
Lab Course / “Praktikum”:
Project Management and Software Development for 
Medical Applications

Technical University of Munich| Faculty of Informatics

Chair of Computer Aided Medical Procedures and Augmented Reality

Documentation, Tests, Design Patterns & Integration Strategy – WS2021/22

Munich, 8 November 2022

Vanessa Gonzales Duque

Slide courtesy of Marco Esposito, Rüdiger Göbl, Ardit Ramadani and Dr. Benjamin Frisch



Disclaimer

• This talk will not cover all aspects of SE!

• Familiarize with concepts and ideas

• Not every single detail matters

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 2



Software Engineering approaches

• Sometimes it is applied rigidly

• Many different contrasting ideas

• Do not get your attention drawn away 
from the problem at hand!

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 3



How Software Design and Engineering really works..

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 4



Keep the problem as small as possible!

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 5



How Software Design and Engineering really works..

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 6



Documentation



Documentation for developers 

This includes:

• Your customers

• Your team

• Yourself!

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 8



Documentation for developers – Code style

• Code is written once, but read many more times

• Don’t be lazy:
– Good variable names

– Refactor code

– Keep modular and generic

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 9



Documentation for developers – Comments

• No trivial comments

• Explain:
– Assumptions

– Corner cases

– Non-trivial use of language features

BAD:

GOOD:

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 10



Documentation for developers – Doxygen

• Creates static docs from comments

• Close to source code, so USUALLY less out-of-date

• Useful only with non-trivial content

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 11



Documentation for developers – Doxygen

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 12



Documentation for users

• Users as seen by developers:

• Usually the cause is bad documentation!

• You make a lot of assumptions that are clear in your head, but not to a new user

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 13



Design Patterns (and anti-Patterns)



Design Patterns

• Reusable code structures

• Solve common problems

• Proven to work, common vocabulary

• Mostly created to work around rigid Object-Oriented type systems

• BUT: focus on the problem rather than where to stuff them in your program!

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 15



Some design Patterns

• Singleton: class with only one instance in whole program

• Abstract factory: allows to create an instance of several families of classes

• Observer: way of notifying change to a number of classes

• Decorator: add functionality to class without inheriting

• Facade: single class that represents an entire subsystem

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 16

SourceMaking, “Design Patterns,” [Online] Available: https://sourcemaking.com/design_patterns



Design anti-Patterns

• Too many classes

• Functions too long

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 17

→



Design anti-Patterns

• Too many classes

• Functions too long

• Mixed functionality

• Reinventing the wheel

• Premature optimization

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 18



Testing



Testing – Definitions

• Verification and Validation (V&V)

– Verification: The process of evaluating a system or component 
to determine whether the products of a given development 
phase satisfy the conditions imposed at the start of the phase 
[IEEE-STD-610]

– Validation: The process of evaluating a system or component 
during or at the end of the development process to determine 
whether it satisfies specified requirements [IEEE-STD-610]

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 20



Testing – Definitions

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 21

Criteria Verification Validation

Definition The process of evaluating work-products 
(not the actual final product) of a 
development phase to determine 
whether they meet the specified 
requirements for that phase.

The process of evaluating software during or 
at the end of the development process to 
determine whether it satisfies specified 
business requirements.

Objective To ensure that the product is being built 
according to the requirements and design 
specifications. In other words, to ensure 
that work products meet their specified 
requirements.

To ensure that the product actually meets
the user’s needs, and that the specifications 
were correct in the first place. In other 
words, to demonstrate that the product 
fulfills its intended use when placed in its 
intended environment.

Question Are we building the product right? Are we building the right product?

Evaluation 
Items

Plans, Requirement Specs, Design Specs, 
Code, Test Cases

The actual product/software.

Activities •Reviews
•Walkthroughs
•Inspections

•Testing



Test types

• Runtime Test: Sanity check for invalid program states during runtime

• Test Run: Developer runs the software and looks for obvious errors

• Systematic Test: Carefully chosen test data, comparison with expected results

• Regression Test: Extended and automated systematic test, run repeatedly (e.g. after 
every commit), test results are documented

• Performance Test: Testing performance of the software (runtime, memory usage, ...)

Testing may be a pain in the neck, but with the right 

combination of the above test types you get a good 

cost-return value

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 22



Test levels

• Unit Test: Checks a single piece of code (e.g. class) in isolation

• Integration Test: Verifies the interfaces between components

• System Test: Checks that the whole software meets the requirements

• Operational Acceptance Test: Put the software to test with real end users and in 
realistic conditions

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 23



Unit test

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 24



Test Driven Development

• Write tests first, then develop until pass

• Pros:

– Help focusing on objectives

– Think about corner cases

– More rewarding experience

– More confident about later changes

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 25



Testable code

• Keep functions small

• Do not mix functionality

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 26



Bug tracker

• Help tracking defects present in software

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 27



Bug tracker

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 28



Integration strategies



The Big-Bang Integration Strategy

• Unordered implementation of the components / all components implemented at the 
same time

• Problems
– Errors are very hard to locate: Which component is the cause?

– Design errors (errors in interfaces) not distinguishable from implementation errors

• Always prefer incremental integration strategy

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 30



Top-Down Integration Strategy

• Start with the components from the top-most layer (e.g. GUI). Incrementally add 
layers further down

• Pros/Cons
– Early prototype available (with limited functionality)

– Design errors can be detected in an early state

– Many stubs required → cumbersome

– No functionality until a very late stage

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 31



Bottom-Up Integration Strategy

• Start with the components from the bottom-most layer (e.g. entity classes). 
Incrementally add upper layers.

• Pros/Cons
– No stubs required

– Functionality available in early stages

– Nothing to show to customers until the very end

– Errors may be expensive, because they may be found late and solving them might require cumbersome 
changes

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 32



Version control



Version Control Systems

• Keep a history of changes to code

• Share code with others

• Integrate changes from others

• Manage concurrent versions

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 34



Version history

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 35



Changes history

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 36



Branches

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 37



Centralized vs Distributed Version Control Systems

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 38



Centralized vs Distributed Version Control Systems

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 39

Software Configuration Management Guide, “Centralized vs Distributed Version Control Systesm,”
[Online] Available: https://scmquest.com/centralized-vs-distributed-version-control-systems/



Continuous Integration

• Compile automatically on every change uploaded to VCS

8 November 2022Computer Aided Medical Procedures - PMSD WS2022/23 Slide 40



Thank you

Happy coding

Ardit Ramadani, M.Sc.
Research Assistant

Deutsches Herzzentrum München des Freistaates Bayern
Klinik an der Technischen Universität München
Lazarettstr. 36
80636 München

Technische Universität München
Fakultät für Informatik - I16
Chair of Computer Aided Medical Procedures and Augmented Reality
Boltzmannstr. 3
85748 Garching bei München

https://www.in.tum.de/campar/members/ardit-ramadani/
ardit.ramadani@tum.de
ramadani@dhm.mhn.de


