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Research

Machine learning, statistics, and signal processing.

Current focus:

i. Deep learning for inverse problems

ii. Learning from unlabeled data or noisy labels

iii. DNA data storage
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i. Deep learning for inverse problems
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Example of inverse problems

Compressed sensing

Super-res

Inpainting

Denoisin
g

Phase Retrieval



Inverse problems

Traditionally solved with handcrafted models like wavelets/sparsity

Now state-of-the-art based on image-generating deep neural networks
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The deep decoder

handcrafted deep neural networks
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The deep decoder: handcrafted neural network

. . .

An image generating network that is

not trained

yields state-of-the-art compression and image restoration
performance, for example for MRI imaging

is underparameterized



Deep decoder for MRI
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ii. Learning from unlabeled data or noisy labels
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Learning from examples

1 Collect candidate examples for example via google image search

2 Labeling the candidate images

3 Training a deep network
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An AI company - what do these people do?

Yan Cong for The NYT. “Workers at the headquarters of Ruijin
Technology Company. They identify objects in images to help
artificial intelligence make sense of the world.”
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Labeling is the most expensive step

How to use the human workers most efficiently with active
learning?

Don’t label - learn from noisy candidates
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Training a deep network on noisy candidates
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Deep nets fit correct examples faster than wrong ones

Early stopping enables training on noisy examples!
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ii. DNA data storage
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DNA data storage

01011010
encode

ACGT. . . GA CT. . .

Leads to interesting coding/clustering/reconstructions problems
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A commercial application: Storing information for eternity?
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Our first customer: Massive attack





Research focus

Machine learning, statistics, and signal processing.

i. Deep learning for inverse problems

ii. Learning from few or noisy labels

iii. DNA data storage
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