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Research

Machine learning, statistics, and signal processing.

Current focus:

i. Deep learning for inverse problems
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ii. Learning from unlabeled data or noisy labels
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iii. DNA data storage
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i. Deep learning for inverse problems
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Example of inverse problems




Inverse problems

Traditionally solved with handcrafted models like wavelets/sparsity
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Inverse problems

Traditionally solved with handcrafted models like wavelets/sparsity

Now state-of-the-art based on image-generating deep neural networks




The deep decoder

deep neural networks

handcrafted




The deep decoder: handcrafted neural network
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An image generating network that is

® not trained

m yields state-of-the-art compression and image restoration
performance, for example for MRI imaging

m is underparameterized



Deep decoder for MRI
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ii. Learning from unlabeled data or noisy labels
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Learning from examples

Collect candidate examples for example via google image search
Labeling the candidate images

Training a deep network
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An Al company - what do these people do?
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An Al company - what do these people do?

Yan Cong for The NYT. “Workers at the headquarters of Ruijin
Technology Company. They identify objects in images to help
artificial intelligence make sense of the world.”
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Labeling is the most expensive step
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Labeling is the most expensive step
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Labeling is the most expensive step

m How to use the human workers most efficiently with active
learning?
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Labeling is the most expensive step

m How to use the human workers most efficiently with active
learning?

m Don't label - learn from noisy candidates
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Training a deep network on noisy candidates
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m Deep nets fit correct examples faster than wrong ones

m Early stopping enables training on noisy examples!
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ii. DNA data storage
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DNA data storage
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DNA data storage

encode
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Leads to interesting coding/clustering/reconstructions problems
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A commercial application: Storing information for eternity?
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Our first customer: Massive
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Research focus

Machine learning, statistics, and signal processing.

i. Deep learning for inverse problems

noisy image DD recovered

ii. Learning from few or noisy labels

data active learner
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Thank you!

iii. DNA data storage
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