Overview of COD's Research: Coding & Cryptography

Antonia Wachter-Zeh

Rudolf Mößbauer Tenure Track Assistant Professor Professorship for Coding for Communications and Data Storage (COD)

Industry Day 2019

Technische Universität München

COD Group

Currently 9 researchers (1 professor, 1 postdoc, 7 doctoral students)

- **Research areas:** Coding for storage (distributed storage, memories), network coding, PQ cryptography, private information retrieval
- Main funding: DFG, ERC

Outline

1 Post-Quantum Cryptography

Public-Key Cryptography Post-Quantum Cryptography New Code-Based Cryptosystems

2 Further Current Research

Coding for Distributed Data Storage Coding for DNA Storage Private Information Retrieval Network Coding

Outline

1 Post-Quantum Cryptography

Public-Key Cryptography Post-Quantum Cryptography New Code-Based Cryptosystems

2 Further Current Research

Coding for Distributed Data Storage Coding for DNA Storage Private Information Retrieval Network Coding

Basic Encryption Model

- Bob: wants to transmit a secret message to Alice
- Eve: wants to get this secret message (but should not)
- Alice: decrypts the ciphertext and obtains the secret message

Quantum Computers, Shor's Algorithm & Grover's Algorithm

Dieser Apparat könnte bald Ihr Bankkonto knacken

Noch stecken Quantencomputer in den Anfangen: Sie bewältigen nur einfache Aufgaben und machen viole Fehler. In naher Zukunt aber dürften sie herkömmliche Elektronehinne überflügeln und derzeit noch unlösbare Frobleme knacken – aber auch hishenge Sicherheitssysteme Versuch, eine vertrackte Technologie zu verstehen

Text: Wolfgang Richter

- Many qubits needed to correct errors in the computation process
- Size of current quantum computers still far from being useful!
- Shor's quantum algorithm can find the prime factorization of any positive integer efficiently
 That would break classical public-key systems (RSA, ElGamal,...)
 code-based & lattice-based crypto remain secure
- **Grover**'s quantum algorithm: efficient root finding
- $\Rightarrow\,$ key size of symmetric systems has to be doubled

[Image source: GEO 05/2018]

Quantum Computers, Shor's Algorithm & Grover's Algorithm

Dieser Apparat könnte bald Ihr Bankkonto knacken

Noch stecken Quantencomputer in den Anfangen: Sie bewällten nur einfache Aufgaben und machen viele Fohler In naher Zukunft aber dürften sie herkömmliche Elektronenhirne überflügeln und derzeit noch unlösbare Frölbaren knacken – aber auch bishertge Sicherheitssysteme Versuch, eine vertrackte Technologie zu verstehen

Text: Wolfgang Richter

- Many qubits needed to correct errors in the computation process
- Size of current quantum computers still far from being useful!
- **Shor**'s quantum algorithm can find the prime factorization of any positive integer efficiently
- ⇒ That would break classical public-key systems (RSA, ElGamal,...) code-based & lattice-based crypto remain secure!
 - **Grover**'s quantum algorithm: efficient root finding
 - \Rightarrow key size of symmetric systems has to be doubled

[Image source: GEO 05/2018]

Quantum Computers, Shor's Algorithm & Grover's Algorithm

Many qubits needed to correct errors in the computation process
 Size of current quantum computers still far.

• Size of current quantum computers still far from being useful!

- **Shor**'s quantum algorithm can find the prime factorization of any positive integer efficiently
- ⇒ That would break classical public-key systems (RSA, ElGamal,...) code-based & lattice-based crypto remain secure!
 - **Grover**'s quantum algorithm: efficient root finding
 - \Rightarrow key size of symmetric systems has to be doubled

[Image source: GEO 05/2018]

Dieser Apparat

Ihr Bankkonto

in den Anfängen: Sie bewältigen nur

einfache Aufgaben und machen viele Fehler. In naher Zukunft aber dürften

sie herkömmliche Elektronenhirne überflügeln und derzeit noch unlösbare Probleme knacken – aber auch bisherige

Sicherheitssysteme. Versuch, eine vertrackte Technologie zu verstehen Text: Wolfaana Richter

könnte bald

knacken

A New Rank-Metric Cryptosystem of Small Key Size⁵

Our Results

- Code-based PKC based on the hardness of list decoding Gabidulin codes¹
- New observation: public key of FL system² is corrupted codeword of interleaved Gabidulin code
- \implies Prevent attacks: use keys where decoder fails
 - Security analysis: security level not decreased
 - Small resulting key size & decryption guarantee

Ongoing work:

- Hardware implementation & side-channel attacks³
- Investigation of weak public keys⁴

¹Wachter-Zeh, "Bounds on list decoding rank-metric codes," T-IT 2013

²Faure, Loidreau, "A new public-key cryptosystem based on the problem of reconstr. *p*-poly.," DCC 2006 ³Ongoing work together with TUM-SEC

⁴Jerkovits, Bartz, "Weak keys in the Faure-Loidreau cryptosystem," 2019

⁵Wachter-Zeh, Puchinger, Renner, "Repairing the Faure–Loidreau public-key cryptosystem," ISIT 2018

Comparison to Goppa codes⁶, Loidreau⁷, QC-MDPC⁸, LRPC⁹

Method	q	u	k	n	<i>m</i>	w	Security level	Rate	Key size
McEliece	2		1436	1876	11		80.04	0.77	78.98 KB
Loidreau	2		32	50	50		80.93	0.64	3.60 KB
New System	2	3	31	61	61	16	90.00	0.46	1.86 KB
QC-MDPC	2		4801	9602			80.00	0.50	0.60 KB
LRPC	2		37	74	41		80.00	0.50	0.19 KB
McEliece	2		2482	3262	12		128.02	0.76	242.00 KB
Loidreau	2		40	64	96		139.75	0.63	11.52 KB
New System	2	3	31	62	62	17	131.99	0.45	1.92 KB
QC-MDPC	2		9857	19714			128.00	0.50	1.23 KB
LRPC	2		47	94	47		128.00	0.50	0.30 KB
McEliece	2		5318	7008	13		257.47	0.76	1123.43 KB
Loidreau	2		80	120	128		261.00	0.67	51.20 KB
New System	2	4	48	83	83	21	256.99	0.53	4.31 KB
QC-MDPC	2		32771	65542			256.00	0.50	4.10 KB

⁶Barbier, Barreto, "Key reduction of McEliece's cryptosystem using list decoding," ISIT 2011
⁷Loidreau, "A new rank metric code based encryption scheme," PQCrypto 2017
⁸Misoczki et al., "MDPC-McEliece: New McEliece variants from MDPC codes," ISIT 2013
⁹Gaborit et al., "Low rank parity check codes and their application to cryptography," WCC 2013

McEliece Public-Key System Based on Interleaved Goppa Codes¹⁰

• Consider multiple ciphertexts:

$$\mathbf{c}_i = \mathbf{m}_i \cdot \mathbf{G}_{\mathsf{pub}} + \mathbf{e}_i, \ i = 1, \dots, u$$

- Choose errors as burst
- Adapt classical attacks

$$u = \mathbb{P}^n = \mathbb{P}^n = \mathbb{P}^n = \mathbb{P}^n$$

 $\implies \textbf{Decoding radius:} \ t_{pub} = \frac{u}{u+1} \cdot \frac{q}{q-1} \cdot r \ (w.h.p.) \text{ instead of } t = \frac{q}{q-1} \cdot \frac{r}{2}$ (for wild interleaved Goppa codes with $d \ge \frac{q}{q-1} \cdot r + 1$)

Security level [bits]	q	т	Method	r	п	k	t (u, t_{pub}, d_E)	R	Key size [Bytes]
128 -	2			84	3004	2332	63	0.78	310 476
	5		interleaved		2586	1914	(7, 110, 70)	0.74	254 824
	6	5		100	2342	1842	62	0.79	267 312
			interleaved		1593	1093	(8, 111, 83)	0.69	158 617
256		5		204	4617		128	0.78	1 064 877
	5		interleaved			2513	(7, 223, 156)	0.71	743 964

¹⁰Holzbaur, Liu, Puchinger, Wachter-Zeh, "On decoding and applications of interleaved Goppa codes," 2019 9/16

McEliece Public-Key System Based on Interleaved Goppa Codes¹⁰

• Consider multiple ciphertexts:

$$\mathbf{c}_i = \mathbf{m}_i \cdot \mathbf{G}_{\mathsf{pub}} + \mathbf{e}_i, \ i = 1, \dots, u$$

- Choose errors as burst
- Adapt classical attacks

$$u = \mathbb{P}^n = \mathbb{P}^n = \mathbb{P}^n = \mathbb{P}^n$$

 $\implies \textbf{Decoding radius:} \ t_{pub} = \frac{u}{u+1} \cdot \frac{q}{q-1} \cdot r \ (w.h.p.) \text{ instead of } t = \frac{q}{q-1} \cdot \frac{r}{2}$ (for wild interleaved Goppa codes with $d \ge \frac{q}{q-1} \cdot r + 1$)

Security	a	m	Method	r	п	k	t	R	Key size
level [bits]	9		Witchiod				(u, t_{pub}, d_E)		[Bytes]
128 -	3	8	unique decoding	84	3004	2332	63	0.78	310 476
	5		interleaved		2586	1914	(7, 110, 70)	0.74	254 824
	5	5	unique decoding	100	2342	1842	62	0.79	267 312
			interleaved		1593	1093	(8, 111, 83)	0.69	158 617
256	5	5	unique decoding	204	4617	3597	128	0.78	1 064 877
			interleaved		3533	2513	(7, 223, 156)	0.71	743 964

¹⁰Holzbaur, Liu, Puchinger, Wachter-Zeh, "On decoding and applications of interleaved Goppa codes," 2019 9/16

McEliece Public-Key System Based on Twisted Gabidulin Codes¹⁴

GPT cryptosystem¹¹:

- McEliece based on Gabidulin codes
- Broken by Overbeck's attack using: dim(G + G^q + ... G^{qⁱ}) = min{k + i, n}
- Loidreau¹² unbroken, but larger key size
- \implies **Twisted** Gabidulin codes¹³ in McEliece:
 - Key sizes approximately half of Loidreau's
 - No efficient decoder known (yet)
 - Distinguisher: dim $(\mathcal{G}_t + \mathcal{G}_t^q + \dots \mathcal{G}_t^{q^i}) = \min\{k 1 + (i + 1)(\ell + 1), n\}$ but no explicit attack

 ¹¹Gabidulin, Paramonovo, Tretjakov, "Ideals over a non-commutative ring & application in cryptology," 1991
 ¹²Loidreau, "A new rank metric code based encryption scheme," PQCrypto 2017

¹³Sheekey, "A new family of linear maximum rank distance codes," AMC 2016

¹⁴Puchinger, Renner, Wachter-Zeh, "Twisted Gabidulin codes in the GPT cryptosystem," ACCT 2018

McEliece Public-Key System Based on Twisted Gabidulin Codes¹⁴

GPT cryptosystem¹¹:

- McEliece based on Gabidulin codes
- Broken by Overbeck's attack using: dim(G + G^q + ... G^{qⁱ}) = min{k + i, n}
- Loidreau¹² unbroken, but larger key size
- \implies **Twisted** Gabidulin codes¹³ in McEliece:
 - Key sizes approximately half of Loidreau's
 - No efficient decoder known (yet)
 - Distinguisher: dim $(\mathcal{G}_t + \mathcal{G}_t^q + \dots \mathcal{G}_t^{q^i}) = \min\{k 1 + (i + 1)(\ell + 1), n\}$ but no explicit attack

¹³Sheekey, "A new family of linear maximum rank distance codes," AMC 2016

¹⁴Puchinger, Renner, Wachter-Zeh, "Twisted Gabidulin codes in the GPT cryptosystem," ACCT 2018

^{10/16}

Outline

Post-Quantum Cryptography

Public-Key Cryptography Post-Quantum Cryptography New Code-Based Cryptosystems

2 Further Current Research

Coding for Distributed Data Storage Coding for DNA Storage Private Information Retrieval Network Coding

Locality: number of servers (symbols) needed to repair a failed server (erased symbol)

Our Research: (list) decoding algorithms^{15,16}, investigation of good codes¹⁷

¹⁵Holzbaur, Wachter-Zeh, "List decoding of locally repairable codes," ISIT 2018

 $^{16}\mbox{Holzbaur},$ Puchinger, Wachter-Zeh, "Error Decoding of Locally Repairable and PMDS Codes," ITW 2019

Locality: number of servers (symbols) needed to repair a failed server (erased symbol)

Our Research: (list) decoding algorithms^{15,16}, investigation of good codes¹⁷

¹⁵Holzbaur, Wachter-Zeh, "List decoding of locally repairable codes," ISIT 2018

 16 Holzbaur, Puchinger, Wachter-Zeh, "Error Decoding of Locally Repairable and PMDS Codes," ITW 2019

Locality: number of servers (symbols) needed to repair a failed server (erased symbol)

Our Research: (list) decoding algorithms^{15,16}, investigation of good codes¹⁷

¹⁵Holzbaur, Wachter-Zeh, "List decoding of locally repairable codes," ISIT 2018

 $^{16}\mbox{Holzbaur},$ Puchinger, Wachter-Zeh, "Error Decoding of Locally Repairable and PMDS Codes," ITW 2019

Locality: number of servers (symbols) needed to repair a failed server (erased symbol)

Our Research: (list) decoding algorithms^{15,16}, investigation of good codes¹⁷

¹⁵Holzbaur, Wachter-Zeh, "List decoding of locally repairable codes," ISIT 2018

 $^{16}\mbox{Holzbaur},$ Puchinger, Wachter-Zeh, "Error Decoding of Locally Repairable and PMDS Codes," ITW 2019

Locality: number of servers (symbols) needed to repair a failed server (erased symbol)

Our Research: (list) decoding algorithms^{15,16}, investigation of good codes¹⁷

¹⁵Holzbaur, Wachter-Zeh, "List decoding of locally repairable codes," ISIT 2018

 $^{16}\mbox{Holzbaur},$ Puchinger, Wachter-Zeh, "Error Decoding of Locally Repairable and PMDS Codes," ITW 2019

• Channel input: Sequences to be stored

Our Research: codes for insertions/deletions¹⁸, duplications¹⁹, ... and coding over sets²⁰ with insertions/deletions and substitutions

• Received sequences

Our Research: codes for insertions/deletions¹⁸, duplications¹⁹, ... and coding over sets²⁰ with insertions/deletions and substitutions

• Clusters around received sequences

Our Research: codes for insertions/deletions¹⁸, duplications¹⁹, ... and coding over sets²⁰ with insertions/deletions and substitutions

• Channel output: Reconstructed sequences

Our Research: codes for insertions/deletions¹⁸, duplications¹⁹, ... and coding over sets²⁰ with insertions/deletions and substitutions

Private Information Retrieval

Goal

Retrieve a file from a public database or distributed storage system without revealing the index of the file.

Protocol:

- 1 Query: The user sends a query to each server
- Response: The servers respond according to the received queries
- **3** Decoding: The user retrieves the desired file from the responses

Our Research: Privacy for streaming²¹, PIR over networks²²

²¹Holzbaur, Freij-Hollanti, Wachter-Zeh, Hollanti, "Private streaming with convolutional codes," ITW 2018 ²²Tajeddine, Wachter-Zeh, Hollanti, "Private information retrieval over networks," For. & Security 2019

Network Coding: Alphabet Size

Task: find coefficients at the nodes s.t. each receiver obtains its requested packets.

- Scalar network coding: scalars over field of size q_s
 → for each coefficient: q_s possibilities
- Vector network coding of dimension t: t × t matrices over field of size q
 → for each coefficient: q^{t²} possibilities

For equivalent field sizes $(q_s=q^t)$, vector network coding offers more freedom!

• Gap:
$$q_s-q^t\geq q^{\left(1-rac{1}{\ell}
ight)t^2+o(t)}$$
 (for any $\ell\geq 2)^{23}$

 Upper bound on the number of nodes in the middle layer of subnetworks of combination networks²⁴

²³Etzion, Wachter-Zeh, "Vector network coding outperforms scalar network coding," T-IT 2018
²⁴Cai, Etzion, Schwartz, Wachter-Zeh, "Network coding solutions for the combination network," 2019

Network Coding: Alphabet Size

Task: find coefficients at the nodes s.t. each receiver obtains its requested packets.

- Scalar network coding: scalars over field of size q_s
 → for each coefficient: q_s possibilities
- Vector network coding of dimension t: t × t matrices over field of size q → for each coefficient: q^{t²} possibilities

For equivalent field sizes $(q_s = q^t)$, vector network coding offers more freedom!

• Gap:
$$q_s - q^t \geq q^{\left(1 - rac{1}{\ell}\right)t^2 + o(t)}$$
 (for any $\ell \geq 2)^{23}$

 Upper bound on the number of nodes in the middle layer of subnetworks of combination networks²⁴

 ²³Etzion, Wachter-Zeh, "Vector network coding outperforms scalar network coding," T-IT 2018
 ²⁴Cai, Etzion, Schwartz, Wachter-Zeh, "Network coding solutions for the combination network," 2019

Thank you...

...for your attention! Questions?

Thanks for the financial support to:

Thanks for the collaboration to (alphabtical order):

Han Cai (BGU), Tuvi Etzion (Technion), Ragnar Freij-Hollanti (Aalto), Lukas Holzbaur (TUM), Camilla Hollanti (Aalto), Andreas Lenz (TUM), Lia Liu (TUM), Sven Puchinger (TUM), Julian Renner (TUM), Moshe Schwartz (BGU), Paul Siegel (UCSD), Razan Tajeddine (Aalto), Eitan Yaakobi (Technion) 16/16