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Abstract

This paper aims to solve the problem of recognizing user-performed actions in a Virtual
Reality environment. Using the Unity game engine, a dataset of six actions was recorded
by human beings. These six actions consisted of three movements, each performed
with the left and right hands. The actions were chosen to be throwing, waving, and
pointing. The dataset was constructed using the OpenVR Unity plugin API, which
provided the position, velocity, and rotation of the VR headset and the handheld
controllers. These were saved in a CSV and fed into a Neural Network with an LSTM
(Long-Short-Term-Memory) Layer and three Dense Layers. After training the Neural
Network multiple times with varying parameters, such as a higher Node count in the
layers, adding Dropout layers, and a more extensive dataset, the Network was exported
in an ONNX format and imported back into Unity, where the Barracuda framework
was used to utilize the Neural Network. After importing the Neural Network, it can
be fed live inputs. It then predicts the performed action and prints the result to the
console. This paper was used as a proof of concept to show that action recognition
in VR is possible. Possible topics that could be researched further include instructing
a robot to perform actions based on the Neural Network’s output or extending the
Neural Network to support and recognize more actions.
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1 Introduction

Virtual Reality (VR) has already found its place in various industries. It is used in
design processes, data visualization, and the research of how specific actions impact
a human being [2]. At the same time, using robots to perform dangerous or difficult
tasks is also becoming more frequent, for example, in the aerospace industry [3]. Since
both technologies have found their way into professional applications, combining them
is an obvious next step, as maintaining more natural control over performed actions is
crucial when working in extreme conditions. This paper aims to lay the foundation
for fusing these two methods by creating a machine-learning model that can discern
between different actions performed in a Virtual Reality space while only using data
provided by the VR Headset and its controllers.

This paper created a dataset using the position, rotation, and velocity of the two handset
controllers and the Head Mounted Display. To capture these data points, the game
engine Unity was used. A custom script was written to capture this data. This dataset
was then used to train a Neural Network, which uses the provided data to predict
the action being performed. Through multiple tweaks and changes in the shape of
the network, as well as the size of the dataset, the model achieved a peak accuracy of
about 97 percent. This peak model was then exported back into Unity, where, through
augmentation of the script, the performed action was saved in a file and sent to the
Neural Network. The network then predicts the performed action and prints it to the
console. With a 97 percent accuracy, on the self-recorded dataset, it achieves a similar
accuracy to comparable papers that used videos as their dataset input [28].

1.1 Virtual Reality

Due to the high customizability of the virtual reality space, it lends itself to being
modeled not just for entertainment purposes but also for a more serious context. Other
papers, for example, have already explored the construction of a "digital twin" that is
supposed to mimic the workings of a factory [10].

Hand movement and information are tracked from the two handheld controllers. Since
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1 Introduction

the two controllers follow the hands, more natural hand movements like grabbing,
shaking, and throwing can be realized just through the basic features implemented in
every VR headset. More advanced headsets, like the Valve Index [9], can even detect
which fingers are currently placed on the handheld controllers. Using VR for natural
movement detection seems obvious. Since this thesis aimed to establish a proof of
concept for action recognition, which could later be used to instruct robots, VR was
chosen as the basis due to its benefits.

1.2 Motivation

With the release of more and more commercial VR headsets, VR has become not just
a toy to play with in the gaming world but also a tool used in multiple professional
applications each day [2]. Although much research has been done in action recognition
using video-based techniques (see Related Work section), more research needs to be
done on using just a VR headset to recognize performed actions. This thesis aims to
provide a first approach to doing action recognition entirely in VR without the aid of
other devices, like cameras or sensors. It will provide a base Unity implementation,
which can later be extended to support more actions and be used in combination with
the field of robotics. The implementation will be able to record actions and save them
in a machine-readable format to easily facilitate the construction of a dataset. The
implementation will also be able to read the recorded actions or get live action input
and give this input to the Neural Network, which will then interpret and predict the
performed action.
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2 Related Work

Since the topic of using only the information provided by a VR headset and its handheld
controllers for action recognition is poorly explored, this section will focus on papers
that aim to achieve action recognition through video and similar means. Although
these papers use different ways to capture their data, they were used as inspiration for
constructing the dataset and the network for this thesis.

2.1 Neural Networks

The basis of this thesis, as well as other papers, is a machine learning model called a
Neural Network. Neural Networks are a machine learning model with typical applica-
tions like Information Processing or Pattern Recognition [34]. A neural network consists
of small computational units called nodes. Multiple of these nodes together form a layer.
We can connect the nodes in each layer with the nodes from the following layer using
weights. These weights get adjusted when the neural network is being trained. These
adjustments happen through forward propagation, followed by backward propagation.
Forward propagation uses the weights in the current neural network to calculate a
possible result, a prediction. The prediction is then verified, i.e., does the predicted
action’s label match the labeling for the recorded action? The backward propagation
step is executed once the forward propagation has been performed. In this step, the
feedback on whether the prediction was correct is used to adjust the weights, tweaking
them to increase the likelihood of an accurate prediction. Forward and backward
propagation is performed over multiple elements from a prerecorded dataset [14].

2.2 Action Recognition using Video-Based Techniques

Many papers provide research into the topic of action recognition using video. This
section will focus on a few documents that provide the most crucial input for this
thesis.
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2 Related Work

2.2.1 Action Recognition using LSTM

The paper by Liang et al. [22] makes a point about using a so-called Long-Short-Term-
Memory (LSTM) layer to perform video action recognition. This paper was the basis
for deciding to use an LSTM layer in this thesis since it has substantial benefits in terms
of spatial and temporal context. Since the paper also focused on predictions on video,
they also used a Convolutional Neural Network; this does not apply to this thesis since
no video camera was used. Due to how the LSTM layer works [17], it is ideally suited
to be used in action recognition. The LSTM layer uses three gates: an input gate, a
forget gate, and an output gate. This structure can work exceptionally well on a time
series of events since it can decide which information to keep and discard from the
presented data.

2.2.2 Action Recognition in a VR Space

The first influential paper was the paper by Dallel et al. This paper focused on the
practice of constructing a so-called "digital twin" for industrial applications. In this
paper, the researchers used the VR environment for data collection instead of action
recognition. The action recognition was then performed using RGB cameras and
sensors. The VR environment was only used to allow for higher immersion and more
accessible performing of the action by the participants. The actual data was captured
through RGB video and sensors, which were attached to the participants. This approach
inspired using the handheld controllers’ velocity as a basis for the dataset, which will
be elaborated on in the implementation part of this thesis.[10]

The second exciting paper was the paper by Li et al. This paper focused on action
recognition using RGB video and positional data provided by a VR headset’s Head-
mounted display (HMD). Since it mostly used RGB video for prediction, this paper
only inspired the idea of using the position provided by both handheld controllers and
the HMD.[21]

2.2.3 Other Methods for Action Recognition

The research on performing action recognition can go in many directions. Some follow
the idea of using video-based techniques but use various types of Neural Networks.
For example, Lu et al. [27] proposed a method of using an LSTM but augmenting
it with a so-called YOLOv4 network, which is also often used in the video-based
action recognition field, to the great success of a 97.87% accuracy. Another standard
method is using a Convolutional Neural Network (CNN) when working with video.
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2 Related Work

This approach divides the video into frames, which are then condensed for more
straightforward computation by the Neural Network. The paper by Wang et al. [33]
focuses on using a bigger CNN that pools together multiple frames of a video and
predicts the action based on that frame pool. Another more advanced approach was
chosen by Ji et al. [19]. Their approach used a so-called 3D CNN. Similar to an LSTM,
the 3D CNN incorporates spatial and temporal components into the video-based
prediction process, leading to about 90.2% accuracy. A different direction was pursued
by Hirota et al. [16]. They chose to use the video feed from a camera attached to a VR
headset and the position of an object in the VR space to predict if the user is grasping
the object. Their results showed that adding an object into the virtual space and feeding
that information into the Neural Network also helped increase the accuracy.

Another common approach is the construction of a skeleton based on the video data
provided. With this approach, the skeleton is fed into a neural network, and the
prediction happens on the skeleton data instead of on the video. The paper by Elias et
al. [13] focuses on constructing a 2D skeleton and using an LSTM to predict actions
using the PKU-MMD Dataset, which will be explained in the following chapters. The
paper also aimed to get results comparable to those obtained by using a 3D skeleton,
which it achieved with an accuracy of 97.4%. Ye et al. [36] chose the 3D skeleton
approach for their paper. They constructed a 3D skeleton from video input and then
used an LSTM network to predict the performed actions, achieving a 99.3% accuracy
on their chosen datasets. Yan et al. [35] chose another 2D-based skeleton approach
but used a Spatial Temporal Graph Convolutional Network for the action recognition
instead of an LSTM network. This decision led to them achieving a 71.7% accuracy on
their chosen datasets. The skeleton-based approach was not chosen for this thesis due
to the assumption that the VR hand- and headset could deliver comparable information
with less effort.

Approaches to action recognition are not limited to video or VR-based technologies.
The paper by Schröder et al. [31] utilized an AR headset instead of a VR headset to
predict in which progress stage the construction of a birdhouse was and what actions
the user is currently performing, to give recommendations on which action to perform
next. They also used CNN to make a prediction. This thesis decided against an AR
approach since the precision and accuracy of the handheld controllers were considered
to be higher than what could be extracted from an AR headset. A different idea was
pursued by Li et al. [20]. In their paper, they used sensors, like accelerometers, to
extract feature data through the k-means clustering and then fed it into an XGBoost
network to be predicted. This machine-learning approach is entirely different from
the other papers discussed in this section since those papers all used neural networks.
However, it provides a good insight into the fact that action recognition is a vast field
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2 Related Work

that allows for many different possible ways to solve the action recognition problem.

2.3 Dataset

The following papers focus on the creation of different datasets for human movement.
It will be outlined how those papers influenced the dataset creation for this thesis.

2.3.1 HARTH

The paper by Logacjov et al. focuses on creating a human activity recognition (HAR)
dataset. The dataset consists of videos and accelerometer data of participants perform-
ing everyday actions. It also explored different machine learning models, including
LSTM. The results showed that Support Vector Machines had the best results, but LSTM
and the other models also achieved excellent results. This paper was influential by
providing another instance of an LSTM model being used successfully and the idea
of capturing things like velocity and position from the VR headset with its handheld
controllers.[24]

2.3.2 PKU-MMD

This paper by Liu et al. created a multi-modal dataset of everyday actions. Among
these modalities are RGB video, infrared radiation, and skeletal data. The approach to
using skeletal data was used as a base idea for a possible dataset in this thesis. This idea
was later scrapped for a computationally less expensive method of using the handheld
controllers’ velocity, rotation, and position instead of constructing a skeleton from the
data provided. This dataset inspired the recorded actions for this thesis, containing
upper body actions like "wave hand" and others.[23]

2.3.3 Padding

The last paper is by Dwarampudi et al. and focuses on the most optimal way to pad
a dataset. LSTM Networks expect a certain length of input at all times since not all
actions have the same length. Some of them must be padded so the LSTM can compute
them. The paper focuses on which type of padding, front or back, is best for LSTM
networks. The result of the study was that padding the sequence at the front yields the
best results. Due to these findings, this thesis, as shown later in the implementation,
also uses padding at the front of the sequence.[12]
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3 Implementation

After discussing possible approaches to the project in the Related Work section, this
section will focus on the devised plan for the dataset and the neural network. This
section will also present the recorded results. The source code for the entire project
can be found on Gitlab under the following link: https://gitlab.lrz.de/vyno/bachelor-
thesis.

3.1 Tools

The Unity game engine was chosen to implement the project due to the availability of
an easy-to-use VR-Software Development Kit (SDK), the engine being free for smaller
projects like this thesis, and prior experience with the engine. The scripts were written
in the C# programming language, and the integration of the VR Headset into the engine
was handled by the Unity OpenVR plugin [7]. The default prefab and Input Manager
for VR were used for any VR interactions in Unity, like the action recording. The used
Unity Version was 2022.03.16f1.

The Neural Network was constructed using Google’s Tensorflow library [11] and trained
in the Google Colab environment using a T4 GPU by Nvidia. The training happened
on Google’s cloud servers. Python was used to code the entire notebook and construct
the neural network.

To run the Neural Network in Unity, Unity Barracuda was chosen [6]. The network was
exported from Google Colab in the ONNX file format requested by Unity Barracuda
and then imported into Unity, where it was then used in a C# file to predict given
actions. Further reasoning as to why Unity Barracuda was chosen will be provided
later in the Implementation chapter.

As for the hardware, the Pico 4 was chosen [26] due to it being readily available during
this thesis and being very easily compatible with the other laptop hardware used
to write the Unity implementation part. To connect the headset to the laptop, the
Streaming Assistant [25] and SteamVR [8] were used.
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3 Implementation

(a) Start of action (b) First midpoint
of action

(c) Second midpoint
of action

(d) End of action

Figure 3.1: Wave being performed

(a) Start of action (b) First midpoint
of action

(c) Second midpoint
of action

(d) End of action

Figure 3.2: Throw being performed

3.2 Dataset

The first problem this thesis aims to answer is constructing a suitable Dataset. The
questions about which actions to record and which features to extract were the first to
be considered. The research started with finding papers that focused on constructing
datasets and seeing what kind of datasets similar papers used. These papers have
already been discussed in the Related Work chapter of this thesis. Through paper
research, the possibilities for dataset construction were narrowed down to two possible
options: constructing a skeleton through the use of inverse kinematics, similar to the
papers discussed in section 2.2.3 of the Related Work, and using the position of the
different joints for the predictions, or using the provided velocity and rotation by the
handheld controllers similar to the sensor-based action recognition. The decision was
made to use the information provided by the VR Headset and its handheld controllers
since it was computationally less intensive to read the information than to construct a
skeleton from the information presented.

The next problem that was tackled was which actions to record. Due to the headset only
being able to accurately track and provide information for the upper body, the actions
were chosen to be just upper-body actions. The three actions chosen were waving with
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3 Implementation

(a) Start of action (b) First midpoint
of action

(c) End of action

Figure 3.3: Point being performed

the hand, throwing an object, and pointing in a direction. The actions are depicted in
Figure 3.1, Figure 3.2, and Figure 3.3. As seen in the Figures, the actions always have
the same start and stop pose. This decision was made so the Neural Network could
not deduce the actions from differing start and stop poses but would have to analyze
the entire action run. The throw and point actions were chosen due to their similarity.
They have different trajectories and lengths, but the midpoint in Figure 3.2c and the
midpoint in Figure 3.3b are very similar to each other, both in position and rotation of
the handheld controllers. The wave action was chosen due to its similar length to the
throw motion and because it is a prevalent upper-body action. These actions helped
determine whether the Neural Network can discern between similar actions and cover
some prevalent actions that can be used for interaction in the VR space. Furthermore,
the choice was made to record each action on the right and left sides and treat these
recordings as separate actions. This decision was made with the continuation of this
work in mind since the individual prediction of the sides can be used to better discern
what the user is trying to achieve. For example, if an object is placed on the left in VR
space and the user points with the right hand, the application could discern that the
user is not trying to point at the given object but something else. Due to this thesis’s
scope and given time frame, the size of the dataset was limited. The choice was made
to perform each action fifty times on each side. This would lead to a sizeable dataset of
300 total performed actions per participant while still being able to be recorded in the
given time frame.

After deciding what actions to record, the next step was determining which information
to extract from the UnityVR framework. All actions were recorded in the UnityVR
package’s basic sample scene. The position, velocity, and rotation of the two handheld
controllers and the head-mounted display (HMD) were extracted. This decision was
based on research into other papers’ different action recognition approaches. Due to
their prevalence and performance, two methods were combined: the skeletal-based
research inspired the use of the position, and the sensor-based research inspired
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3 Implementation

the use of the velocity and rotation of the VR handheld controllers and the HMD.
Another advantage of these parameters is that they are device agnostic - every modern
VR headset provides this information, so in theory, the dataset creation and action
prediction can be performed on any modern headset. All the parameters were read
from the UnityVR SDK. A C# script in Unity was created to capture all parameters.
The script records all three devices, two handheld controllers, and the HMD, with a 30
Hz sample rate. All the data is stored in lists while the recording is running. Once the
recording is done, all lists are saved into a CSV file in a user-provided location. In the
beginning, two participants were recorded for the training set. Each participant signed
a consent form, allowing the use of their recorded data for this paper. One person from
the original dataset recorded 20 extra actions as a test set. A velocity calculation script
was also created due to a bug that set the velocity of the HMD to zero at all times.
The script was written in Python and calculates the velocity simply from the current
position, the position in the last time frame, and the passed time.

3.3 Neural Network

The following section will focus on the planning and execution of the Neural Network.
It will also showcase the achieved results during testing.

3.3.1 Planning of the Network

After the dataset was finalized, the Neural Network was created. As the Related Work
section explained, the Neural Network utilizes an LSTM layer to enable time series
prediction. Two regular deep layers follow the LSTM layer and end in a prediction
deep layer, producing the prediction. The LSTM layer and each of the deep layers
consist of 100 nodes each and use a RELU activation function. Due to the dataset not
being overly large, 100 nodes were deemed a large enough layer size to accurately
predict the actions performed. The RELU activation function was chosen because it is
a widespread and well-performing activation function [1]. For example, the paper by
Lu et al.[27] also uses the RELU function for their predictions. The Network optimizer
was selected as the ADAM optimizer because it is a very performant and broadly used
optimizer [18]. The loss function was chosen as the categorical cross-entropy function.
This decision was made on the basis that multiple different categories of actions are
predicted, for which this loss function is typically used [29]. Due to the stochastic
nature of the Network [4], the decision was made to rerun each dataset 10 times and
determine the average accuracy and peak accuracy for that run. Since the amount
of data points for individual actions differed, a preprocessing step was taken. Every
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dataset with a datapoint count of less than 41 is padded to exactly length 41 with a
pre-padding of zeros. The number 41 was chosen, due to it being the amount of data
points of the longest performed action in the dataset. The reason for pre-padding was
already explained in the Related Work section of this thesis. This enabled the LSTM to
predict executions of variable length.

3.3.2 Training and Results of the Neural Network

The training and test set were executed after constructing the Neural Network in
TensorFlow. This led to an average accuracy of 56.58% and a peak accuracy of about
60.83%. The first improvement idea was removing the HMD data to see if the dataset
was too large for the network. The result was an average accuracy of 56% and a peak
accuracy of 62.6%. This attempt showed that the poor accuracy was not due to the
dataset being too large for the network, but it had to be due to other reasons. After
this, a confusion matrix was created based on the best-performing model, as shown
in Figure 3.4. A confusion matrix shows which action was predicted and which was
performed [15]. The x-axis is labeled with the predicted actions, while the y-axis is
labeled with the actual actions. Predicted and actual labels have to be equal to achieve
a true positive.

Figure 3.4: Basic Confusion Matrix

Due to the network’s poor performance, the next step was to find ways to improve
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the network. The first attempt at improving the network was using so-called Dropout
layers. These layers are commonly used to avoid overfitting the dataset. In this practice,
the Neural Network sees the training dataset so many times that it gets very good
at recognizing only this dataset and no others. Dropout layers "randomly drop units
from the network during training" [32], which then helps avoid overfitting. A Dropout
layer with a 50% dropout rate was put between the LSTM layer and the following deep
layers, as well as between every deep layer. Also, another deep layer was added to
the network to raise accuracy by growing the network size and allowing more data to
be computed. The average accuracy only marginally improved, with the new average
being 56.5%, while the peak accuracy was raised to about 65.83%. Figure 3.5 shows the
confusion matrix for the best model.

Figure 3.5: Confusion Matrix for added Dropout layers and extra Dense Layer

Another attempt to improve accuracy was made by increasing the size of the layers to
200 nodes each since the prevalent suspicion was that the network could not handle the
amount of data passed through it. An increased node amount could allow more data to
be handled, bringing higher accuracy. The increase from 100 to 200 nodes in each layer
brought a rise to 57.33% average accuracy and a peak accuracy of 64.16%. Although
the peak accuracy was slightly lower, the average accuracy increased somewhat. As
shown in Figure 3.6, the predicted actions were close to the previous Figure 3.5 but still
showed a slight improvement in certain actions.

Since none of the previous tweaks to the network brought a significant enough increase
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in the accuracy to be considered successful, other methods had to be explored. As
mentioned before, the dataset size was assumed to be too small, which led to the
addition of dropout layers. Two more participants were added to the training dataset to
remedy the problem of a too small dataset. This resulted in four people in the dataset
and increased the average accuracy to 68.75% and the peak accuracy to 72.5%. This was
a tremendous success and can also be seen in the confusion matrix in Figure 3.7. Due to
time constraints for this thesis, one of the improvement approaches had to be selected
to be pursued further. Due to the significant increase, recording more participants for
the dataset was chosen as the best solution to further increase the accuracy.

Figure 3.6: Confusion Matrix with 200 Nodes in each layer

Due to the reasons outlined previously, three more people were added to the dataset.
The added participants increased the average accuracy to 78.08% and the peak accuracy
to 81.67%. As shown in Figure 3.8, almost all actions are correctly recognized, except
for the right throw, which is still predicted as a left throw. Since this error could be
observed in all of the tests done so far, this led to the assumption that the test set was
erroneous.

As described before, the test dataset was recorded by one of the participants already
in the dataset. Ideally, someone who did not record actions for the training set would
record the test set. The cross-validation approach was chosen to better reflect its
performance on a user not in the dataset and remedy the error in the previous test
dataset. The cross-validation chosen here is the so-called "leave-one-subject-out" cross-
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3 Implementation

validation, also used in the HARTH paper by Logacjov et al. [24]. With this approach,
one of the subjects is taken out of the dataset to be used as a test set, while all other
participants combined are used as the training set. The results differed between which
participant was taken out of the network, and the results will be shown and discussed
in the Analysis section.

Figure 3.7: Confusion Matrix for 4 people in trainingset

3.4 Unity Implementation

Once the Neural Network was trained, the next step for this project was to tie the
network back into Unity. Multiple approaches were considered. The first approach was
to use the Google Vertex AI platform [5]. This approach would have entailed hosting
the network in a Google-provided cloud and communicating with it through REST API
calls. This solution was not chosen due to the problem of correctly sending the recorded
data to the server and the assumption that the network could be executed efficiently
on local hardware. For the execution on local hardware, a laptop with the following
hardware was used: an AMD Ryzen 5 4600HS CPU, 16GB of RAM, and a Nvidia GTX
1650Ti as the graphics card. Unity Barracuda was used to incorporate Neural Networks
into Unity. Barracuda was chosen due to its easy integration of self-trained networks
into Unity and the advantage of running the Neural Network locally. This leads to
less reliance on having a stable internet connection for the predictions. It is beneficial
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Figure 3.8: Confusion Matrix for 7 people in trainingset

for future applications of this method, for which a stable internet connection cannot
always be guaranteed.

The first step to being able to use the Neural Network in Unity was to export it into the
ONNX format. To export it from the Google Colab environment, the tfonnx tool was
used [30]. Once the model was exported, it was added to the Unity project as a game
object. The game object was then tied into a Unity script, which takes in lists of actions
performed and feeds them into the network. The network then gives out a prediction,
which is displayed on the console. Functionality was added to read the performed
actions from a prerecorded CSV file. In this use case, the CSV file is transformed into
lists of the actions performed and then presented to the network. A live prediction
functionality was implemented as well. For the live prediction functionality, the Unity
script records all the actions performed by the user and then saves them into a CSV
for later inspection. After the save, the action is sent to the Neural Network, which
predicts the performed action and displays it in the console. The time between the
performing of the action and the prediction being displayed is very fast, roughly 181
ms on average.
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4 Analysis

This chapter of the thesis will analyze the previously reported results, show the cross-
validation results, and examine them. It will also explain why certain decisions were
made in the Implementation section.

4.1 Smaller Tweaks to the Neural Network

As was outlined at the beginning of Chapter 3.3.2, the first attempt at the neural
network delivered average results of a peak accuracy of 60.83% and an average accuracy
of 56.58%. As seen in Figure 3.4, the wave right, point right, and throw left actions
were recognized perfectly, while wave left was only predicted correctly about 50% of
the time. The most significant anomalies in this attempt were the throw-right action as
well as the point-left action. The problem with the point left action being recognized as
throw left was assumed to be due to the similar middle point of the actions, as seen in
Figure 3.3b and Figure 3.2c. The problem with the throw-right action caused suspicion
that something might not be correct in the test dataset. Still, it was initially dismissed
as a possible difficulty of recognizing more complex movements, like a throw, while
also correctly recognizing the side it was on.

Due to the prevalent assumption being that the dataset was too small and the actions
were too complex for the network, the network was expanded by another layer, and
dropout layers were added. These dropout layers were added to help combat overfitting
issues on such a small dataset. The increase in peak accuracy, from 60.83% to 65.83%,
was seen as an improvement in the right direction. As shown in Figure 3.5, the
actions of wave right, throw left, and point right are still correctly recognized. The
previously wrongly predicted actions saw slight improvements. Wave left rose to a
70% accuracy, from 50 %, throw right improved to 20%, from 0%, and point left gained
5% accuracy. This showed that although no significant improvements were made, the
tweaks successfully increased the network’s correctness.

Due to the fact that the right throw was still not recognized correctly, the decision
was made to increase the overall size of the network from 100 nodes per layer to 200
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nodes per layer. It was assumed that this change would help with recognizing the more
complex throwing action and allow for better differentiation between left and right. As
shown in Figure 3.6, this leads to different results for different actions. While wave left
and wave right got one less prediction correct, point left increased to an accuracy of
30%, from 5%. Throw right decreased in accuracy, being predicted as throw left 50%
of the time. Point right stayed entirely accurate. Apart from the increase in accuracy
of the point left action, this change did not have a significant enough impact on the
predictions to be considered a success. This change did show that the network was not
too small to handle more complex operations. Instead, the assumption was made that
the biggest problem was the dataset size.

4.2 Adding more People to the Dataset

With only two people in the training dataset, the assumption was made that more
data was needed to successfully improve the accuracy. This assumption was based on
other related papers. For example, the paper by Logacjov et al. [24] had twenty-two
participants, and the paper by Liu et al. [23] had sixty-six participants. Also, simpler
actions seemed to require more data to be predicted correctly all the time. Due to
the time constraints for this thesis, the decision was made to focus on adding more
people’s recorded actions to the dataset. Two more people were added to the training
dataset, as a test to see how the accuracy would change. This was the most considerable
success so far. It increased the peak accuracy to 72.5%, from 64.16%, and the average
accuracy to 68.75%, from 57.33%. As shown in Figure 3.7, point left had the most
significant prediction improvement, rising to an accuracy of 65%, from 30%. Although
the other actions did not see as significant an increase in accuracy as point left, the vast
improvement in average accuracy showed that the problem of the dataset being too
small was the most significant. At this point, the suspicion of an erroneous dataset was
still considered due to throw right still being mostly recognized as throw left. However,
due to the still poor performance of other actions, like wave left, this was still dismissed
as possibly being due to the small size of the dataset. It was assumed the mistake with
throw right would disappear, once the training dataset was expanded.

To further increase the size of the training dataset, three more people were recorded.
This put the total number of participants at seven people. As seen in Figure 3.8,
this increased the model’s accuracy tremendously. The average accuracy increased to
78.08%, from 65%, and the peak accuracy was raised to 81.66%, from 72.5%. Almost
all actions were recognized successfully, with one outlier for point left and wave left
each. The only action still consistently being predicted wrong was throw right. This
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solidified the suspicion that there was a mistake in the test dataset concerning throw
right. A cross-validation approach was chosen to remedy the error in the dataset and
test how the network would perform when trained on a person who is not in the
training dataset.

4.3 Cross Validation

As mentioned before, the chosen cross-validation approach was the "leave-one-subject-
out" method. In this approach, one of the participants is taken out of the dataset to be
used as the test set, while the others are used as the training set. In this thesis, every
participant was used five times as the test set, and a new model was created every time.
The confusion matrix of the best-performing model for each test participant can be seen
from Figure 4.1 to Figure 4.7. The following sections will analyze general trends, which
can be deduced from the confusion matrices.

Figure 4.1: Cross Validation with Participant 1 as Testset

Participant 1 has the best results out of the dataset, as seen in Figure 4.1. The accuracy
for the displayed model was 97%, and all actions, except for throw left, are perfectly
recognized. Throw left is only incorrectly predicted in 6 out of the 50 test cases. This
shows very promising results for the model. It is assumed that the accuracy of this
participant is high because they performed the actions very similar to how they were
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instructed. Throw left might still be recognized wrongly in some cases due to the
participant being only one of two lefthanded people that participated in this thesis.
This could lead to a certain bias towards right-handed actions being predicted more
accurately since they were more often performed with the participant’s dominant hand.

Participant 2 achieved a peak accuracy of 58.66%, as displayed in Figure 4.2. This is
the lowest peak accuracy out of all the participants. This participant was also the one
who recorded the original test set. The wave right action and the throw right action
have a significant overlap. It is assumed this is due to similar velocities during the
mid-parts of both actions. A similar thing can be seen in the prediction of wave left
as throw left, probably due to similar reasons. Throw right is often also recognized as
throw left. As mentioned before, the participant also recorded the test dataset, which
could lead to the assumption that a similar error to the test dataset is also present here.
This participant is one of three who has mixups between the right and the left side
actions. The fact that only two other participants expressed similar errors supports
the theory of an error with this participant. The errors in the other users’ predictions
are assumed to be due to errors brought into the training set by this participant. The
point left action was not correctly predicted at all. Instead, it was assumed to be either
throw right or throw left. This could be because the middle parts of the actions, seen in
Figure 3.2b and Figure 3.3b, are very similar. The error of predicting right instead of
left is assumed to be similar to the errors above.

Figure 4.2: Cross Validation with Participant 2 as Testset
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Participant 3 achieved a peak accuracy of 91%, as displayed in Figure 4.3. Most actions
are correctly recognized, with outliers being wave right, wave left, and throw left. The
two wave actions have a significant overlap with the pointing action. This could be
due to the participant’s improper execution of the action by waving, not as described
in Figure 3.1, but rather holding the hand in front of them while waving. This would
lead to the midpoints of wave and point being very similar in position. In papers
also focused on dataset creation, like the paper by Logacjov et al. [24], participants
were asked to perform everyday activities, which led to different kinds of execution.
This paper had a much larger sample size of twenty-two people. This shows that
with a bigger sample size, even the imperfect execution of the actions can be correctly
recognized. The throw left action was also recognized 22% of the time as the throw
right action, an error also expressed in the test set with Participant 2. This could be due
to reasons similar to those previously described with Participant 2, where erroneous
data might have been recorded.

Figure 4.3: Cross Validation with Participant 3 as Testset

In Figure 4.4 it can be seen that Participant 4 achieved a peak accuracy of 64.64%. As
can be seen in the Confusion Matrix, most actions are correctly predicted, apart from
some outliers. The two wave actions are not predicted correctly. Both have a significant
overlap with the pointing and throwing action on their respective side. This could be
due to similar reasons outlined in the discussion on Participant 3. As discussed in the
analysis of Participant 2, the wave action and the throw action could be detected as
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the same, due to similar velocities at the midpoints of each action. Some of the wave
right actions are also predicted as throw left, which could be due to smaller training
set errors caused by Participant 2.

Figure 4.4: Cross Validation with Participant 4 as Testset

Figure 4.5 shows the results for Participant 5. The peak accuracy of this participant was
87%. The Confusion Matrix shows that most actions have been recognized correctly,
with a few outliers. The actions with the lowest accuracy were the wave right action
and the throw right action. Like with Participant 4 and Participant 3, the wave action
is recognized as the point right action. As previously stated, this could be due to
incorrect execution of the actions while recording. Also, due to the points outlined
in the discussions for Participants 2 and 4, wave and throw actions are recognized
similarly.

The results of Participant 6 can be seen in Figure 4.6. The participant achieved a peak
accuracy of 62%, placing it as the second lowest peak accuracy. This participant’s
confusion matrix shows errors that are similar to the ones previously described. Both
wave actions are sometimes recognized as the point action, which could be due to the
way the actions were performed, similar to the case of Participant 3. Also, both wave
actions are sometimes recognized as the throw action on the respective side. This can
be due to the same problem outlined with Participant 2. The same problems also arise
when looking at the throw and point actions. While recording, this participant did not
fully follow the instructions. This can be seen in the results above. It also shows that
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Figure 4.5: Cross Validation with Participant 5 as Testset

the network only manages to predict actions that are very close in performance to the
instructed way of execution.

The last participant to be analyzed is Participant 7. Their peak accuracy was 84.33%,
and the resulting confusion matrix can be seen in Figure 4.7. Apart from some outliers
in throw right, throw left, and point right, the accuracy is very good. The action with
the lowest accuracy is point left. As mentioned in the discussion for Participant 2, the
overlap between point and throw could be due to the midpoint of the actions being
very similar. The overlap with wave left could be due to the performance of the action
when recording, similar to Participant 3.
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Figure 4.6: Cross Validation with Participant 6 as Testset

Figure 4.7: Cross Validation with Participant 7 as Testset
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5 Future Work

This section will give insight into which further improvements could be made to the
project and show what future projects could be pursued.

5.1 Possible Improvements

All in all, the thesis achieved the goal set. It created a solid proof of concept for
action recognition in VR and a dataset solely based on information provided by the
VR headset and its handheld controllers. As was discussed in the Analysis section, the
results could be better. The network could still be extended, and more actions could be
added to the dataset. Since this thesis was only a proof of concept, this will have to be
achieved in future endeavors.

The first way to improve the Neural Network would be to extend the dataset. As
discussed in the Analysis section, when a person does not perform the actions perfectly,
the network has trouble recognizing the action. With a more extensive and more
diverse dataset, more possible executions could be covered. Through that, the network
could learn more diverse movements and different ways of executing the planned
movements. Also, in the current dataset, only two out of the seven participants were
left-handed. This brings a bias into the dataset that could be remedied by recording
more participants. Other human factors, like height, weight, range of motion, and
others, are also not perfectly covered by this neural network. More diverse participants
could allow for more accurate predictions. The network could also better recognize
people’s actions that are not in the training set.

Another possible next step, after extending the dataset, would be to expand the size of
the Neural Network. With more people in the dataset, the network might need to be
bigger to fully analyze and learn the patterns found in the data. The accuracy could
also significantly increase with a bigger network and more hyperparameter tuning. A
more robust network could be realized through more nodes and layers, which could be
extended with more actions.

Due to the easily expandable nature of the scripts, more actions could later be added
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to the dataset. With more actions, like handshakes, or even full body tracking actions,
like running or walking, the network would become even more useful in helping in the
modern workspace and with communication in VR. Other more common actions could
also be added for more general use cases.

The last way to improve the network would be to try a multi-modal approach. Although
this thesis set out to only use the data provided by VR headset and the handheld
controllers, as seen in the Related Work section, many papers use more multi-modal
approaches. A first approach could be to use video data. Together with the data from
the VR headset, a similar setup to the paper by Li et al. [21] can be achieved. By
extracting the data from the recorded video and the VR headset, a certain degree of
independence from the camera can be achieved. Another multi-modal approach could
be to use sensors, like gyroscopes or accelerometers, to support the data provided by
the VR system. A combination of sensors, videos, and VR systems is also feasible.
This would remedy the problems that each system has on its own. For example, the
sensor and VR data would remedy the problem of not being view-independent, which
is caused by the camera.

5.2 Possible Future Extensions

As outlined in the paper’s beginning, this research aimed to create a basis for human-
robot interaction. Once the network has been tweaked to an acceptable level, the first
step could be to create a functional gym scene. The scene could contain objects the
user can interact with, like levers or buttons. It could also contain objects that can be
picked up, like tools or other utensils. A digital representation of a robot could be
created for this gym scene. The Neural Network could be used to recognize which
actions a user is performing, such as a pointing action towards a tool. The output could
be relayed to the digital robot. The distance between the tool and the user could be
determined through the information provided by the scene. The digital robot could
then determine if the tool needs to be brought closer to the user. This would be a
simple proof-of-concept setup for human-robot interactions in the VR space.

The virtual environment mentioned in the last paragraph could also be used in a
more work-related setting, assuming a few tweaks are made. The robot could provide
information about the current workspace through RGB and depth cameras. Through
this, a virtual representation could be created, similar to the digital twin mentioned by
Dallel et al. [10]. The RGB video could be directly passed through to the VR headset in
this environment. This would enable the user to use the robot as a helper: for example,
to bring tools or fetch items that are too far away. The robot could also help hold up
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heavy objects. This could be triggered by the user raising their hand and pointing at the
object to be lifted. Another approach could be to use the robot in harmful environments
to humans. The user could be stationed in a secure environment and control the robot
from afar. In this approach, the robot could mimic the recognized actions the user
performs. The joystick on one of the VR handheld controllers could control the robot’s
position, while all actions performed with the robot’s "arms" could mimic the user’s
behavior. For example, hand raises could be directly translated to raising the robot’s
arms, and the throwing action could be helpful if objects have to be thrown.

The network could also be used in virtual communication. Since the tracking of the
handheld controllers on VR headsets is not always perfect, especially when using inside-
out tracking, the network could substitute information. When presented with a virtual
avatar, the avatar’s animations could be played based on the network’s predictions.
More natural communication could be achieved when communicating in a VR space
with another person who is also in the VR space. For example, when a user performs
a wave motion towards another user, the controller might be out of tracking range
shortly. This could lead to the model potentially glitching. If the network output was
also used, an animation of the avatar waving could be played. This could help with the
immersion in virtual communication but should be explored separately in other work.

Another possible improvement to this thesis could be to fully flesh out the given
prototype and turn it into a bigger project. A fully-fledged UI could be created to
display the actions that have just been performed by the user in the virtual reality space.
It could also be built to run natively on different standalone headsets, allowing for
greater portability. Since different headsets, like the Valve Index, can provide more
information, different versions could be created for different headsets to best utilize
their entire functionality. A balance between portability and feature set would have to
be found for each device.
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6 Conclusion

This thesis aims to construct a dataset and propose a proof of concept for a machine-
learning approach regarding action recognition in VR. The dataset was chosen to be
three actions with a differentiation between left and right. The actions chosen were
throwing, waving, and pointing. A Unity script was created that sampled the position,
velocity, and rotation of the handheld controllers and the VR headset with a frequency
of 30 Hz. The recorded information was then saved to a CSV file. Seven participants
recorded actions for the dataset. At first, one of the participants, already in the training
set, also recorded the test dataset, but later, the "leave-one-subject-out" approach was
used instead. With this approach, one participant was selected as the test set while the
others were used as the training set. This was repeated for each participant.

The machine learning approach chosen was a Neural Network due to its common
usage in recognition and classification tasks. Due to its ability to recognize spatial and
temporal contexts, an LSTM layer was used in the Neural Network. The network was
constructed and trained in the Google Colab Cloud environment using an Nvidia T4
GPU. Multiple tweaks were made to increase the network accuracy. After multiple
iterations of different dataset sizes and hyperparameter tuning, the network achieved
a peak accuracy of 97%, using the "leave-one-subject-out" cross-validation technique.
Although this is an excellent result, improvements could be made to the dataset and
the network. The dataset could be extended by adding more actions and extending it
to include more people. The network could also be expanded upon with more and
larger layers. Further research could be done on using multi-modal approaches.

A Unity script was created that uses the trained Neural Network to perform live
predictions in the VR space. The performed action is sent to the network in Unity, and
the prediction is displayed in the console. This script can later be used as a basis and
expanded on by other researchers. It could also be ported to other game engines.

This thesis creates an excellent proof of concept for VR-based action recognition that
only uses information provided by the VR headset and handheld controllers. It lays
the foundation for future work in the direction of using VR-based action recognition to
perform tasks in dangerous working environments, as well as for communication in a
VR space.
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