

Wavelet and Diffusion Models

Presenter: Leonhard Zirus Director: Prof. Dr. Nassir Navab Supervisor: Mohammad Farid Azampour Date: 20nd June of 2024

Outline

Motivation

Background

- Generative Models
- Wavelet Transforms
- Integrating Wavelet-Enhanced Generative Models
 - Medical Imaging Advancements
 - 3D Shape Generation
 - Optimization of Generative Modeling

Discussion

ΜοτινατιοΝ

Motivation

Optimal network performance in computer vision requires **extensive** datasets of **clean**, **high-quality** images ⇒ especially in medical imaging

Challenge for medical context:

- \rightarrow High cost and resource intensity in obtaining detailed CT or MRI scans
- \rightarrow often compromised by noise and artifacts.

Motivation

Optimal network performance in computer vision requires **extensive** datasets of **clean**, **high-quality** images ⇒ especially in medical imaging

Challenge for medical context:

- \rightarrow High cost and resource intensity in obtaining detailed CT or MRI scans
- \rightarrow often compromised by noise and artifacts.
- **Generative AI Models**: can produce high-quality synthetic images supplementing existing datasets
- \Rightarrow improved robustness and accuracy
- \Rightarrow But: \rightarrow requires large datasets and computational intensity for training
 - \rightarrow synthetic images often lacking intricate details
- ⇒ Wavelet Transformations ?

BACKGROUND

Generative Models

designed to generate new data samples resembling a given dataset by learning its underlying distribution.

 \Rightarrow used for: generating images, text, and audio.

Common Implementations for medical imaging:

- \rightarrow Variational Autoencoders (VAEs)
- \rightarrow Generative Adversarial Networks (GANs)

Generative Models

designed to generate new data samples resembling a given dataset by learning its underlying distribution.

 \Rightarrow used for: generating images, text, and audio.

Common Implementations for medical imaging:

- \rightarrow Variational Autoencoders (VAEs)
- → Generative Adversarial Networks (GANs)

Score-Based Generative Models (SGMs)

SGMs estimate the score function of data distribution to generate new samples by following gradients

- \rightarrow Denoising Score Matching (DSM)
- \rightarrow Stochastic Differential Equations (SDE)

Diffusion Models

use a two-stage process:

- \rightarrow forward diffusion adds Gaussian noise
- \rightarrow reverse diffusion recovers the original data

 \Rightarrow known for high-quality but slow sample generation.

Wavelet Transform

- Mathematical transform to decompose data into frequency components
- Captures BOTH time and frequency localization (≠ Fourier)
- > analysis of signals/data with non-stationary properties
- > multi-resolution analysis (at various levels of detail)

Used for: signal processing, data compression, data smoothing, image denoising, etc.

[7] Shin, Y. H., Park, M. J., Lee, O. Y., & Kim, J. O. (2020). Deep orthogonal transform feature for image denoising. IEEE Access, 8, 66898-66909.

Wavelet Transform

- Mathematical transform to decompose data into frequency components
- Captures BOTH time and frequency localization (≠ Fourier)
- > analysis of signals/data with non-stationary properties
- > multi-resolution analysis (at various levels of detail)

Used for: signal processing, data compression, data smoothing, image denoising, etc.

discrete wavelet transform [9]

LL (Low-Low): Approximation of original image
LH (Low-High): Horizontal edge details
HL (High-Low): Vertical edge details
HH (High-High): diagonal details and fine textures in the image

Shin, Y. H., Park, M. J., Lee, O. Y., & Kim, J. O. (2020). Deep orthogonal transform feature for image denoising. IEEE Access, 8, 66898-66909

Advancements in Medical Imaging

WAVELET-IMPROVED SCORE-BASED GENERATIVE MODEL FOR MEDICAL IMAGING

SGMs in Medical Imaging

- SGMs need high-quality datasets for best performance
- > medical imaging modalities are inherently noisy and ridden by artifacts
- >> low-dose CT, sparse-view CT, and fast MRI

(a) ground truth (b), (c) reconstruction result of SGM trained with clean and noisy images (d), (e), (f) differences between reconstructed images and the ground truth respectively

Adaptive wavelet sub-network

- \Rightarrow Novel and effective denoising mechanism
- \Rightarrow enhancing the robustness of SGM \rightarrow higher quality reconstruction results

Adaptive wavelet sub-network

- \Rightarrow Novel and effective denoising mechanism
- \Rightarrow enhancing the robustness of SGM \rightarrow higher quality reconstruction results

Unified Framework adaptive wavelet integrated with SGM

- \Rightarrow wavelet provides cleaner images \rightarrow improve SGM reconstruction
- \Rightarrow SGMs provides better reconstruction results \rightarrow refines wavelet sub-network

Adaptive wavelet sub-network

- \Rightarrow Novel and effective denoising mechanism
- \Rightarrow enhancing the robustness of SGM \rightarrow higher quality reconstruction results

Unified Framework adaptive wavelet integrated with SGM

- \Rightarrow wavelet provides cleaner images \rightarrow improve SGM reconstruction
- \Rightarrow SGMs provides better reconstruction results \rightarrow refines wavelet sub-network

Multi-perspective regularization

- ⇒ integrate prior knowledge in diffusion process: regularized sparsity, data consistency
- \Rightarrow handle under-sampled and noisy input \rightarrow accelerate search process

2

Slide 16

Results

Fig. 7. Low-dose CT reconstruction results. From left to right Ground Truth, Input, RED-CNN, DSM, FBP, DIP, and our method. The 1st row displays the reconstructed images, while the 2nd row shows the difference images relative to the ground truth. Display windows [–50 1200] HU are used.

		Methods with	Ground Truth	Methods without Ground Truth				
Ground Truth	Input	FBPConvNet	DSM	FBP	FISTA	Ours		
PSNR(dB)/SSIM	23.16/0.416	39.574/0.952	35.79/0.881	23.16/0.416	31.54/0.859	35.60/0.884		

Fig.8. The reconstruction results of 60 views from AAPM CT datasets. The columns from left to right: the Ground Truth, Input, FBPConvNet, DSM, FBP, FISTA, and our method. The 1^{sf} row displays the reconstructed images, while the 2nd row shows the difference images relative to the ground truth. Display windows [100 1300] HU are used.

			Methods with Groun	d Truth	Methods wit	hout Ground Truth
Ground T	ruth Input	SDE	CascadeNet	UPDNet	L1Wavelet	Ours
PSNR(dB)/S	SIM Gaussian1D act	sx4 35.65/0.865	33,58/0.856	32.80/0.862	22.49/0.692	35.72/0.865
	0				0	
Gaussian1	D					
PSNR(dB)/S	SIM Uniform1D acc>	×4 35 .24/0.850	33.12/0.836	34.93/0.856	21.37/0.643	33.85/0.824
	7 7				7	
Uniform1D						

Fig. 9. ×4 acceleration MRI reconstruction results with Gaussian 1D and Uniform 1D masks. From left to right Ground Truth, Input, L1Wavelet, SDE, CascadeNet, UPDNet, and our method. The 1st to 3rd rows display one case of the image, two enlarged ROIs (knee joint ROI and tissue ROI), and the difference images in comparison to the ground truth, respectively. Similarly, the 4th to 6th rows display another image case, enlarged ROIs, and the different images in comparison to the ground truth, respectively.

Slide 20

Results - metric evaluation

Peak Signal-to-Noise Ratio (PSNR): indicating overall image fidelity and quality

 \rightarrow ratio between the maximum possible power of an image signal and the power of corrupting noise

Structural Similarity Index Measure (SSIM): similarity between two images

 \rightarrow based on luminance, contrast, and structure

Fig. 10. Statistical results of different methods in terms of PSNR and SSIM in three reconstruction tasks, including low-dose CT reconstruction, sparse-view CT reconstruction, and under-sampled MRI reconstruction with Gaussian 1D mask.

Evaluation

Pro

- \rightarrow robustness to noise
- \rightarrow high reconstruction quality without ground truth images
- \rightarrow preserves fine details and structural information
- \rightarrow effective across various imaging modalities (Ultrasound ?)
- ⇒ beneficial unsupervised learning capability in clinical settings

Limitations

 \rightarrow substantial amounts of computation time due to SGMs

⇒ increased computational complexity and time due to wavelet

 \Rightarrow limitation for real-time applications

 \rightarrow may struggle to recover very fine details under extreme imaging conditions

⇒ requires further enhancements through integration with other reconstruction techniques

3D SHAPE GENERATION

NEURAL WAVELET-DOMAIN DIFFUSION FOR 3D SHAPE GENERATION

Overview

G

Slide 24

Data Preparation

Sample a signed distance field (SDF)

- \rightarrow truncate its distance values to avoid redundant information
- \Rightarrow TSDF (truncated SDF)
 - > Reduce the shape representation redundancy
 - > Focus the shape learning process on the shape's structures and fine details

Transform TSDF to the wavelet domain

Slide 25

Shape Learning

Generator Network \rightarrow generation of coarse image through diffusion

⇒ denoising diffusion probabilistic model

Detail Predictor Network \rightarrow learning to predict the details for the generated shapes

 \Rightarrow adding fine details \rightarrow more realistic and intricate 3D Shapes

Shape Generation (Inference)

→ trained generator network creates a coarse coefficient volume from a random noise sample

- \rightarrow detail predictor then adds fine details to this coarse volume
- ⇒ inverse wavelet transform followed by the marching cube algorithm \rightarrow reconstruct the final 3D shape

Results

	Chair					Airplane							
Method		COV		MMD		1-NNA		COV		MMD		1-NNA	
	CD	EMD	CD	EMD	CD	EMD	CD	EMD	CD	EMD	CD	EMD	
IM-GAN [Chen and Zhang 2019]	56.49	54.50	11.79	14.52	61.98	63.45	61.55	62.79	3.320	8.371	76.21	76.08	
Voxel-GAN [Kleineberg et al. 2020]	43.95	39.45	15.18	17.32	80.27	81.16	38.44	39.18	5.937	11.69	93.14	92.77	
Point-Diff [Luo and Hu 2021]	51.47	55.97	12.79	16.12	61.76	63.72	60.19	62.30	3.543	9.519	74.60	72.31	
SPAGHETTI [Hertz et al. 2022]	49.19	51.92	14.90	15.90	70.72	68.95	58.34	58.38	4.062	8.887	78.24	77.01	
Ours	58.19	55.46	11.70	14.31	61.47	61.62	64.78	64.40	3.230	7.756	71.69	66.74	

coverage (COV): generated shapes coverage of the shapes in the given 3D repository

minimum matching distance (MMD): fidelity of the generated shapes

1-NN classifier accuracy (1-NNA): how well a classifier differentiates the generated shapes from those in the repository

⇒ Chamfer Distance (CD) & Earth Mover's Distance (EMD)

Results - Qualitative

CAM

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).

Slide 29

Results - Novelty

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).

Slide 30

Evaluation

Pro

- \rightarrow High fidelity in generated shapes
- \rightarrow Detailed and realistic structures
- \rightarrow Effective coverage of a broad range of shapes
- \rightarrow Clean surfaces free from artifacts
- \rightarrow Realistic generation of novel shapes

Limitations

 $\rightarrow\,$ high computational cost due to iterative process

⇒ Long computing times despite subsampling

OPTIMIZATION OF GENERATIVE MODELING

WAVELET SCORE-BASED GENERATIVE MODELING

Analysis of the computational effort for new data generation

Wavelet Score-based Generative Model (WSGM)

- \rightarrow improve computation efficiency of SGMs
- ⇒ time complexity growing INDEPENDENTLY with image size

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.

Analysis of the computational effort for new data generation

Wavelet Score-based Generative Model (WSGM)

- \rightarrow improve computation efficiency of SGMs
- ⇒ time complexity growing INDEPENDENTLY with image size

Theorems for controlling errors of time discretizations of SGMs

 \Rightarrow proving accelerations obtained by scale separation with wavelets

 \Rightarrow empirically verified by showing that WSGM provides an acceleration for the synthesis of physical processes at phase transition and natural image datasets.

SGMs: discretization and score regularity

Theorem 1: for gaussian distribution $N(0,\Sigma)$

 \rightarrow provides an upper bound on the Kullback-Leibler (KL) divergence error ϵ between a Gaussian distribution and its discretized version

 \Rightarrow dependant on the number of time steps N to reach ε as a function of the condition number κ of covariance matrix Σ.

 \Rightarrow indicates that the number of time steps **should increase** with the condition number of the covariance matrix \rightarrow in typical cases the number of time steps increases with the image size

SGMs: discretization and score regularity

Theorem 1: for gaussian distribution $N(0,\Sigma)$

 $\rightarrow\,$ provides an upper bound on the Kullback-Leibler (KL) divergence error ϵ between a Gaussian distribution and its discretized version

 \Rightarrow dependant on the number of time steps N to reach ε as a function of the condition number κ of covariance matrix Σ.

 \Rightarrow indicates that the number of time steps **should increase** with the condition number of the covariance matrix \rightarrow in typical cases the number of time steps increases with the image size

Theorem 2: extension of theorem 1 to non-gaussian processes

 \Rightarrow Well-conditioned covariance matrix is crucial to minimize error.

⇒ Non-Gaussian processes with ill-conditioned matrices may need more discretization steps to achieve small errors.

Wavelet Score-Based Generative Model (WSGM)

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.

Discretization and Accuracy for Gaussian Processes

Theorem 3: for Gaussian multiscale processes using the WSGM method

- \rightarrow Establishes bounds for convergence and error rates.
- \Rightarrow This bound is not dependent on the conditioning number of Σ

⇒ The number of diffusion steps required to reach a fixed error is independent of the input data size (e.g., image size).

Demonstrates general applicability beyond just Gaussian processes, suggesting broader potential use.

] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.

Results

Fréchet Inception Distance (FID): evaluates the quality of generated images by comparing them to a set of real images

Slide 39

Evaluation

Pro

- \rightarrow Efficiency with fewer iterations
- \rightarrow Scalable for high-resolution images
- \rightarrow Superior perceptual quality with lower FID scores

Limitations

 \rightarrow High complexity due to wavelet transforms and conditional distributions

 \rightarrow Mainly effective for near-Gaussian multiscale processes

⇒ Extending to non-Gaussian processes may require further techniques

DISCUSSION

Wavelet Transforms in Generative Models

- \rightarrow Enhance generative models by handling multiscale data and capturing fine details.
- \rightarrow Ensure high fidelity, preserving intricate structures and improving image quality.
- \rightarrow Robust in various applications:
 - \Rightarrow Handling noisy training data.
 - \Rightarrow Maintaining performance across different scales.
 - \Rightarrow Achieving better perceptual quality.

Challenges:

- \rightarrow Increased system complexity.
- \rightarrow Potentially longer computation times.
- \rightarrow Limited suitability for all situations.

Promise in Medical Imaging

- \rightarrow WSGMs' independence from generated image size \Rightarrow potential for high resolution datasets
- \rightarrow Unsupervised operation with fine detail preservation and less sensitivity to artifacts
- \rightarrow Potential for diverse 3D dataset generation of smooth anatomical structures

Future Research Directions:

- \rightarrow Integrate strengths while mitigating limitations
- \rightarrow Hybrid approaches combining wavelet transforms with other techniques
- \Rightarrow E.g. extend WSGMs to 3D for improved computational efficiency and shape generation
- ⇒ Investigate performance on ultrasound images, the noisiest and blurriest modality

REFERENCES

[1] Celard P, Iglesias EL, Sorribes-Fdez JM, Romero R, Vieira AS, Borrajo L. A survey on deep learning applied to medical images: from simple artificial neural networks to generative models. Neural Comput Appl. 2023;35(3):2291-2323. doi:10.1007/s00521-022-07953-4

[2] Croitoru, F. A., Hondru, V., Ionescu, R. T., & Shah, M. (2023). Diffusion models in vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3] Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE transactions on information theory, 41(3), 613-627.

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).

[6] K. Kim, G. El Fakhri, and Q. Li, "Low-dose CT reconstruction using spatially encoded nonlocal penalty," Med. Phys., vol. 44, no. 10, pp. e376–e390, Oct. 2017.

[7] Pinto-Coelho L. How Artificial Intelligence Is Shaping Medical Imaging Technology: A Survey of Innovations and Applications. Bioengineering. 2023; 10(12):1435. <u>https://doi.org/10.3390/bioengineering10121435</u>

[8] S. Niu et al., "Sparse-view X-ray CT reconstruction via total generalized variation regularization," Phys. Med. Biol., vol. 59, no. 12, pp. 2997–3017, Jun. 2014.

[9] Shin, Y. H., Park, M. J., Lee, O. Y., & Kim, J. O. (2020). Deep orthogonal transform feature for image denoising. IEEE Access, 8, 66898-66909.

[10] Sifuzzaman, M., Islam, M. R., & Ali, M. Z. (2009). Application of wavelet transform and its advantages compared to Fourier transform.

[11] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020). Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

[12] Walker, J. S., & Nguyen, T. Q. (2001). Wavelet-based image compression. Sub-chapter of CRC Press book: Transforms and Data Compression, 267-312.
[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.

QUESTIONS?

BACKUP SLIDES

Wavelet enhanced SGM in medical imaging - Dataset & Implementation details

Dataset:

- CT: provided by the AAPM challenge → 5410 images with 512 × 512 pixels and 1 mm thickness ⇒ low-dose and sparse-view is simulated
- MRI: fastMRI knee joint dataset

Implementation Details:

- Haar wavelet
- Network implementation following P. Liu, H. Zhang, W. Lian, and W. Zuo, "Multi-level wavelet convolutional neural networks," IEEE Access, vol. 7, pp. 74973–74985, 2019
- → modified UNet-architecture

Hardware: Not specified

Code: https://zenodo.org/records/8266123

Results - Ablation Study

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.

Regularization Constraint

$$\begin{aligned} \widehat{\mathbf{x}} &= \arg\min_{\mathbf{x}} \left[\frac{|\mathbf{y} - A\mathbf{x}|^2 + \lambda_1 \Phi_2(\Phi_1(\mathbf{x}))|}{|\mathbf{y} - A\mathbf{x}|^2 + \lambda_1 \Phi_2(\Phi_1(\mathbf{x}))|} \right], \quad (12) \quad \text{CT:} \\ &= \arg\min_{\mathbf{x}} \left[\frac{|\mathbf{y} - A\mathbf{x}|^2 + \lambda_1 \Phi_2(\Phi_1(\mathbf{x}))|}{|\mathbf{y} - A\mathbf{x}|^2 + \lambda_1 \Phi_2(\Phi_1(\mathbf{u}))} \right], \quad (12) \quad \text{CT:} \\ &= \operatorname{constant}^{\mathbf{x}} \left[\frac{|\mathbf{x}|^{(k+1)}}{|\mathbf{y} - \mathbf{x}|^2} \right] = \arg\min_{\mathbf{x}, \mathbf{u}} \left\| \frac{|\mathbf{y} - A\mathbf{x}|^2}{|\mathbf{y} - \mathbf{x}|^2} + \lambda_1 \Phi_2(\Phi_1(\mathbf{u})) \right], \quad (13) \\ &= \operatorname{constant}^{\mathbf{x}} \left[\operatorname{constant}^{\mathbf{x}} \delta \right] = \operatorname{con$$

$$\boldsymbol{x}^{(k+1)} = \underset{\boldsymbol{x}}{\arg\min} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{\widehat{x}}\|^2 + \lambda_2 \left\|\boldsymbol{\widehat{x}} - \boldsymbol{u}^{(k)}\right\|^2, \quad (15)$$

$$u^{(k+1)} = \arg\min_{u} \left\| u - x^{(k+1)} \right\|^2 + \underline{\lambda_1} \Phi_2(\Phi_1(u)).$$
(16)

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k+1/2)} + \gamma \left(\mathbf{x}^{(k+1/2)} - \mathbf{x}^{(k)} \right).$$
(18)

$$\boldsymbol{u}^{(k+1)} = \Phi_2(\Phi_1(\boldsymbol{x}^{(k+1)})), \tag{19}$$

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \eta \mathbf{A}_2^* (\mathbf{A}_2 \mathbf{x}^{(k)} - \mathbf{y}_2) - \lambda_2 (\mathbf{x}^{(k)} - \mathbf{u}^{(k)}), \quad (20)$$

$$\begin{cases} \boldsymbol{u}_{real}^{(k+1)} = \Phi_2(\Phi_1(\boldsymbol{x}_{real}^{(k+1)})) \\ \boldsymbol{u}_{imag}^{(k+1)} = \Phi_2(\Phi_1(\boldsymbol{x}_{imag}^{(k+1)})), \end{cases}$$
(21)

3D Shape Gen - Dataset & Implementation details

Dataset: ShapeNet dataset

Implementation Details:

- modified 3D version of the U-Net architecture \rightarrow same structure for both
- Generator: 800,000 iterations detail predictor: 60,000 iterations
- Learning rate: $1e^{-4}$
- Training takes three days (generator) and 12 hours (detail predictor)
- The inference takes around six seconds per shape on an RTX 3090 GPU

Hardware:

• pyTorch on a GPU cluster with four RTX3090 GPUs

Code: https://github.com/edward1997104/Wavelet-Generation

Results - Ablation Study

Mathad	COV	V ↑	MM	D↓	1-NNA↓		
Method	CD	EMD	CD	EMD	CD	EMD	
Full Model	58.19	55.46	11.70	14.31	61.47	61.62	
W/o detail predictor	54.20	50.96	12.32	14.54	62.46	62.57	
VAD Generator	21.83	26.77	21.83	26.77	95.20	93.62	
Direct predict TSDF	50.51	50.67	12.83	15.24	68.69	68.29	

WSGM - Dataset & Implementation details

Dataset: CelebA-HQ image dataset - 128 × 128 images **Implementation Details**:

- Haar wavelets
- UNet architecture

Hardware: Not specified

Code: Pseudo Code in Paper

