Back to the Root of Timing

Grace Li Zhang
Chair of Electronic Design Automation

Digital Circuits

- Combinational logic blocks perform computation.
- Sequential components such as flip-flops synchronize signal propagation.
- Timing constraints should be checked at flip-flops.

Timing of Digital Circuits

The delays of the longest paths determine the minimum clock period and thus the maximum clock frequency.

Clock Frequencies: ITRS 2004 and 2013

ITRS (International Technology Roadmap for Semiconductors) 2004

Year of Production	2010	2011	2012	2013	2014	2015	2016	2017	2018	
Technology Node	hp45			hp32			hp22			
Chip Frequency (MHz)										
On-chip local clock	15,079		20,065	22,980		33,403	39,683		53,207	

Clock frequency doubles every 3 years

ITRS 2013

Year of Production	2013	2015	2017	2019	2021	2023	2025	2028
Logic Industry "Node Name" Label	"16/14"	"10"	"7"	"5"	"3.5"	"2.5"	"1.8"	
On-chip local clock MPU HP [at 4% CAGR]	5.50	5.95	6.44	6.96	7.53	8.14	8.8	9.9

Clock frequency doubles every 15 years

Trend of CPU Frequencies

Stagnation in single-core CPU clock frequency [Colin Gillespie, 2016]

Timing Optimization Methods

- Delay imbalances between flip-flop stages degrade performance
- Flip-flops have clock-to-q delays and impose setup time.

The Root of Timing

With T_{min} , the signal from F2 reaches F3 and F4 after the first clock edge and before the second clock edge.

- States of the circuit: Snapshots of signal values at internal circuit nodes.
- Signals arrive at boundary flip-flops correctly without flip-flops
 → Virtual Synchronization (VirtualSync).
- Synchronizing signal propagations with flip-flops is not always necessary.

VirtualSync Concept

- Step 1: Remove all flip-flops except those at the boundary of the module
- Step 2: Block fast signals for timing synchronization, including
 - signals arriving at boundary flip-flops too earlier through fast paths
 - signals traveling across combinational loops

VirtualSync Concept

- Delay units (logic gates, flip-flops and latches) are used to slow down signals on fast paths and loops.
- Reference points provide relative timing information.

Generalized Delay Units in VirtualSync

Linear delaying effect of a combinational gate

Constant delaying effect of a **flip-flop**

Piecewise delaying effect of a **latch**

Combinational gates, flip-flops and latches are considered as delay units only to slow down fast signals in VirtualSync.

Results of VirtualSync

Performance increase and area change are compared with ideally balanced design.

Circuit Counterfeiting by Reverse Engineering

Counterfeiting threat: Illegal production of chips by a third party with a netlist recognized through reverse engineering

Authentic chips delayered and imaged Logic gates, flip-flops and their connections identified Recognized netlist processed with a standard IC design flow **Counterfeit chips**

Optical and x-ray images of 64Gb Flash devices

Counterfeiting with Traditional Timing

- Traditional timing model
 - All paths defined with respect to one clock period
 - Setup and hold time constraints satisfied between pairs of flip-flops
- A netlist is sufficient to reproduce a circuit using a standard EDA flow.

Anti-Counterfeiting with VirtualSync

Summary

- Virtual synchronization with generalized delay units demonstrates a good potential for high-performance designs.
- Timing camouflage opens up a new dimension of circuit netlist security.
- Exploration of design methodologies may improve circuit performance further and benefit interdisciplinary topics such as hardware security.

Thank you for your attention!