Statistical Shape Modeling of Cardiac Anatomy

Project Management and Software Development for Medical Applications

General Info
Virtonomy.io
Contact Person: Bence Rochlitz, Ching-En Lin, Gloria Zörnack
Contact Email: rochlitz@virtonomy.io, lin@virtonomy.io, zoernack@virtonomy.io

Project Abstract
This project aims at developing a software module to perform Statistical Shape Modeling (SSM) of the cardiac anatomy to represent the anatomical variability of a whole population group, using state-of-the-art statistical shape modeling methods.

Background and Motivation
Virtonomy GmbH is developing the first web platform for conducting fully data-driven clinical trials of medical devices with the use of virtual patients. Our system is based on clinical scans (CT, MRI), pathology data, and data about medical devices. SSM is one of the key features of our offering.

Our choice of the shape modeling method is based on the simple and versatile mathematical approach using the theory of Gaussian processes.

We focus on aorta & left ventricle SSM in this assignment.

Student’s Tasks Description
- Following Scalismo tutorials to understand core concepts of statistical shape modeling and how to use Scalismo
- Understand the current implementation for single organ SSM
- Identify the difference between single and multi-organ SSM, define methods to augment the current single-organ implementation
- Research the difference between connected organs and remote organs, implement the best methods

By the end of the project, the student shall have the following outcome: multi-organ statistical shape model using aorta + left ventricle models.

The student will learn the core concept of statistical shape modeling and how to apply it to a real-life problem. Virtonomy provides supervision with industrial medical image analysis and software development experience.

Technical Prerequisites
- Medical imaging and computer science background. Feel comfortable to learn a new concept and work on a new framework.

Why you should choose us
- Opportunity to work in a vibrant environment with many other start-ups (Werk1) or from home
- Participation in the exciting development and growth of a start-up
- Work in a lean startup R&D process and understand a SaaS building
- Contributing to an exciting real-life medical data solution with a huge impact: four previous PMSD assignees continued working with us after their assignments and are on their way to integrate their work into a web-based software platform.

References
- Virtonomy’s references for 3D anatomical models: https://virtonomy.io/services/references
- Probabilistic Morphable Models: https://gravis.dmi.unibas.ch/PMM/
- Scalismo - Scalable Image Analysis and Shape Modelling https://scalismo.org/
- Statistical Shape Analysis, Dryden, Mardia etc. 2016

Please send the completed proposal to ardit.ramadani@tum.de, zj.jiang@tum.de, lennart.bastian@tum.de and tianyu.song@tum.de. Please note that this proposal will be evaluated by the BMC coordinators and will be assigned to a student only in case of acceptance.