
Investigating real-time rendering techniques approaching
realism using the Vulkan API

Sandro Weber
∗

Technische Universitaet Muenchen
webers@in.tum.de

Lorenzo La Spina

Technische Universitaet Muenchen
lorenzo.la-spina@tum.de

October 20, 2016

Abstract

Modern Computer Graphics require heavy drawing routines to synthesize photo-realistic/artistic pictures of
simulated 3D environments. Because of simulation and advanced effects rendering costs, only a small share
of gamers, equipped with high-end machines, can enjoy the full set of visual features in modern video-games.
Earlier this year, we’ve seen the birth of new, low-level, graphics APIs such as Vulkan and Direct3D 12.
Using the aforementioned APIs, programmers can manually administer GPUs memory and exploit the
capabilities of modern GPUs architectures. In this survey we try to understand if such APIs are able to
make rendering faster, we make an implementation comparison between state-of-the art volume rendering in
Direct3D 11 and Vulkan to investigate what happens under the hood of a modern and demanding drawing
task, widely used to simulate atmospheric effects.

I. Introduction

In this survey, we want to understand whether
a better usage of the GPU1 and a smarter ad-
ministration of its memory can lead to an im-
provement in frame rate of a compute inten-
sive algorithm. To achieve this goal, we will
compare a Direct3D11 with a Vulkan program,
highlighting differences as we implement a vol-
ume ray tracer to simulate fog, using compute
functionality available on the majority of mod-
ern GPU architectures.
Throughout this paper we will also show the
fundamentals of Vulkan programming to bet-
ter understand why new generation APIs offer
better performance over classic APIs2 such as
Direct3D11 and OpenGL4.xx. The machine, on
which the comparison has been made, uses an
Nvidia GeForce GTX 970.

II. Background

In this section we will give some fundamental
concepts explaining Vulkan philosophies and

∗Project Supervisor
1Graphics Processing Unit
2Application Programming Interface

basic components.
Each part will be explained via simple exam-
ples of common mistakes or best-practice situa-
tions guiding the reader to a solution achieved
by modern APIs techniques. Although we will
present C++ code, the reader does not require
an in-depth knowledge of the language to un-
derstand the key concepts behind the matter
at hand. Let’s start with a summary of how a
Vulkan program works.
A typical Vulkan programs begins with
platform-specific calls to open a windows or
otherwise prepare a display device onto which
the program will draw. Then, calls are made
to open queues to which command buffers are
submitted. The command buffer contain lists
of commands which will be executed by the
underlying hardware. The application can
also allocate device memory, associate resources
with memory and refer to these resources from
within command buffers. Drawing commands
cause application-defined shader programs to
be invoked, which can consume the data in
the resources and use them to produce images.
To display resulting images, further platform-
specific commands are made to transfer the
resulting image to a display device or window.

1

mailto:webers@in.tum.de
mailto:lorenzo.la-spina@tum.de


Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

i. Philosophies

To the programmer, Vulkan is a set of com-
mands that allow the specification of shader
programs, kernels, data used by the kernels
or shaders, and states controlling aspects of
Vulkan outside the scope of shaders. Typi-
cally the data represents geometry in two or
three dimensions and texture images, while
the shaders and kernels control the processing
of the data, rasterization of the geometry, and
the lighting and shading of fragments generated
by rasterization, resulting in the rendering of
geometry into the framebuffer.
A keyword usually found in Vulkan context
is re-use. The idea is to keep resources avail-
able on VRAM when needed to avoid useless
PCI traffic spawned by the continuous load
and unload operation generated by a draw call.
For example, consider a program that renders
five different objects using a shading technique
for each of them, for the sake of the example,
imagine that each shading technique uses a
different texture and that those five textures
are not collected in an atlas. Each time we in-
struct the context to execute a different shader
program we generate a draw call, i.e. we bind
programs and data to the graphics pipeline to
actually draw the result on the currently bound
frame buffer, submitting a series of draw com-
mands. What we are interested in, at this point,
is the context switch, during this phase, in the
example above, we bind a different texture to
the pipeline meaning that we probably inval-
idate previous texture memory and request
new data to the host, this is likely to generate
a memory transfer from host memory to GPU
memory wasting cycles and resulting in poor
performance.
The reason is that classic APIs don’t have ex-
plicit control on what to keep in memory and
what to discard, it is automatically inferred by
the driver.

ii. Pipelines

A pipeline is controlled by a monolithic ob-
ject created from a description of all of the
shader stages and any relevant fixed-function

stages. Linking the whole pipeline together al-
lows for the optimization of shaders based on
their input/outputs and eliminates expensive
draw time state validation e.g. in the degen-
erate situation presented above. A pipeline
object is bound to the device state in command
buffers. Pipelines consist of shader stages, their
resources and the pipeline layout. The pipeline
layout describe the complete set of resources
that can be accessed by a pipeline, more specif-
ically, it represents the a sequence of descriptor
sets with each having a specific layout. We
will explain what descriptor sets and their lay-
outs later, for now, let’s just understand that
this sequence of layouts is used to determine
the interface between shader stages and shader
resources.

iii. Command Buffers

Command Buffers are objects used to record
commands which can be subsequently submit-
ted to a device queue for execution.
Recorded commands include commands to
bind pipelines and descriptor sets to the com-
mand buffer, commands to modify dynamic
state, commands to draw (for graphics ren-
dering), commands to dispatch (for compute
kernels), commands to copy buffers and im-
ages, and other commands.
Unless specified otherwise, and without ex-
plicit synchronization, the various commands
submitted to a queue via command buffers
may execute in arbitrary order relative to each
other, and/or concurrently. Also, the mem-
ory side-effects of those commands may not
be directly visible to other commands with-
out memory barriers. This is true within a
command buffer, and across command buffers
submitted to a given queue.

iv. Memory

The most important concept, to understand
what we are doing, is memory allocation. Usu-
ally, in classic APIs, programmers have only
the possibility to create resource views or uni-
form buffers using a few options just to de-
scribe the resource type. In Vulkan, memory

2



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

allocation is broken up into two categories, host
memory and device memory.
Host memory is memory needed by the Vulkan
implementation for non-device-visible storage.
This storage may be used for e.g. internal soft-
ware structures. Vulkan provides applications
the opportunity to perform host memory allo-
cations on behalf of the Vulkan implementation.
This feature is not used in our code so we will
only explain it briefly. In this case, the imple-
mentation perform its own memory allocations.
Since most memory allocations are off the crit-
ical path, this is not meant as a performance
feature.
Device memory is memory that is visible to
the device, for example the contents of textures
that can be natively used by the device, or uni-
form buffer objects that reside in on-device
memory, as introduced in the example above.
A keyword to remind when speaking of de-
vice memory is memory properties. Memory
properties of a physical device describe the
memory heaps and memory types available on
the board. Properties can be queried via physi-
cal devices API calls and the retrieved structure
describes a number of memory heaps as well as a
number of memory types (representing the type
of resource e.g. textures, buffer, and the scope
or visibility of this resource) that can be used to
access memory allocated in those heaps. Each
heap describes a memory resource of a par-
ticular size, and each memory type describes
a set of memory properties (e.g. host cached
vs uncached) that can be used with a given
memory heap. Allocations using a particular
memory type will consume resources form the
heap indicated by that memory type’s heap
index. More than one memory type may share
each heap, and the heaps and memory types
provide a mechanism to advertise an accurate
size of the physical memory resources while
allowing the memory to be used with a variety
of different properties.

v. Resources

Vulkan supports two primary resource types:
buffers and images. Resources are views of mem-

ory with associated formatting and dimension-
ality. Buffers are essentially unformatted arrays
of bytes whereas images contain format infor-
mation, can be multidimensional and my have
associated metadata. They are both accessed
via views to determine how data should be in-
terpreted.
Buffers are used for various purposes by bind-
ing them to a graphics or compute pipeline via
descriptor sets or by directly specifying them
as parameters to certain commands. For ex-
ample vertex/index buffers bound to the input
assembler of a graphics pipeline.
Images represent multidimensional (up to 3)
arrays of data which can be used for various
purposes (e.g. color/depth attachments, tex-
tures or, in our case, density data for a volume),
by binding them to a graphics or compute
pipeline via descriptor sets, or by directly speci-
fying them as parameters to certain commands.
For example an image blit operation to copy
a portion of an image into another. Images
have an additional peculiar functionality, image
layouts. Images are stored in implementation-
dependent opaque layouts in memory. Imple-
mentations may support several opaque lay-
outs, and the layout used at any given time is
determined by the image layout state of the
image subresource. Each layout has limitations
on what kinds of operations are supported for
image subresources using the layout. Appli-
cations have control over which layout each
image subresource uses, and can transition an
image subresource from one layout to another.
Transitions can happen with an image memory
barrier, included as part of a pipeline barrier or
a command buffer event, or as part of a subpass
dependency within a render pass, as we will
see how we use the ray tracer texture output as
KHR surface for window display. The image
layout is per-image subresource, and separate
image subresources of the same image can be
in different layouts at the same time with one
exception, depth and stencil aspects of a given
image subresource must always be in the same
layout.
To actually read image data in an implementa-
tion, the programmer has two different alterna-

3



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

tives. We can use a sampler or a raw imageLoad.
The latter is a pretty straightforward operation,
given a 2D or 3D coordinate, the pixel value is
returned. A sampler, still requires a coordinate
but, this coordinate may not correspond to an
unsigned integer defining a position in an ar-
ray of pixels, in fact this coordinate is usually a
floating point because samplers apply filtering
and other transformations for the shader. A
quick example is the type of interpolation used
to retrieve a color value from a diffuse texture
in a shader. We will discuss this matter in de-
tail when we will describe the implementation
details of the ray tracer.

vi. Resource Descriptors

Finally, we have all the elements to talk about
descriptors. Shaders access buffer and image re-
sources by using special shader variables which
are indirectly bound to buffer and image views
via the API. These variables are organized into
sets, where each set of bindings is represented
by a descriptor set object in the API and a de-
scriptor set is bound all at once. A descriptor is
an opaque data structure representing a shader
resource such as a buffer view, image view,
sampler or combined image sampler. The con-
tent of each set is determined by its descriptor
set layout and, the sequence of set layouts that
can be used by resource variables in shaders
within a pipeline, is specified in a pipeline layout.
Each shader can use up to a device specified
value of descriptor sets, each descriptor set
can include bindings for descriptors of all de-
scriptor types. Each shader resource variable
is assigned to a tuple of (set numbers, binding
number, array element) that defines its location
within a descriptor set layout. In GLSL, the
set number and binding number are assigned
via layout qualifiers, and the array element is
implicitly assigned consecutively starting with
index equal zero for the first element of an ar-
ray (and array element is zero for non-array
variables).

vii. Shaders

A shader specifies programmable operations
that execute for each vertes, control point,
tessellated vertex, primitive, fragment, or
workgroup in corresponding stage(s) of the
graphics and compute pipelines. Graphics
pipelines include vertex shader execution as
a result of primitive assembly, followed, if
enabled, by tessellation control and evaluation
shaders operating on patches, geometry
shaders, if enabled, operating on primitives,
and fragment shaders, if present, operating on
fragments generated by rasterization. From
now on we will refer to vertex, tessellation
control, tessellation evaluation and geometry
shaders as vertex processing stages as they oc-
cure in the logical pipeline before rasterization.
Only compute shader stage is included in a
compute pipeline. Compute shaders operate
on compute invocations in a workgroup.
Shaders can read from input variables, and
read from or and write to output variables.
Input and output variables can be used to
transfer data between shader stages, or to
allow the shader to interact with values that
exist in the execution environment. Similarly,
the execution environment provides constants
that describe capabilities. Shader variables
are associated with execution environment-
provided inputs and outputs using built-in
decorations in the shader.
At each stage of the pipeline, multiple invoca-
tions of a shader may execute simultaneously.
Further, invocations of a single shader pro-
duced as the result of different commands
may execute simultaneously. The relative
execution order of invocations of the same
shader type is undefined. Shader invocations
may complete in a different order than that
in which the primitives they originated from
were drawn or dispatched by the application.
However fragment shader outputs are written
to attachments in rasterization order. The
relative order of invocations of different
shader types is largely undefined. However,
when invoking a shader whose inputs are
generated from a previous pipeline stage, the

4



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

shader invocations from the previous stage
are guaranteed to have executed far enough to
generate input values for all required inputs.

We now have all the basic elements needed
to go through the implementation details.

III. Implementation

In this section we will examine the most crit-
ical, important and interesting details of the
volume ray tracing implementation in Vulkan.
We will first talk about API initialization and
swapchain creation, then we will apply the
knowledge acquired in the previous section to
create and bind the required resources to our
pipelines. After that we will examine shader
programs with a little insight on the used ray
casting algorithm and the key innovations over
classic approaches. Finally we will compare the
two generations of APIs highlighting impor-
tant differences and peculiarity in the program
logic.

i. Initialization

Vulkan initialization is a little bit more involved
that for classic APIs. The real difference is not
the initialization process per se, but in the level
of detail of the information that the program-
mer must provide to initialize devices and de-
vices context. Device and device context are
structures that graphics APIs usually expose,
they have 2 different and distinct roles:

Device used for device memory management.
Functionalities include allocation, release
and others.

Device context used to submit rendering com-
mands to the pipeline. Functionalities in-
clude setting shaders for a specific ma-
terial, setting textures to be used in the
pipeline and others.

Vulkan doesn’t explicitly offer such structures
because, as shown in the previous section,
Vulkan has a different execution model. Still it
provide two different abstractions of a device:

• vkPhysicalDevice
• vkDevice

vkPhysicalDevice represents the physical layer, it
offers functions to query hardware properties,
memory heaps and their limits. vkDevice is an
abstraction that allows for device memory man-
agement as they represent logical connections
to physical devices. It is trivial that, in order
to create a device that is able to allocate and
release resources in our application, we will
query hardware capacities retrieving all needed
information about queues, memory heaps and
their available types and finally we will use the
Vulkan instance to create a vkDevice. Vulkan
doesn’t have a global state, all per-application
data is stored in a VkInstance object. Creating
such object initializes the Vulkan library and al-
lows the application to pass information about
itself to the implementation.
Once devices have all been initialized we have
access to their queues. An important property
is the queue family index, it is used in Vulkan in
order to tie operations to a specific family of
queues. There are three key situations where
this index is required:

• When creating a command pool, a queue
family index is specified so that command
buffers allocated from this pool can only
be submitted on queues corresponding to
this family queue.

• When creating image and buffer resources,
a set of queue families is included in
their initialization structures to specify
the queue families that can access the re-
source.

• When inserting buffer memory barriers or
image memory barriers a source and desti-
nation queue family index is specified to
allow ownership of a buffer or image to
be transferred from one queue family to
another.

Next task in a Vulkan program initialization is
the initialization of a swapchain. Swapchains
are structures in charge of keeping a collec-
tion of framebuffers and presenting them to
the windowing system, if a swapchain holds
on to two buffers and always updates the least

5



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

frequently used we say that our system uses
double buffering. Swapchain creation is essen-
tially made of two operations, query the device
queue for supported image formats and, fi-
nally, swapchain and framebuffers allocation.
Present operations are explicitly synchronized
using semaphores that signal on render com-
plete and on present complete to implement
the framebuffer swap logic. Framebuffer allo-
cation requires a step in between, to initialize
a framebuffer we first need to define a render
pass. A render pass represents a collection of
attachments, subpasses, and dependencies be-
tween the subpasses, and describes how the
attachments are used over the course of the
subpasses.

Attachment describes the properties of an at-
tachment including its format, sample
count, and how its contents are treated
at the beginning and end of each render
pass instance.

Subpass represents a phase of rendering that
reads and writes a subset of the attach-
ments in a render pass. Rendering com-
mands are recorded into a particular sub-
pass of a render pass instance.

Subpass description describes the subset of
attachments that is involved in the exe-
cution of a subpass. Each subpass can
read from some attachments as input at-
tachments, write to some as color attach-
ments or depth/stencil attachments. A sub-
pass description can also include a set of
preserve attachments, which are attachments
that are not read or written by the subpass
but whose contents must be preserved
throughout the subpass.

The subpasses in a render pass all render to the
same dimensions, and fragments for pixel (x, y,
layer) in one subpass can only read attachment
contents written by previous subpasses at the
same (x, y, layer) location.
It is worth noting that, by describing a com-
plete set of subpasses in advance, render passes
provide the implementation an opportunity

to optimize the storage and transfer of an at-
tachment data between subpasses. In practice,
this means that our subpasses with a simple
framebuffer-space dependency may be merged
into a single tiled rendering pass, keeping the
attachment data on-chip for the duration of a
render pass instance. However, it is also quite
common for a render pass to only contain a
single subpass.

ii. Implementation Flow

Now that we have created and allocated all
underlying structures of our Vulkan implemen-
tation, we can describe the steps that the appli-
cation will do in order to render a picture. The
application has two pipelines, specifically one
compute pipeline to do ray tracing computa-
tions and another to show the result on screen.
The compute pipeline has a texture buffer for
result output, a sampler 3D for volume reads
and a uniform buffer for implementation data.

struct uniformBuffer

{

// view matrix for camera

mat4 camView;

// unsigned extent of volume

ivec3 volumeExtent;

};

We would like to bind these objects to the a
compute pipeline. As per subsections ii, v and
vi we need to create and allocate resources,
allocate a descriptor pool, define descriptor
set layout and finally create a descriptor set.
Allocating a descriptor pool is a critical op-
eration, by allocating a pool we tell the API
the maximum number of requested descrip-
tors per type. Descriptor pool allocation re-
quires a list of VkDescriptorPoolSize structures,
each containing a descriptor type and the num-
ber of maximum requested descriptors of that
type. Allocation of the pool is done via a log-
ical device call. Note that if the implementa-
tion requests more descriptors than maximum
available, it will return an error. In order to
create a descriptor set layout a collection of
VkDescriptorSetLayoutBinding structures must

6



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

be allocated and filled. Relevant information
contained is this structure are:

Descriptor Type describing the type of the de-
scriptor, in our case, the compute pipeline
will need storage image, uniform buffer, im-
age sampler.

Shader stage flag describing the pipeline
stage where the resource will be accessed.
According to ii, we can only specify
compute.

Binding describing the bind point of the re-
source in the shader program.

Descriptor Count describing the number of
descriptors contained in the binding, ac-
cessed in a shader as an array. For exam-
ple, if the count is zero this binding entry
is reserved and the resource must not be
accessed from any stage via this binding
within any pipeline using the set layout.

With these data in place, we can create descrip-
tor set layout, pipeline layout and descriptor
set via logical device calls. The implementation
is still unaware of the actual data we need to
use in the shader program, it is possible to link
actual data to a shader program using VkWrit-
eDescriptorSet structures. Each VkWriteDescrip-
torSet structure contains again the descriptor
type, the binding of the resource and a pointer
to the descriptor itself. Data is linked via a
logical device call.
Pipeline allocation requires a pointer to a list
of shader modules, in this case just the com-
pute shader, and a pointer to a pipeline layout,
again, a logical device call creates the pipeline
object. The second part of the rendering loop
uses a fullscreen quad and just renders the
output texture on this quad, the process of re-
sources and pipeline allocation is similar to the
one described so far for the compute shader
and we will not discuss it further.
In subsection iii we mentioned that rendering
commands are submitted to a queue via its reg-
istration to a command buffer, this is also valid
for compute shader dispatch operation. The
last critical step is rendering synchronization,

we want to make sure that the compute stage is
finished rendering before the graphics pipeline
asks for the texture output. To ensure this, we
create a signaled fence and, for each frame, we
reset it after every signal for the next frame.

// Swap buffer

mSwapchain.GetNextImage(mSemaphores.presentComplete,

&mCurrentBuffer);

// Command Buffer to be

// submitted to the queue

mSubmitInfo.commandBufferCount = 1;

mSubmitInfo.pCommandBuffers =

&mDrawBuffers[mCurrentBuffer];

// Submit graphics pipeline to draw frame

mMainDevice->QueueSubmit(QUEUE_TYPE_GRAPHICS,

1, mSubmitInfo, VK_NULL_HANDLE);

// Wait for graphics pipeline to finish

render

mSwapchain.QueuePresent(mCurrentBuffer,

mSemaphores.renderComplete);

mMainDevice->QueueWaitIdle(QUEUE_TYPE_GRAPHICS);

// Compute synchronization and fence reset

mMainDevice->QueueWaitForFence(mCompute.fence);

mMainDevice->ResetFences(&mCompute.fence,

1);

// Compute

VkSubmitInfo computeSubmitInfo = {};

computeSubmitInfo.sType =

VK_STRUCTURE_TYPE_SUBMIT_INFO;

computeSubmitInfo.commandBufferCount = 1;

computeSubmitInfo.pCommandBuffers =

&mCompute.cmdBuffer;

// Call compute pipeline

mMainDevice->QueueSubmit(QUEUE_TYPE_COMPUTE,

1, computeSubmitInfo, mCompute.fence);

All things we’ve seen so far in the current
section would not have been necessary using
classic APIs. Whenever the implementation
requests memory allocation, the driver chooses
the best allocation he sees fit based on the re-
quest, rendering all steps above unnecessary.
This is in general a bad thing because the driver
could assume a different usage of a resource

7



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

and end up with slowing down the applica-
tion because of subsequent requests of data
generating unnecessary traffic.

iii. Volume Ray Casting Notes

We will give a brief introduction to volume ray
casting. Volume ray casting, is an image-based
volume rendering technique. It computes 2D
images from 3D volumetric data sets (3D scalar
fields). Volume ray casting, which processes
volume data, must not be mistaken with ray
casting in the sense used in ray tracing, which
processes surface data. In the volumetric vari-
ant, the computation doesn’t stop at the surface
but "pushes through" the object, sampling the
object along the ray. Unlike ray tracing, volume
ray casting does not spawn secondary rays.
Our basic fog simulator based on volume ray
casting is made of three steps:

1. Ray Casting. For each pixel of the image
plane, a ray is shot through the volume. In
our case, the volume is "tiled" through an
infinite space, so we don’t need intersec-
tions test with bounding volumes which is
usually necessary in order to avoid wast-
ing ray steps in empty space areas.

2. Sampling. Along the part of the ray of
sight that lies within the volume, equidis-
tant sampling points or samples are selected.
In general, the volume is not aligned with
the ray of sight, and sampling points will
usually be located in between voxels. Be-
cause of that, it is necessary to interpo-
late the values of the samples from its sur-
rounding voxels (commonly used trilinear
interpolation).

3. Compositing. While sampling the volume
along the ray, the density values are com-
posited using the Over operator proposed
by [Porter, Duff et al. 1984], resulting
in the final color value for the pixel that
is currently being processed. The ray is
marched in a front-to-back fashion allow-
ing early ray termination when accumu-
lated density is ≥ 1.0

iv. Shader Notes

In this section we will present the pseudo-code
of our fog simulator, what we are interested
in here is a curious compiler optimization dif-
ference between HLSL and GLSL to SPIR-V
compiler, in our case, this difference is critical
and reveals to be a major bottleneck in the fi-
nal result. In Vulkan, shader modules require
shader programs and compute kernels into the
SPIR-V format. SPIR-V is a binary interme-
diate language for shader programs and com-
pute kernels, shader programs and compute
kernels can be pre-compiled or compiled at
runtime using a third party library. To under-
stand the matter at hand we need to introduce
the execution model of a GPU. GPU architec-
tures are called SIMT, SIMT stands for Single
Instruction Multiple Thread, that is the reason
why we say GPUs execute the code in lockstep,
each thread execute the same instruction at
the same time. It is trivial that, in such sys-
tems, branching is a really expensive operation
and, if not optimized by the compiler and/or
the programmer, can lead to a massive loss
of performance. Graphics APIs offer a simple

Figure 1: Branching in lockstep execution. Worst case
scenario yields 1/8 of total performance.

interface to run compute kernels, users only
need to specify the size of a work group. Inside
the kernel, global variables for thread identifi-
cation are available so we can easily calculate

8



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

the pixel coordinate from local thread id. In
general, available variables are:

Num Threads (x, y, z) Defines the number of
threads to be executed in a single thread
group when a compute shader is dis-
patched. The x, y and z values indicate
the size of the thread group in a particular
direction and the total of x*y*z gives the
number of threads in the group. The abil-
ity to specify the size of the thread group
across three dimensions allows individual
threads to be accessed in a manner that
can be logically mapped to 2D and 3D
data structures.

Group Thread ID Indices for which an indi-
vidual thread within a thread group are
bound to a particular instance of a com-
pute shader. Group Thread ID varies across
the range specified for the compute shader
in the numthreads attribute.

Group Index The "flattened" index of a com-
pute shader thread group, which turns
the multi-dimensional Group Thread ID
into a 1D value. Group Index varies from
0 to (numThreadsX * numThreadsY *
numThreadsZ) - 1.

Group ID Indices for which thread group a
compute shader is executing in. The in-
dices are the whole group and not an indi-
vidual thread. Possible values vary across
the range passed as parameter to Dispatch.

Dispatch Thread ID Indices for which com-
bined thread and thread group a compute
shader is executing in. Dispatch Thread ID
is the sum of Group ID * numthreads and
Group Thread ID. It varies across the range
specified in Dispatch and numthreads.

Let us sketch the fog simulator code:

float RescaleNAdd(...)

{

// Used as an optimization,

// instead of adding up all octaves

for each step,

// lerp the distance to the eye and

decrease

Figure 2: Example Dispatch showing the relationship
between attributes and system values.

// octaves sampled

uint octaves =

OctavesFromDistance(ray);

// ...

float density = 0.0f;

for(uint oc = 1; oc < octaves; oc++)

{

density += sampleVolume(...);

}

return density;

}

void main()

{

// Compute image plane pixel position

in world space

// using attributes and system values

// ...

// Initialize Ray

// ...

// Ray marching loop

for(uint i = 0; i < maxRaySteps; i++)

{

float d = RescaleNAdd(...);

finalColor = finalAlpha *

finalColor + (1.0f -

9



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

finalAlpha) * d * fogColor;

finalAlpha = finalAlpha + (1.0f -

finalAlpha) * d;

if(finalAlpha >= 1.0f)

break;

ray.pos += ray.direction * step;

}

outputTex[DTid.xy] =

float4(finalColor, 1.0f);

}

Our optimization of the number of octaves is
justified by the fact that, the further we are
from the eye the lower is the resolution re-
quired. Although this calculation optimizes
the code in D3D11, it results in a bottleneck in
the GLSL implementation. It is obvious that, if
the number of iterations is known at compile
time, the compiler can automatically unroll the
loop removing branching operations from the
code. At this time, is not completely clear the
reason why it happens. Maintainers of Vulkan
and SPIR-V could not provide a concrete and
complete answer. Therefore, we can only con-
clude that, at this time, some kernel programs
might perform better on D3D11 than SPIR-V.

IV. Results

In this section we will benchmark our volume
ray caster. We used two different systems for
the performance evaluation. An MSI gam-
ing laptop GS60 4k Intel i7-4720HQ@2.6GHz
equipped with an Nvidia GTX 970M 3Gb
VRAM, the second is a desktop machine with
two Intel Xeon 2.53GHz and an Nvidia GTX
970 4Gb VRAM.
Table 1 shows that volume ray casting com-
piled as SPIR-V is slower than HLSL. Although
results are clear we would like to present a
second benchmark to have more data to anal-
yse. Because results of the volume ray casting
are astonishing, we wanted to give it another
chance with a simpler and standard algorithm
that can be found in literature, ray tracing. In
this algorithm we use a bunch of spheres and

System

CPU GPU API Frame avg.

i7-4720HQ@2.6GHz GTX 970M Vulkan 500ms
2x Xeon e5630@2.53GHz GTX 970 Vulkan 450ms
i7-4720HQ@2.6GHz GTX 970M D3D11 25ms
2x Xeon e5630@2.53GHz GTX 970 D3D11 20ms

Table 1: Volume ray caster benchmark

System

CPU GPU API Frame avg.

i7-4720HQ@2.6GHz GTX 970M Vulkan 0.4193ms
2x Xeon e5630@2.53GHz GTX 970 Vulkan 0.3353ms
i7-4720HQ@2.6GHz GTX 970M D3D11 2.11ms
2x Xeon e5630@2.53GHz GTX 970 D3D11 1.23ms

Table 2: Simple ray tracing benchmark

trace diffuse, specular and shadow rays, re-
sults are summed in Table 2. This time we
have a much better results, let’s try to under-
stand what happens there. We expect that the
dynamic number of octaves is the cause of the
high frame time in the application so, to val-
idate our hypothesis, we enforced the maxi-
mum number of octaves yielding 500ms to
render on D3D11. We can safely assume that
D3D11 shader compiler optimize the code in a
better manner than the other.
Let us now examine ray tracing performance,
this shader does not contain dynamic loops
and, as data suggests, SPIR-V is much faster
than in the other experiment.

V. Conclusions

HLSL performance seems more consistent, a
reason why, could be that D3D11 and HLSL
are much more tightly coupled than Vulkan
and SPIR-V, also, the latter is still a pretty new
technology with a still non-definitive standard.
During our journey through graphics APIs we
have implemented other algorithm and, even
though it is not the matter at hand in this sur-
vey, polygon performance is much better in

10



Investigating real-time rendering using Vulkan API • Summer Term 2016 • Guided Research

Vulkan. Furthermore, heavy polygon draw-
ing routines involving around 300k triangles,
multi-texturing and complex lighting can be
rendered at a stable 0.3ms per frame. We are
very excited about this new technology and
we strongly believe that, in the future, gaming
industry will adopt it as a standard.

References

[Real Time Rendering, 2008] Real Time Ren-
dering, Third Edition, T. Akenine-Moeller,
E. Haines, N. Hoffman. (2008). Standard
textbook collecting modern approaches
to computer graphics. Computer Science,
ISBN 987-1-56881-424-7.

[Vulkan Specification, 2016] Vulkan 1.0.26, A
Specification, Khronos Group Inc. (2016).

[GLSL Specification, 2016] GLSL 4.50, A Spec-
ification, Khronos Group Inc. (2016).

[Direct3D Documentation, 2010] Direct3D 11
Documentation, Microsoft. (2010).

11


	Introduction
	Background
	Philosophies
	Pipelines
	Command Buffers
	Memory
	Resources
	Resource Descriptors
	Shaders

	Implementation
	Initialization
	Implementation Flow
	Volume Ray Casting Notes
	Shader Notes

	Results
	Conclusions

