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Motivation

Optimal network performance in computer vision requires extensive datasets of clean,
high-quality images = especially in medical imaging

Challenge for medical context:

— High cost and resource intensity in obtaining detailed CT or MRI scans

— often compromised by noise and artifacts.
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Motivation

Optimal network performance in computer vision requires extensive datasets of clean,
high-quality images = especially in medical imaging

Challenge for medical context:
— High cost and resource intensity in obtaining detailed CT or MRI scans
— often compromised by noise and artifacts.

Generative Al Models: can produce high-quality synthetic images supplementing existing
datasets

= improved robustness and accuracy
= But: — requires large datasets and computational intensity for training
— synthetic images often lacking intricate details

= Wavelet Transformations ?
(6
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Generative Models

designed to generate new data samples
resembling a given dataset by learning its
underlying distribution.

= used for: generating images, text, and
audio.

Common Implementations for medical
imaging:

— Variational Autoencoders (VAES)

— Generative Adversarial Networks (GANs)
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Generative Models

designed to generate new data samples Score-Based Generative Models (SGMs)
resembling a given dataset by learning its

underlying distribution. SGMs estimate the score function of data

distribution to generate new samples by
= used for: generating images, text, and following gradients

aude. — Denoising Score Matching (DSM)
i(r:r(])e:gg:g-n implementations for medical — Stochastic Differential Equations (SDE)

— Variational Autoencoders (VAES) Diffusion Models

— Generative Adversarial Networks (GANS) use a two-stage process:

— forward diffusion adds Gaussian noise

— reverse diffusion recovers the original data

= known for high-quality but slow sample

f(f‘\ generation.
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Wavelet Transform

- Mathematical transform to decompose
data into frequency components

- Captures BOTH time and frequency
localization (= Fourier)

- > analysis of signals/data with
non-stationary properties

- > multi-resolution analysis (at various
levels of detail)

Used for: signal processing, data
compression, data smoothing, image
denoising, etc.

[ *Jf‘\

[7] Shin, Y. H., Park, M. J., Lee, O. Y., & Kim, J. O. (2020). Deep orthogonal transform feature for image denoising. IEEE Access, 8, 66898-66909. S'Ide 9




Wavelet Transform

- Mathematical transform to decompose
data into frequency components

- Captures BOTH time and frequency
localization (= Fourier)

- > analysis of signals/data with
non-stationary properties

- > multi-resolution analysis (at various
levels of detail)

Used for: signal processing, data
compression, data smoothing, image
denoising, etc.
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HH

discrete wavelet transform [9]

LL (Low-Low): Approximation of original
image

LH (Low-High): Horizontal edge details
HL (High-Low): Vertical edge details

HH (High-High): diagonal details and fine
textures in the image

[9] Shin, Y. H., Park, M. J., Lee, O. Y., & Kim, J. O. (2020). Deep orthogonal transform feature for image denoising. IEEE Access, 8, 66898-66909. Sllde 1 0




ADVANCEMENTS IN MEDICAL IMAGING

WAVELET-IMPROVED ScoORE-BASED GENERATIVE MODEL FOR MEDICAL
IMAGING
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SGMs in Medical Imaging

- SGMs need high-quality datasets for best
performance

- > medical imaging modalities are

inherently noisy and ridden by artifacts (@) ground truth (b), (c) reconstruction result of SGM trained with clean
and noisy images (d), (e), (f) differences between reconstructed

_ >> low-dose CT sparse-view CT. and fast images and the ground truth respectively

MRI

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.
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Contributions

Adaptive wavelet sub-network
= Novel and effective denoising mechanism
= enhancing the robustness of SGM — higher quality reconstruction results

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging. S'Ide 1 3




Contributions

Adaptive wavelet sub-network
= Novel and effective denoising mechanism
= enhancing the robustness of SGM — higher quality reconstruction results

Unified Framework adaptive wavelet integrated with SGM
= wavelet provides cleaner images — improve SGM reconstruction
= SGMs provides better reconstruction results — refines wavelet sub-network

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging. S'Ide 14




Contributions

Adaptive wavelet sub-network
= Novel and effective denoising mechanism
= enhancing the robustness of SGM — higher quality reconstruction results

Unified Framework adaptive wavelet integrated with SGM
= wavelet provides cleaner images — improve SGM reconstruction
= SGMs provides better reconstruction results — refines wavelet sub-network

Multi-perspective regularization
= integrate prior knowledge in diffusion process: regularized sparsity, data consistency
= handle under-sampled and noisy input — accelerate search process

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging. S'Ide 15




(a) Training Phase

Wavelet Sub-network

Refinement for
Wavelet Sub-network

SGM Sub-network

x® x&-1) Noise: x(1)

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.
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(a) Training Phase Wavelet Sub-network SGM Sub-network
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[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.
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[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.
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Results - metric evaluation

Low-dose CT Sparse-view CT Under-sampling MRI
36.3d IWREDICNN 0.898 40.53  FBP-ConvNet 0.957 34.91 SDE .868
40.38 DSM 0.951 34.39 DSM 0.882 33.50 CascadeNet .836
2551 |EFBP 0.516 23.33 FBP 0.405 33.31 UPDNet .853
324 DIP h.866 30.8% FISTA 0.848 £3.25 L1Wavelet 0.687
38.79 Ours 0.936 34.57 Ours 0.873 34.50 Qurs .855
PSNR(dB) SSIM Supervised Methods with Ground Truth Unsupervised Methods without Ground Truth

Fig. 10. Statistical results of different methods in terms of PSNR and SSIM in three reconstruction tasks, including low-dose CT reconstruction,
sparse-view CT reconstruction, and under-sampled MRI reconstruction with Gaussian 1D mask.

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging. Sllde 21




Evaluation

Pro
— robustness to noise

— high reconstruction quality without ground
truth images

— preserves fine details and structural
information

— effective across various imaging modalities
(Ultrasound ?)

= beneficial unsupervised learning capability
in clinical settings

Limitations

— substantial amounts of computation time
due to SGMs

= increased computational complexity and
time due to wavelet

= limitation for real-time applications

— may struggle to recover very fine details
under extreme imaging conditions

= requires further enhancements through
integration with other reconstruction
techniques

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging. S'Ide 22




3D SHAPE GENERATION

NEeuRAL WAVELET-DOMAIN DIFFusION FOR 3D SHAPE GENERATION
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Overview

(a) Data Preparation (b) Shape Learning

1 s : Add Noise Add Noise
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[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9). S'Ide 24




Data Preparation

Sample a signed distance field (SDF)

— truncate its distance values to avoid
redundant information

= TSDF (truncated SDF)

> Reduce the shape representation
redundancy

> Focus the shape learning process on
the shape's structures and fine details

Transform TSDF to the wavelet domain

(a) Data Preparation

S
]

Sample &
Truncate SDF

/’

Shape Dataset

Truncated SDF

Wavelet
Decomposition

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).

Wavelet
Coefficients
(coarse + detail)
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Shape Learning

Generator Network — generation of coarse
image through diffusion

= denoising diffusion probabilistic model

Detail Predictor Network — learning to
predict the details for the generated shapes

= adding fine details — more realistic and
intricate 3D Shapes

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).

(b) Shape Learning

Add Noise Add Noise

Generator Gaussian Noises

MSE Loss

Detail  petail Coefficient Detail
Predictor Prediction Coefficient GT
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Shape Generation (Inference)

(c) Shape Generation
Inverse
iy Wavelet Marching \
Transform Cube \ ™
_._' _._> A _}] ry ceee N iy
N(0,1) : (2 | en |
SN Generator Generator ‘
Gaussian Noises Generated Detail  Detail Coefficient J . \J/
Coefficients  Predictor Prediction Generated SDF Generated Shapes

— trained generator network creates a coarse coefficient volume from a random noise sample
— detail predictor then adds fine details to this coarse volume

= inverse wavelet transform followed by the marching cube algorithm — reconstruct the final
3D shape

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9). S'Ide 27




Results

Chair Airplane

Method cov MMD 1-NNA cov MMD 1-NNA

¢Ccb EMD CD EMD CD EMD| CD EMD CD EMD CD EMD
IM-GAN [Chen and Zhang 2019] 56.49 54.50 11.79 14.52 6198 63.45| 61.55 62.79 3.320 8371 76.21 76.08

Voxel-GAN [Kleineberg et al. 2020] 43.95 3945 15.18 1732 80.27 81.16 | 38.44 39.18 5.937 11.69 93.14 92.77

Point-Diff [Luo and Hu 2021] 51.47 55.97 12.79 16.12 61.76 63.72| 60.19 6230 3.543 9519 74.60 72.31
SPAGHETTI [Hertz et al. 2022] 49.19 5192 1490 1590 70.72 6895 | 5834 5838 4.062 8.887 78.24 77.01
Ours | 58.19 5546 11.70 14.31 61.47 61.62| 64.78 64.40 3.230 7.756 71.69 66.74

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9). Sllde 28




Results - Qualitative




Results - Novelty

%

Generated
Shape

Most similar shapes retrieved from training set

The Light Field Distance (LFD) Distribution of Our Generated Shapes
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'\;L\L -
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3000 2000 1000

4000

N

10 20
Frequency

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9).
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Evaluation

Pro Limitations

— High fidelity in generated shapes — high computational cost due to iterative

. . rocess
— Detailed and realistic structures P

= Long computing times despite

— Effective coverage of a broad range of subsampling

shapes
— Clean surfaces free from artifacts

— Realistic generation of novel shapes

[5] Hui, K. H., Li, R., Hu, J., & Fu, C. W. (2022, November). Neural wavelet-domain diffusion for 3d shape generation. In SIGGRAPH Asia 2022 Conference Papers (pp. 1-9). S'Ide 31




Opr1iMmiIzATION OF GENERATIVE MODELING

WAVELET ScoRE-BAsSeD GENERATIVE MODELING
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Contributions

Analysis of the computational effort for new data generation

Wavelet Score-based Generative Model (WSGM)
— improve computation efficiency of SGMs

= time complexity growing INDEPENDENTLY with image size

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491. S'Ide 33




Contributions

Analysis of the computational effort for new data generation

Wavelet Score-based Generative Model (WSGM)
— improve computation efficiency of SGMs

= time complexity growing INDEPENDENTLY with image size

Theorems for controlling errors of time discretizations of SGMs
= proving accelerations obtained by scale separation with wavelets

= empirically verified by showing that WSGM provides an acceleration for the synthesis of
physical processes at phase transition and natural image datasets.

[ *Jf‘\

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.
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SGMs: discretization and score regularity

Theorem 1: for gaussian distribution N(0,%)

= indicates that the number of time steps should increase with the condition number of the
covariance matrix — in typical cases the number of time steps increases with the image size

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491. S'Ide 35



SGMs: discretization and score regularity

Theorem 1: for gaussian distribution N(0,%)

= indicates that the number of time steps should increase with the condition number of the
covariance matrix — in typical cases the number of time steps increases with the image size

Theorem 2: extension of theorem 1 to non-gaussian processes
= Well-conditioned covariance matrix is crucial to minimize error.

= Non-Gaussian processes with ill-conditioned matrices may need more discretization steps to
achieve small errors.

[ *Jf‘\

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.
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Wavelet Score-Based Generative Model (WSGM)

Gaussian white noise

Low-resolution image
Wavelet coefficients

—|—|—F> Reverse diffusion
—|—|—|—> Conditional reverse diffusion

—> Inverse wavelet transform

Slide 37



Discretization and Accuracy for Gaussian Processes

Theorem 3: for Gaussian multiscale processes using the WSGM method

= The number of diffusion steps required to reach a fixed error is independent of the input data
size (e.g., image size).

Demonstrates general applicability beyond just Gaussian processes, suggesting broader
potential use.

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491. S'Ide 38
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Results
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Fréchet Inception Distance (FID): evaluates the quality

of generated images by comparing them to a set of real
images
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[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491.

100 10!

10" 10* 10°
Number of diffusion steps per scale

Slide 39




Evaluation

Pro Limitations

— Efficiency with fewer iterations — High complexity due to wavelet

. .. transforms and conditional distributions
— Scalable for high-resolution images

— Mainly effective for near-Gaussian

— Superior perceptual quality with lower FID multiscale processes

scores
= Extending to non-Gaussian processes may

require further techniques

[4] Guth, F., Coste, S., De Bortoli, V., & Mallat, S. (2022). Wavelet score-based generative modeling. Advances in Neural Information Processing Systems, 35, 478-491. S'Ide 40
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Wavelet Transforms in Generative Models

— Enhance generative models by handling multiscale data and capturing fine details.
— Ensure high fidelity, preserving intricate structures and improving image quality.
— Robust in various applications:

= Handling noisy training data.

= Maintaining performance across different scales.

= Achieving better perceptual quality.
Challenges:
— Increased system complexity.
— Potentially longer computation times.

— Limited suitability for all situations.

&

(o7
C AN
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Promise in Medical Imaging

— WSGMs' independence from generated image size = potential for high resolution datasets
— Unsupervised operation with fine detail preservation and less sensitivity to artifacts

— Potential for diverse 3D dataset generation of smooth anatomical structures

Future Research Directions:

— Integrate strengths while mitigating limitations

— Hybrid approaches combining wavelet transforms with other techniques

= E.g. extend WSGMs to 3D for improved computational efficiency and shape generation

= Investigate performance on ultrasound images, the noisiest and blurriest modality

&

D Slide 43
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Wavelet enhanced SGM in medical imaging - Dataset &
Implementation details

Dataset:

- CT: provided by the AAPM challenge — 5410 images with 512 x 512 pixels and 1 mm
thickness = low-dose and sparse-view is simulated
- MRI: fastMRI knee joint dataset

Implementation Details:

- Haar wavelet
- Network implementation following P. Liu, H. Zhang, W. Lian, and W. Zuo, “Multi-level

wavelet convolutional neural networks,” IEEE Access, vol. 7, pp. 74973-74985, 2019
- = modified UNet-architecture

Hardware: Not specified
Code: https://zenodo.org/records/8266123

&
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Ground Truth(GT)
PSNR(dB)/SSIM 42.43/0.970

\‘Q/J

DSM with GT

37.26/0.933

37.49/0.939
-7 &'
u‘%‘ =

*

Results - Ablation Study

DSM with noisy GT DSM w/o wavelet

39.58/0.958

«&[ ?.fz

Ground Truth(GT) DSM with GT
PSNR(dB)/'SSIM

35.79/0.881

DSM with noisy GT DSM w/o wavelet
33.01/0.857

33.22/0.866

35.60/0.884

«<? v°
g T

-

7‘-

Ground Truth (GT)

PSNR/SSIM

35.24/0.866

SDE with GT

SDE with noisy GT SDE w/o wavelet
32.51/0.795

32.83/0.800 34.32/0.845

Gaussian1D

PSNR/SSIM

35.32/0.854

i }
11} i

31.82/0.770 31.85/0.795

34.03/0.827

Uniform1D

[13] Wu, W., Wang, Y., Liu, Q., Wang, G., & Zhang, J. (2023). Wavelet-improved score-based generative model for medical imaging. IEEE transactions on medical imaging.
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Regularlzatlon Constraint
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3D Shape Gen - Dataset & Implementation details

Dataset: ShapeNet dataset
Implementation Details:

- modified 3D version of the U-Net architecture — same structure for both
- Generator: 800,000 iterations - detail predictor: 60,000 iterations

- Learning rate: 1e =

- Training takes three days (generator) and 12 hours (detail predictor)

- The inference takes around six seconds per shape on an RTX 3090 GPU

Hardware:
- pyTorch on a GPU cluster with four RTX3090 GPUs
Code: https://aithub.com/edward1997104/Wavelet-Generation
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Results - Ablation Study

CoV 1 MMD|  1-NNA |
Method CD EMD CD EMD CD EMD
Full Model 58.19 55.46 11.70 14.31 61.47 61.62
W/o detail predictor | 54.20 50.96 12.32 14.54 62.46 62.57
VAD Generator 21.83 26.77 21.83 26.77 95.20 93.62
Direct predict TSDF | 50.51 50.67 12.83 15.24 68.69 68.29
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WSGM - Dataset & Implementation details

Dataset: CelebA-HQ image dataset - 128 x 128 images
Implementation Details:

- Haar wavelets
- UNet architecture

Hardware: Not specified
Code: Pseudo Code in Paper




