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MOTIVATION



Motivation

Optimal network performance in computer vision requires extensive datasets of clean, 
high-quality images ⇒ especially in medical imaging

Challenge for medical context:

→ High cost and resource intensity in obtaining detailed CT or MRI scans

→ often compromised by noise and artifacts.
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Motivation

Optimal network performance in computer vision requires extensive datasets of clean, 
high-quality images ⇒ especially in medical imaging

Challenge for medical context:

→ High cost and resource intensity in obtaining detailed CT or MRI scans

→ often compromised by noise and artifacts.

Generative Al Models: can produce high-quality synthetic images supplementing existing 
datasets

⇒ improved robustness and accuracy

⇒ But: → requires large datasets and computational intensity for training

→ synthetic images often lacking intricate details

⇒ Wavelet Transformations ?
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BACKGROUND



Generative Models
designed to generate new data samples 
resembling a given dataset by learning its 
underlying distribution.

⇒ used for: generating images, text, and 
audio.

Common Implementations for medical 
imaging:

→ Variational Autoencoders (VAEs)

→ Generative Adversarial Networks (GANs) 

Slide 7



Generative Models
designed to generate new data samples 
resembling a given dataset by learning its 
underlying distribution.

⇒ used for: generating images, text, and 
audio.

Common Implementations for medical 
imaging:

→ Variational Autoencoders (VAEs)

→ Generative Adversarial Networks (GANs) 

Slide 8

Score-Based Generative Models (SGMs)

SGMs estimate the score function of data 
distribution to generate new samples by 
following gradients

→ Denoising Score Matching (DSM)

→ Stochastic Differential Equations (SDE)

Diffusion Models

use a two-stage process: 

→ forward diffusion adds Gaussian noise

→ reverse diffusion recovers the original data

⇒ known for high-quality but slow sample 
generation.



Wavelet Transform
- Mathematical transform to decompose 

data into frequency components

- Captures BOTH time and frequency 
localization (≠ Fourier)

- > analysis of signals/data with 
non-stationary properties

- > multi-resolution analysis (at various 
levels of detail)

Used for: signal processing, data 
compression, data smoothing, image 
denoising, etc.

Slide 9[7] Shin, Y. H., Park, M. J., Lee, O. Y., & Kim, J. O. (2020). Deep orthogonal transform feature for image denoising. IEEE Access, 8, 66898-66909.



Wavelet Transform
- Mathematical transform to decompose 

data into frequency components

- Captures BOTH time and frequency 
localization (≠ Fourier)

- > analysis of signals/data with 
non-stationary properties

- > multi-resolution analysis (at various 
levels of detail)

Used for: signal processing, data 
compression, data smoothing, image 
denoising, etc.

LL (Low-Low): Approximation of original 
image
LH (Low-High): Horizontal edge details
HL (High-Low): Vertical edge details
HH (High-High): diagonal details and fine 
textures in the image

Slide 10[9] Shin, Y. H., Park, M. J., Lee, O. Y., & Kim, J. O. (2020). Deep orthogonal transform feature for image denoising. IEEE Access, 8, 66898-66909.

discrete wavelet transform [9]



WAVELET-IMPROVED SCORE-BASED GENERATIVE MODEL FOR MEDICAL 
IMAGING

ADVANCEMENTS IN MEDICAL IMAGING



SGMs in Medical Imaging

- SGMs need high-quality datasets for best 
performance

- > medical imaging modalities are 
inherently noisy and ridden by artifacts

- >> low-dose CT, sparse-view CT, and fast 
MRI
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(a) ground truth (b), (c) reconstruction result of SGM trained with clean 
and noisy images (d), (e), (f) differences between reconstructed 
images and the ground truth respectively

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.



Contributions

Adaptive wavelet sub-network 
⇒ Novel and effective denoising mechanism
⇒ enhancing the robustness of SGM → higher quality reconstruction results

Slide 13[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.



Contributions

Adaptive wavelet sub-network 
⇒ Novel and effective denoising mechanism
⇒ enhancing the robustness of SGM → higher quality reconstruction results

Unified Framework adaptive wavelet integrated with SGM
⇒ wavelet provides cleaner images → improve SGM reconstruction
⇒ SGMs provides better reconstruction results → refines wavelet sub-network
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Contributions

Adaptive wavelet sub-network 
⇒ Novel and effective denoising mechanism
⇒ enhancing the robustness of SGM → higher quality reconstruction results

Unified Framework adaptive wavelet integrated with SGM
⇒ wavelet provides cleaner images → improve SGM reconstruction
⇒ SGMs provides better reconstruction results → refines wavelet sub-network

Multi-perspective regularization
⇒ integrate prior knowledge in diffusion process: regularized sparsity, data consistency
⇒ handle under-sampled and noisy input → accelerate search process
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Results
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Results - metric evaluation

Peak Signal-to-Noise Ratio (PSNR): indicating overall image fidelity and quality

→ ratio between the maximum possible power of an image signal and the power of corrupting 
noise

Structural Similarity Index Measure (SSIM): similarity between two images 

→ based on luminance, contrast, and structure

Slide 21[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.



Evaluation
Pro

→ robustness to noise

→ high reconstruction quality without ground 
truth images

→ preserves fine details and structural 
information

→ effective across various imaging modalities 
(Ultrasound ?)

⇒ beneficial unsupervised learning capability 
in clinical settings
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Limitations

→ substantial amounts of computation time 
due to SGMs

⇒ increased computational complexity and 
time due to wavelet

⇒ limitation for real-time applications

→ may struggle to recover very fine details 
under extreme imaging conditions

⇒ requires further enhancements through 
integration with other reconstruction 
techniques

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.



NEURAL WAVELET-DOMAIN DIFFUSION FOR 3D SHAPE GENERATION

3D SHAPE GENERATION



Overview

Slide 24[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



Data Preparation
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Sample a signed distance field (SDF)

→ truncate its distance values to avoid 
redundant information

⇒ TSDF (truncated SDF)

> Reduce the shape representation 
redundancy

> Focus the shape learning process on 
the shape's structures and fine details

Transform TSDF to the wavelet domain

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



Shape Learning
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Generator Network → generation of coarse 
image through diffusion

⇒ denoising diffusion probabilistic model

Detail Predictor Network → learning to 
predict the details for the generated shapes

⇒ adding fine details → more realistic and 
intricate 3D Shapes

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



Shape Generation (Inference)

→ trained generator network creates a coarse coefficient volume from a random noise sample

→ detail predictor then adds fine details to this coarse volume

⇒  inverse wavelet transform followed by the marching cube algorithm → reconstruct the final 
3D shape

Slide 27[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



Results

coverage (COV): generated shapes coverage of the shapes in the given 3D repository

minimum matching distance (MMD): fidelity of the generated shapes

1-NN classifier accuracy (1-NNA): how well a classifier differentiates the generated shapes 
from those in the repository

⇒ Chamfer Distance (CD) & Earth Mover’s Distance (EMD)

Slide 28[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



Results - Qualitative

Slide 29[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



Results - Novelty

Slide 30[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



Evaluation
Pro

→ High fidelity in generated shapes

→ Detailed and realistic structures

→ Effective coverage of a broad range of 
shapes 

→ Clean surfaces free from artifacts

→ Realistic generation of novel shapes
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Limitations

→  high computational cost due to iterative 
process 

⇒ Long computing times despite 
subsampling

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).



WAVELET SCORE-BASED GENERATIVE MODELING

OPTIMIZATION OF GENERATIVE MODELING



Contributions

Analysis of the computational effort for new data generation

Wavelet Score-based Generative Model (WSGM) 

→ improve computation efficiency of SGMs 

⇒ time complexity growing INDEPENDENTLY with image size

Slide 33[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.



Contributions

Analysis of the computational effort for new data generation

Wavelet Score-based Generative Model (WSGM) 

→ improve computation efficiency of SGMs 

⇒ time complexity growing INDEPENDENTLY with image size

Theorems for controlling errors of time discretizations of SGMs

⇒ proving accelerations obtained by scale separation with wavelets

⇒ empirically verified by showing that WSGM provides an acceleration for the synthesis of 
physical processes at phase transition and natural image datasets.

Slide 34[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.



SGMs: discretization and score regularity

Theorem 1: for gaussian distribution N(0,Σ)

→  provides an upper bound on the Kullback-Leibler (KL) divergence error ε between a Gaussian 
distribution and its discretized version

⇒ dependant on the number of time steps N to reach ε as a function of the condition number κ 
of covariance matrix Σ.

⇒ indicates that the number of time steps should increase with the condition number of the 
covariance matrix → in typical cases the number of time steps increases with the image size

Slide 35[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.



SGMs: discretization and score regularity

Theorem 1: for gaussian distribution N(0,Σ)

→  provides an upper bound on the Kullback-Leibler (KL) divergence error ε between a Gaussian 
distribution and its discretized version

⇒ dependant on the number of time steps N to reach ε as a function of the condition number κ 
of covariance matrix Σ.

⇒ indicates that the number of time steps should increase with the condition number of the 
covariance matrix → in typical cases the number of time steps increases with the image size

Theorem 2: extension of theorem 1 to non-gaussian processes

⇒ Well-conditioned covariance matrix is crucial to minimize error.

⇒ Non-Gaussian processes with ill-conditioned matrices may need more discretization steps to 
achieve small errors.

Slide 36[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.



Wavelet Score-Based Generative Model (WSGM)

Slide 37[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.



Discretization and Accuracy for Gaussian Processes

Theorem 3: for Gaussian multiscale processes using the WSGM method

→ Establishes bounds for convergence and error rates.

⇒ This bound is not dependent on the conditioning number of Σ

⇒ The number of diffusion steps required to reach a fixed error is independent of the input data 
size (e.g., image size).

Demonstrates general applicability beyond just Gaussian processes, suggesting broader 
potential use.

Slide 38[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.



Fréchet Inception Distance (FID): evaluates the quality 
of generated images by comparing them to a set of real 
images

Slide 39[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.

Results



Evaluation
Pro

→ Efficiency with fewer iterations

→ Scalable for high-resolution images

→ Superior perceptual quality with lower FID 
scores
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Limitations

→   High complexity due to wavelet 
transforms and conditional distributions

→ Mainly effective for near-Gaussian 
multiscale processes

⇒ Extending to non-Gaussian processes may 
require further techniques

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.



DISCUSSION



Wavelet Transforms in Generative Models

→ Enhance generative models by handling multiscale data and capturing fine details.

→ Ensure high fidelity, preserving intricate structures and improving image quality.

→ Robust in various applications:

  ⇒ Handling noisy training data.

  ⇒ Maintaining performance across different scales.

  ⇒ Achieving better perceptual quality.

Challenges:

→ Increased system complexity.

→ Potentially longer computation times.

→ Limited suitability for all situations.
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Promise in Medical Imaging

→ WSGMs' independence from generated image size ⇒ potential for high resolution datasets

→ Unsupervised operation with fine detail preservation and less sensitivity to artifacts

→ Potential for diverse 3D dataset generation of smooth anatomical structures

Future Research Directions:

→ Integrate strengths while mitigating limitations

→ Hybrid approaches combining wavelet transforms with other techniques

⇒ E.g. extend WSGMs to 3D for improved computational efficiency and shape generation

⇒ Investigate performance on ultrasound images, the noisiest and blurriest modality
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Wavelet enhanced SGM in medical imaging - Dataset & 
Implementation details
Dataset: 

- CT: provided by the AAPM challenge → 5410 images with 512 × 512 pixels and 1 mm 
thickness ⇒ low-dose and sparse-view is simulated

- MRI: fastMRI knee joint dataset
Implementation Details:

- Haar wavelet
- Network implementation following P. Liu, H. Zhang, W. Lian, and W. Zuo, “Multi-level 

wavelet convolutional neural networks,” IEEE Access, vol. 7, pp. 74973–74985, 2019
- ⇒ modified UNet-architecture

Hardware: Not specified
Code: https://zenodo.org/records/8266123
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Results - Ablation Study

Slide 49[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.



Regularization Constraint
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CT:

MRI:



3D Shape Gen - Dataset & Implementation details

Dataset: ShapeNet dataset
Implementation Details:

- modified 3D version of the U-Net architecture → same structure for both
- Generator: 800,000 iterations - detail predictor: 60,000 iterations
- Learning rate: 1𝑒 −4

- Training takes three days (generator) and 12 hours (detail predictor)
- The inference takes around six seconds per shape on an RTX 3090 GPU

Hardware:
- pyTorch on a GPU cluster with four RTX3090 GPUs

Code: https://github.com/edward1997104/Wavelet-Generation
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Results - Ablation Study
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WSGM - Dataset & Implementation details

Dataset: CelebA-HQ image dataset - 128 × 128 images
Implementation Details:

- Haar wavelets
- UNet architecture

Hardware: Not specified
Code: Pseudo Code in Paper
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