A)\right) \longrightarrow \mathrm{H}_{p}\left(\operatorname{Alf}_{r^{\prime}}(A)\right) \longrightarrow \cdots$

radius

What can we do with colored points?

- Can we capture something about the interaction of the two colors?

What can we do with colored points?

- Can we capture something about the interaction of the two colors?

What can we do with colored points?

- Can we capture something about the interaction of the two colors?
- e.g., blue loops filled by orange points

What can we do with colored points?

What can we do with colored points?

What can we do with colored points?

all

orange
blue

What can we do with colored points?

Blue loops filled by orange points?

What can we do with colored points?

What are those "kernel" features?

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks
kernel

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks
kernel

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks
kernel

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks
kernel

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks
kernel

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks
kernel

What are those "kernel" features?

Study the union of blue disks included into the union of blue and orange disks
kernel

Those "kernel" features - formally

Those "kernel" features - formally

$$
\begin{aligned}
& \cdots \longleftrightarrow B_{r}\left(A_{0}\right) \longleftrightarrow B_{r^{\prime}}\left(A_{0}\right) \longleftrightarrow \cdots \\
& i_{r} \downarrow \quad i_{r^{\prime}} \downarrow \\
& \cdots \longleftrightarrow B_{r}\left(A_{0} \cup A_{1}\right) \longrightarrow B_{r^{\prime}}\left(A_{0} \cup A_{1}\right) \longleftrightarrow \cdots \\
& \cdots \longrightarrow \mathrm{H}_{p}\left(B_{r}\left(A_{0}\right)\right) \longrightarrow \mathrm{H}_{p}\left(B_{r^{\prime}}\left(A_{0}\right)\right) \longrightarrow \cdots \\
& i_{r}^{*} \downarrow \quad i_{r^{*}}^{*} \downarrow \\
& \cdots \rightarrow \mathrm{H}_{p}\left(B_{r}\left(A_{0} \cup A_{1}\right)\right) \rightarrow \mathrm{H}_{p}\left(B_{r^{\prime}}\left(A_{0} \cup A_{1}\right)\right) \rightarrow \cdots
\end{aligned}
$$

Those "kernel" features - formally

$\cdots \longrightarrow \operatorname{ker}\left(i_{r}^{*}\right)$ $\rightarrow \operatorname{ker}\left(i_{r^{\prime}}^{*}\right)$

Those "kernel" features - formally

Computing kernel, image, cokernel PH

- Algorithm in [1] (2009)
- Setting for the algorithm
- simplicial complex K
- subcomplex $L \leq K$
- filtration function f on K
- L filtered by the restriction of f

Computing kernel, image, cokernel PH

- Algorithm in [1] (2009)
- Setting for the algorithm
- simplicial complex K
- subcomplex $L \leq K$
- filtration function f on K
- L filtered by the restriction of f

$$
\begin{array}{rlr}
B_{r}\left(A_{0} \cup A_{1}\right) & \simeq & K_{r} \\
\uparrow & \bigcap_{V I} \\
B_{r}\left(A_{0}\right) & \simeq & K_{r}=f^{-1}[0, r], L_{r}=L \cap f^{-1}[0, r]
\end{array}
$$

Computing kernel, image, cokernel PH

Čech complex? yes, but too big

$B_{r}\left(A_{0} \cup A_{1}\right) \xrightarrow{\simeq} K_{r}$

$$
B_{r}\left(A_{0}\right) \xrightarrow{\simeq} L_{r}
$$

standard Delaunay/alpha complex?

$K_{r}=f^{-1}[0, r], L_{r}=L \cap f^{-1}[0, r]$

Computing kernel, image, cokernel PH

(*) For two colors defined by Y. Reani and O. Bobrowski as "A coupled alpha complex" in 2021. We generalize the construction to any number of colors.

Chromatic Alpha Complex

Chromatic Delaunay complex, $\operatorname{Del}(\chi)$

- A is a point set, σ is a set of colors, $\chi: A \rightarrow \sigma$ is a chromatic point set

Chromatic Delaunay complex, $\operatorname{Del}(\chi)$

- A is a point set, σ is a set of colors, $\chi: A \rightarrow \sigma$ is a chromatic point set

Chromatic Delaunay complex, $\operatorname{Del}(\chi)$

- A is a point set, σ is a set of colors, $\chi: A \rightarrow \sigma$ is a chromatic point set

$$
v \in \operatorname{Del}_{\text {iff }}(A)
$$

exists empty sphere passing through its vertices

$$
v \in \operatorname{Del}(\chi)
$$

iff
exists stack of empty spheres passing through its vertices

σ-stack of $(d-1)$-spheres in \mathbb{R}^{d}

- concentric spheres, one for each color
- possibly with radius 0
- is empty if
- each sphere empty of points of its color
- passes through points v if
- the s-colored points of v lie on the s-colored sphere for each color $s \in \sigma$

σ-stack of $(d-1)$-spheres in \mathbb{R}^{d}

- concentric spheres, one for each color
- possibly with radius 0
- is empty if
- each sphere empty of points of its color
- passes through points v if
- the s-colored points of v lie on the s-colored sphere for each color $s \in \sigma$
centers of empty stacks passing through v

$$
=
$$

intersection of Voronoi cells of all colors

σ-stack of $(d-1)$-spheres in \mathbb{R}^{d}

- concentric spheres, one for each color
- possibly with radius 0
- is empty if
- each sphere empty of points of its color
- passes through points v if
- the s-colored points of v lie on the s-colored sphere for each color $s \in \sigma$
centers of empty stacks passing through v

$$
=
$$

intersection of Voronoi cells of all colors

σ-stack of $(d-1)$-spheres in \mathbb{R}^{d}

- concentric spheres, one for each color
- possibly with radius 0
- is empty if
- each sphere empty of points of its color
- passes through points v if
- the s-colored points of v lie on the s-colored sphere for each color $s \in \sigma$
centers of empty stacks passing through v

$$
=
$$

intersection of Voronoi cells of all colors

Stack radius

- stack radius = radius of its largest sphere
- Every $v \in \operatorname{Del}(\chi)$ has a unique smallest empty stack passing through it
- minimum of a strictly convex function over a convex region

Stack radius

- stack radius = radius of its largest sphere
- Every $v \in \operatorname{Del}(\chi)$ has a unique smallest empty stack passing through it
- minimum of a strictly convex function over a convex region

$$
\operatorname{Rad}: \operatorname{Del}(\chi) \rightarrow \mathbb{R}
$$

Chromatic alpha complex

- stack radius = radius of its largest sphere
- Every $v \in \operatorname{Del}(\chi)$ has a unique smallest empty stack passing through it
- minimum of a strictly convex function over a convex region

$$
\operatorname{Rad}: \operatorname{Del}(\chi) \rightarrow \mathbb{R}
$$

Chromatic alpha complex

- stack radius = radius of its largest sphere
- Every $v \in \operatorname{Del}(\chi)$ has a unique smallest empty stack passing through it
- minimum of a strictly convex function over a convex region

$$
\operatorname{Rad}: \operatorname{Del}(\chi) \rightarrow \mathbb{R}
$$

$$
\begin{aligned}
\operatorname{Alf}_{r}(A) & \subseteq \operatorname{Alf}_{r}(\chi) \\
\operatorname{Alf}_{r}\left(A_{i}\right) & \subseteq \operatorname{Alf}_{r}(\chi)
\end{aligned}
$$

Chromatic alpha cplx \simeq union of balls

- definition of chromatic alpha complex as the nerve of Voronoi balls

Chromatic alpha cplx \simeq union of balls

- definition of chromatic alpha complex as the nerve of Voronoi balls
- a Voronoi ball of a is a ball $B_{r}(a)$ clipped by the Voronoi domain of a

Chromatic alpha $\mathrm{cplx} \simeq$ union of balls

- definition of chromatic alpha complex as the nerve of Voronoi balls
- a Voronoi ball of a is a ball $B_{r}(a)$ clipped by the Voronoi domain of a
- in chromatic case we clip by Vor domain of a w.r.t. its color $\chi(a)$

Chromatic alpha cplx \simeq union of balls

Chromatic alpha cplx \simeq union of balls

Chromatic alpha cplx \simeq union of balls

- $\operatorname{Alf}_{r}(\chi)$ is the nerve of chromatic Voronoi balls of radius r
- the union of chromatic Voronoi balls $=$ the union of balls
- Nerve Theorem $\Rightarrow \operatorname{Alf}_{r}(\chi) \simeq \cup_{a \in A} B_{r}(a)$

Chromatic alpha $\mathrm{cplx} \simeq$ union of balls

Computation

- As in mono-chromatic case, two steps:
- Compute chromatic Delaunay complex
- Compute the radius function

Computation

- As in mono-chromatic case, two steps:
- Compute chromatic Delaunay complex
- Compute the radius function
stacks \leftrightarrow spheres

Computation

- As in mono-chromatic case, two steps:
- Compute chromatic Delaunay complex
- Compute the radius function
stacks \leftrightarrow spheres
$\operatorname{Del}(\chi)=\operatorname{Del}\left(A^{\prime}\right)$
where A^{\prime} is the lifting of A

Lifting in general

- Chromatic set $\chi: A \rightarrow \sigma, A \subseteq \mathbb{R}^{d}$
- Lift $A^{\prime} \subseteq \mathbb{R}^{d+\# \sigma-1}$

The radius function is GDMF

- K simplicial complex, $f: K \rightarrow \mathbb{R}$ monotonic
- $[\alpha, \gamma]$ is an interval of f if $\forall \beta \in[\alpha, \beta]: f(\beta)=f(\alpha)$
- f is generalized discrete Morse function if the maximal intervals of f partition K

The radius function $\operatorname{Rad}: \operatorname{Del}(\chi) \rightarrow \mathbb{R}$ is a generalized discrete Morse function.

The six-pack of persistent diagrams

kernel

domain

relative

image

cokernel

codomain

The six-pack of persistent diagrams

kernel

domain

image

cokernel

codomain

The six-pack of persistent diagrams

kernel

domain

image

cokernel

codomain

The six-pack of persistent diagrams

kernel

domain

image

cokernel

codomain

The six-pack of persistent diagrams

kernel

domain

image

cokernel

codomain

The six-pack of persistent diagrams

kernel

domain

image

cokernel

codomain

The six-pack of persistent diagrams

kernel

domain

image

cokernel

codomain

Short exact sequences in a six-pack

kernel

domain

cokernel

codomain

Short exact sequences in a six-pack

kernel

domain

Short exact sequences in a six-pack

kernel

domain

relative

image

cokernel

codomain

Short exact sequences in a six-pack

kernel

relative
cokernel

Short exact sequences in a six-pack

kernel

relative
cokernel
$0 \longrightarrow \operatorname{ker}_{p} i_{r}^{*} \longrightarrow \mathrm{H}_{p}\left(L_{r}\right) \longrightarrow \operatorname{im}_{p} i_{r}^{*} \longrightarrow 0$
$0 \longrightarrow \operatorname{im}_{p} i_{r}^{*} \longrightarrow \mathrm{H}_{p}\left(K_{r}\right) \longrightarrow \operatorname{cok}_{p} i_{r}^{*} \longrightarrow 0$
$0 \longrightarrow \operatorname{cok}_{p} i_{r}^{*} \longrightarrow \mathrm{H}_{p}\left(K_{r}, L_{r}\right) \longrightarrow \operatorname{ker}_{p-1} i_{r}^{*} \longrightarrow 0$
$\left\|\operatorname{Dgm}_{p}\left(f_{L}\right)\right\|_{1}=\left\|\operatorname{Dgm}_{p}\left(\operatorname{ker} f_{L} \rightarrow f_{K}\right)\right\|_{1}+\left\|\operatorname{Dgm}_{p}\left(\operatorname{im} f_{L} \rightarrow f_{K}\right)\right\|_{1}$
$\left\|\operatorname{Dgm}_{p}\left(f_{K}\right)\right\|_{1}=\left\|\operatorname{Dgm}_{p}\left(\operatorname{im} f_{L} \rightarrow f_{K}\right)\right\|_{1}+\left\|\operatorname{Dgm}_{p}\left(\operatorname{cok} f_{L} \rightarrow f_{K}\right)\right\|_{1}$
$\left\|\operatorname{Dgm}_{p}\left(f_{K, L}\right)\right\|_{1}=\left\|\operatorname{Dgm}_{p}\left(\operatorname{cok} f_{L} \rightarrow f_{K}\right)\right\|_{1}+\left\|\operatorname{Dgm}_{p-1}\left(\operatorname{ker} f_{L} \rightarrow f_{K}\right)\right\|_{1}$

Five do not determine the sixth

More than two colors?

More than two colors?

- Six-pack is defined for some subcomplex
- A meaningful choice: k-chromatic subcomplex

$$
L=\{v \in \operatorname{Del}(\chi) \mid \# \chi(v) \leq k\}
$$

More than two colors?

- Six-pack is defined for some subcomplex
- A meaningful choice: k-chromatic subcomplex

$$
L=\{v \in \operatorname{Del}(\chi) \mid \# \chi(v) \leq k\}
$$

- For three colors we have three options:
- mono-chromatic \rightarrow everything
- bi-chromatic \rightarrow everything
- mono-chromatic \rightarrow bi-chromatic

More than two colors?

- Six-pack is defined for some subcomplex
- A meaningful choice: k-chromatic subcomplex

$$
L=\{v \in \operatorname{Del}(\chi) \mid \# \chi(v) \leq k\}
$$

- For three colors we have three options:
- mono-chromatic \rightarrow everything
- bi-chromatic \rightarrow everything
- mono-chromatic \rightarrow bi-chromatic
- Fourth option - relative:
- bi-chr. / mono-chr. \rightarrow everything / mono-chr.

3-color examples

3-color examples

mono -> tri

3-color examples

