
Philipp Bock

Technical University of Munich

Department of Informatics

Chair for Computer Aided Medical Procedures

& Augmented Reality

Garching, 19th of June, 2018

Concurrency in C++17: Parallel STL

• What is new in C++17?

• Recap : STL algorithms & parallelism

• Execution Policy

• New STL algorithms

• Important Notes

• Outlook

• Exercises

2Philipp Bock | Concurrency in C++17: Parallel STL | 19th of June, 2018

Content

3Philipp Bock | What is new in C++17 | 19th of June, 2018

4Philipp Bock | Parallel STL | 19th of June, 2018

Q.: What are STL algorithms?

5Philipp Bock | Parallel STL | 19th of June, 2018

Q.: What are STL algorithms?

→Generic operations on sequences

Non-modifying sequence operations

Mutating sequence operations

Numeric operations

Sorting and related operations

6Philipp Bock | Parallel Algorithms | 19th of June, 2018

Types of operations

7Philipp Bock | Parallel Algorithms | 19th of June, 2018

Q.: What is parallelism?

8Philipp Bock | Parallel Algorithms | 19th of June, 2018

Concurrency: tasks executed during the same time period

Parallelism: tasks literally run at the same time

• Permits concurrent execution of STL algorithms

9Philipp Bock | Execution Policy | 19th of June, 2018

Concept of execution policies

• Permits concurrent execution of STL algorithms

• Implementation is compiler specific

→Three standard execution policies

→no personal execution policies

→ compiler implementation can do anything with respect to the

policy constraints (including GPU support)

→ there can be compiler specific execution policies

10Philipp Bock | Execution Policy | 19th of June, 2018

Concept of execution policies

Execution policies are defined in #include <execution>

std::execution::seq

std::execution::par

std::execution::par_unseq

11Philipp Bock | Execution Policy | 19th of June, 2018

Execution Policies

• Algorithm executes indeterminately sequenced

• Usage:

→debugging

→fallback for efficency reasons

12Philipp Bock | Execution Policy | 19th of June, 2018

sequential_policy

• Functions are permitted to execute within a new thread

• Invocations executing in the same thread are indeterminately

sequenced

• Locks are allowed

13Philipp Bock | Execution Policy | 19th of June, 2018

parallel_policy

• Unsequenced execution → functions can interleave

14Philipp Bock | Execution Policy | 19th of June, 2018

parallel_unsequenced_policy

15Philipp Bock | Execution Policy | 19th of June, 2018

Std::execution::par_unseq

Source: Bryce Adelstein Lelbach | cppcon 2016, Bellevue Washington

16Philipp Bock | Execution Policy | 19th of June, 2018

Std::execution::par_unseq

Source: Bryce Adelstein Lelbach | cppcon 2016, Bellevue Washington

• Unsequenced execution → functions can interleave

• Not allowed:

• Allocation / Deallocation of memory

• Acquiring mutex

• Generally vectorization-unsafe operations

• Not every hardware does support SIMD

17Philipp Bock | Execution Policy | 19th of June, 2018

parallel_unsequenced_policy

Execution Policy signature:

18Philipp Bock | Parallel Algorithms | 19th of June, 2018

New STL Algorithms

Execution Policy signature:

• overloads for 69 algorithms

• 8 new algorithms

19Philipp Bock | Parallel Algorithms | 19th of June, 2018

New STL Algorithms

Philipp Bock | New STL Algorithms | 19th of June, 2018

New STL Algorithms (parallelized)

std::for_each | std::for_each_n

“Unordered” versions of “ordered” algorithms

• std::reduce

• std::inclusive_scan

• std::exclusive_scan

Fused Algorithms

• std::transform_reduce

• std::transform_inclusive_scan

• std::transform_exclusive_scan

21Philipp Bock | New STL Algorithms | 19th of June, 2018

std::for_each | std::for_each_n

template< class ExecutionPolicy, class ForwardIt, class UnaryFunction2 >
void for_each(ExecutionPolicy&& policy, ForwardIt first, ForwardIt last, UnaryFunction2f);

template< class ExecutionPolicy, class ForwardIt, class Size, class UnaryFunction2 >
ForwardIt for_each_n(ExecutionPolicy&& policy, ForwardIt first, Size n, UnaryFunction2f);

std::for_each

std::for_each_n

22Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::reduce – unordered std::accumulate
template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOp>
T reduce(ExecutionPolicy&& policy, ForwardIt first, ForwardIt last, T init, BinaryOp binary_op);

• Returns a generalized sum of a initial value and a sequence over a Binary operation

23Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::reduce – unordered std::accumulate

24Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::reduce – unordered std::accumulate

25Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::reduce – unordered std::accumulate

What would happen if we apply minus() as binary_op?

26Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::reduce – unordered std::accumulate

std::accumulate does not equal std::reduce for non-commutative and non-associative operations!

27Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::reduce – unordered std::accumulate
template<class ExecutionPolicy, class ForwardIt, class T, class BinaryOp>
T reduce(ExecutionPolicy&& policy, ForwardIt first, ForwardIt last, T init, BinaryOp binary_op);

• Returns a generalized sum of a initial value and a sequence over a Binary operation

• Supports only commutative and associative operations.

For example:

• integer addition

• integer multiplication

• Integer subtraction has non-deterministic behaviour

because: x-y !=y-x → non-commutative

28Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::inclusive_scan – unordered std::partial_sum
template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class BinaryOperation, class T >
ForwardIt2 inclusive_scan(ExecutionPolicy&& policy, ForwardIt1 first, ForwardIt1 last,
ForwardIt2 d_first, BinaryOperation binary_op, T init);

(output)* = init + first*;
(output+1) = init + first* + (first+1)*;
(output+2) = init + first* + (first+1)* + (first+2)*;

Unspecified grouping → Binary_op has to be associative!

29Philipp Bock | New “Unordered” STL Algorithms | 19th of June, 2018

std::exclusive_scan – unordered std::partial_sum
template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T, class BinaryOperation >
ForwardIt2 exclusive_scan(ExecutionPolicy&& policy, ForwardIt1 first, ForwardIt1 last,
ForwardIt2 d_first, T init, BinaryOperation binary_op);

n-th element is excluded

Unspecified grouping → Binary_op has to be associative!

(output)* = init; //n-th element is excluded
(output+1) = init + first*;
(output+2) = init + first* + (first+1)*;

30Philipp Bock | Fused Algorithms | 19th of June, 2018

std::transform_reduce –
unordered std::inner_product

From Haskell known as map_reduce

1. applies R trans_op(T const&) on all sequence elements

2. reduces the sequence over R reduce_op(R const&, R const&)

template<class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T,
class BinaryOp1, class BinaryOp2>
T transform_reduce(ExecutionPolicy&& policy, ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, T init, BinaryOp1 binary_op1, BinaryOp2 binary_op2);

31Philipp Bock | Fused Algorithms | 19th of June, 2018

std::transform_reduce –
unordered std::inner_product

32Philipp Bock | Fused Algorithms | 19th of June, 2018

std::transform_reduce –
unordered std::inner_product

33Philipp Bock | Fused Algorithms | 19th of June, 2018

std::transform_inclusive_scan

template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2, classBinaryOperation,
class UnaryOperation, class T >
ForwardIt2 transform_inclusive_scan(ExecutionPolicy&& policy, ForwardIt1 first,
ForwardIt1 last, ForwardIt2 d_first, BinaryOperation binary_op,
UnaryOperation unary_op, T init);

34Philipp Bock | Fused Algorithms | 19th of June, 2018

std::transform_exclusive_scan

template< class ExecutionPolicy, class ForwardIt1, class ForwardIt2, class T,
class BinaryOperation, class UnaryOperation >
ForwardIt2 transform_exclusive_scan(ExecutionPolicy&& policy, ForwardIt1 first,
ForwardIt1 last, ForwardIt2 d_first, T init, BinaryOperation binary_op,
UnaryOperation unary_op);

Element access functions

Exception Handling

35Philipp Bock | Important Notes | 19th of June, 2018

Important Notes

Functions that are passed to the STL algorithms

Have to apply policy specific constraints:

36Philipp Bock | Important Notes | 19th of June, 2018

Element access functions

std::vector<int> a ={...};
std::vector<int> b;
std::for_each(std::execution::seq, std::begin(a), std::end(a),[&](int i) {

b.push_back(i);
});

Functions that are passed to the STL algorithms

Have to apply policy specific constraints:

37Philipp Bock | Important Notes | 19th of June, 2018

Element access functions

std::vector<int> a ={...};
std::vector<int> b;
std::for_each(std::execution::seq, std::begin(a), std::end(a),[&](int i) {

b.push_back(i);
});

38Philipp Bock | Important Notes | 19th of June, 2018

Element access functions
std::vector<int> a ={...};
std::vector<int> b;
…
std::for_each(std::execution::par, std::begin(a), std::end(a),[&](int i) {

b.push_back(i);
});

39Philipp Bock | Important Notes | 19th of June, 2018

Element access functions
std::vector<int> a ={...};
std::vector<int> b;
…
//Error: data race because of parallel execution policy
std::for_each(std::execution::par, std::begin(a), std::end(a),[&](int i) {

b.push_back(i);
});

40Philipp Bock | Important Notes | 19th of June, 2018

Element access functions
std::vector<int> a ={...};
std::vector<int> b;
…
//No data race because vector gets locked before access
std::mutex m;
std::for_each(std::execution::par, std::begin(a), std::end(a),[&](int i) {

m.lock();
b.push_back(i);
m.unlock();

});

41Philipp Bock | Important Notes | 19th of June, 2018

Element access functions
std::vector<int> a ={...};
std::vector<int> b;
…
//No data race because vector gets locked before access
std::mutex m;
std::for_each(std::execution::par, std::begin(a), std::end(a),[&](int i) {

m.lock();
b.push_back(i);
m.unlock();

});

Can we implement the same functionality with std::execution::par_unseq?

42Philipp Bock | Important Notes | 19th of June, 2018

Q.:What happens if an Exception is thrown?

→std::terminate is called

→std::bad::alloc if out of memory

→compiler specific execution policies may define different behavior

43Philipp Bock | Important Notes | 19th of June, 2018

Dynamic Execution Policies

Executors

Parallel STL algorithms that return futures

44Philipp Bock | Outlook | 19th of June, 2018

Outlook

C++11/14 low-level concurrency primitives

C++17 higher-level generic abstractions

45Philipp Bock | Summary | 19th of June, 2018

Summary

