
Design Specification of an Animation System for
Web Applications

Daniel Dyrda
Fakultät für Informatik

Technische Universität München
Garching bei München, Bavaria, 85748

Germany
Email: dyrda@in.tum.de

Animations have become an integral part of web applica-
tions. The dynamic context of interactive web applications
leads to special demands on animations. Besides the existing
animation frameworks for web applications, which are more
concerned with the application of animations, our animation
system focuses on the dynamic control and sequencing of
animations at runtime.
Our system follows a property-driven approach that uses
Animation Controllers based on Action State Machines
which behave according to the internal state of the applica-
tion.
We provide a design specification af an animation system
for web applications which considers proven concepts of
established animation systems used in interactive contexts
such as game engines in addition to basic requirements of
animations and their use cases in web applications.
Our concept facilitates the easy use and control of anima-
tions in web applications.

1 Intro
Animation is the illusion of motion created by dis-

playing a sequence of still images. [2, 25]. It facilitates the
understanding of process and continuity of an object. [1, 3]

Animations have always been a crucial component
of various media. They are an integral part of films and
computer graphics. [2] Especially in digital advertising they
are used very consciously. [14] For some time now, they
have been increasingly used in digital interfaces and web
applications. [2, 15]

This trend can be attributed to various reasons.
Besides to some drawbacks of animations (see section
2.2.2), the advantages for their use in interactive applications
are predominant (see section 2.2.1).
In addition, the ever-increasing performance of end devices
makes it possible to use animations despite their real-time

requirements and high performance demands. [15]

Nevertheless, there are some challenges to be overcome
in order to use animations in interactive scenarios such
as web applications. Animations add complex, dynamic
aspects to an application. Predefined cases are not enough
to meet these demands. A system for controlling competing
animations is required. Animations must be dynamically
sequenced based on unexpected, spontaneous events. [15]

Several application areas that have been using anima-
tions in an interactive context for quite some time, such
as computer games, use animation controllers for these
tasks. An animation controller facilitates the sequencing of
animations in a dynamic and interactive environment. [1]

Such a system is also required for interactive web appli-
cations with dynamic animations. In this paper, we discuss a
design specification for a system for controlling animations
in web applications.

2 Related Work
There are many topics relevant to our animation system.

The most important related areas are animation in a general
term, the use of them in interfaces & web applications and
animation frameworks in other interactive applications such
as video games.

2.1 Animation
A general idea of animation as the illusion of motion is

conveyed by many scientific papers [3, 8, 20].
In addition, an understanding of animation from a more cre-
ative point of view as described by Thomas and Johnston
[21] is recommended.
When it comes to linking functionality of programs with an-
imations, it is essential to understand the needs and require-
ments of creative people for their animation systems so that
they can create the best possible outcome.



2.2 Animation in Interfaces and Web Applications
Besides to the actual understanding of animation, it is

advantageous to know general classification and animation
principles for interfaces as described by Baecker and
Small [22].

When it comes to animation in web application in
particular a more in-depth knowledge about web animation
formats, the technologies used and the animation production
process is essential.
Animation for web applications is a rapidly evolving field
which is characterized by a high number of emerging
technologies and practices.
Although it is desirable to have an understanding of these
emerging technologies, this area is only partially relevant.
A complete coverage of the technologies is desirable but
almost impossible to achieve, if all technologies are consid-
ered separately.
Fortunately, almost all new technologies are more or less in
line with the browser standards and conditions set by the w3
committee and other influential organizations.
For this reason, it is more important to know the basic
standards and guidelines than to know individual, sometimes
very short-lived technologies in detail. Current standards
can be found in the w3c standards guidelines [24].

It is also advantageous to know similar web animation
frameworks and libraries that are designed to provide higher-
level interfaces to the application layer.
Related systems with interesting implementation approaches
and problem-solving strategies such as the planning based
animation control framework Player [1] or the visual pro-
gramming model HandMove [15] can help to improve your
own approaches.

2.2.1 Advantages
It is interesting to see to what extent animations improve

an application and what kind of tradeoffs can be expected.
Researchers show that objects in motion automatically attract
people’s attention, cause a physiological arousal and increase
the level of engagement. [4, 6, 9, 14]
Animated content appreciably improves the graphical per-
ception. [4] It can help to understand changes in the user
interface [8, 10, 11] and help the users to keep their orien-
tation. [5, 6]. Furthermore, it supports the understanding of
underlying data [2, 3], learning processes [3] and decision
making [7].

2.2.2 Disadvantages
However, negative consequences can also occur as a re-

sult of excessive or incorrect use.
Some researchers assume that animated objects require a
higher cognitive load than static ones. In some situations
with many animated objects this can lead to a mental over-
load of the user, so that she can no longer process the dis-
played information adequately [2, 8, 12–14, 23].
Another drawback is that animations are played back over

time. Thus animations inevitably delay the visual feedback
of an event. This results in an inadvertent idle time for the
user. [3, 4, 8]

2.3 Animation in Video Games
Video games are interactive applications with similar re-

quirements and areas of application to web applications.
Animations have long been an integral part of video games.
This has resulted in animation systems that have proven
themselves over many years and in countless projects.
Knowledge of these established systems is recommended to
find optimal solutions for web applications.
Gregory provides a comprehensive overview of common
requirements and implementation standards of animation
frameworks in real-time computer game engines in his book
”Game Engine Architecture” [25].
Proven animation control systems are used in state-of-the-
art 3D game engines like the Unity3D Engine [26] and the
Unreal Engine [27].

3 Animations in Web Applications
Animations in web applications emerge in various

forms. Basic elements of web applications can be animated
using Cascading Style Sheets and JavaScript. Many APIs
enable easy and efficient animation of objects. Complex
aspects can be animated with more complex systems such
as WebGL. In addition, animations can also appear in the
displayed content such as embedded videos.

Before we take a closer look at animations and the tech-
nical aspects, we should study their use in web applications.
If we understand how they are used in web applications,
we can optimize our system to these situations and ensure
that the app developers can easily implement these situations.

Web applications are interactive real-time applications
that require sensitive memory management and are highly
dependent on performance.
Interactivity means inherently that the relevance of the
interface between application and user is particularly high.

Web applications as an environment has significant
effects on animations. They must meet the technical require-
ments. Animation controllers are necessary to cope with
the interactive character if more complex systems are to be
implemented.

3.1 Use Cases of Animations
There are many different reasons why animations can

be built into an interface or application. The following list
shows meaningful use cases, what intentions they are pursu-
ing and examples.

This overview of common use cases for animations and
the intentions are from Baecker and Small [22].



Identification What is this? An animated lock that indicates
that a text input field is intended for a password.

Transition From where have I come, to where have I gone?
Scrolling animation from a section to another after click-
ing an anchor link to a position on the same page.

Choice What can I do now? Grey out buttons to indicate
that they are no longer active/accessible.

Demonstration What can I do with this? Text which ap-
pears letter by letter to indicate that text can be entered
here.

Explanation How do I do this? A mouse icon with an ani-
mated mouse wheel that indicates that this element con-
tains scrollable content that can be explored using the
mouse wheel.

Feedback What is happening? A progress bar that indicates
the application is operating in the background or an error
window popping up that indicates what has gone wrong.

History What have I done? Menu items that are fading out
to show that these items have already been visited.

Guidance What should I do now? A flashing button that
links to the next page.

Animations can also belong to several categories. A
classic intro animation of a website can show that the page
is being loaded (Feedback). It can also explain to the user
which page she is currently visiting and which topics await
her (Identification).

In addition to interfaces, animations can also appear
in the content of the web applications. These are mostly
interactive applications such as games or the visualization
of data. Here, animations are often used to bring objects
to life or to pursue storytelling goals of the content. The
extent to which animations should be used, also in addition
to the above-mentioned reasons, depends largely on the
content, what is intentionally pursued in general and which
format it is. This should be evaluated on a case-by-case basis.

Further uses of animations are conceivable, but not rec-
ommended. Animations that do not fall into one of the above
categories such as emotional animations which do not have
a deep intention, i. e. are only meant to be pretty or demon-
strate a technique, are usually not purposeful and should be
avoided.

3.2 Sources of Animation Intentions
A spontaneous animation intention can have various

origins. It can be differentiated according to the content
structure of the web application.

Web applications usually have a similar content struc-
ture. (See figure 1) Web application consists of many ob-
jects. Several objects that are functionally related to each
other form widgets. Objects and widgets can form consis-
tent elements, which are arranged in the application.
In addition, applications can usually be divided into sections.
Sections combine elements that belong together in terms of

Fig. 1. Example web app with different animation intention sources
and scopes.

subject and space. Following this, we get this structural hier-
archy of common structural elements of web applications:

- Application
- Section
- Widget
- Object

An example of this structural break down is an interactive
Portfolio (application) which offers a contact section (sec-
tion) with a contact form (widget) which in turn contains a
send button (object).

Due to the tree-like structure of web applications, which
is defined by the Document Object Model (DOM) Structure,
elements are always in a parent-child relationship to each
other. Each element has exactly one parent element.

Each of these structural entities can be logically the ori-
gin of an animation intention. The scope of the intention de-
pends on the hierarchically position of the affected objects.
Usually those animation intentions would have at least an in-
fluence on all subordinate elements.
An example is shown in figure 1 on page 3: A loading ani-
mation intention of the web application would cause all el-
ements to be affected by this intention and display a global



loading screen animation. However, if only one section is
reloaded, the other sections can remain unaffected. The ap-
plication would still work normally, only the elements of the
loading section would show a loading animation.
Following this the loading intention of a widget would only
affect the elements of this widget. An Object would only
affect itself and other child objects.

3.3 Animation Trigger Agent
Various agents can trigger animations. In interactive

web applications, there are two main players involved: The
application itself and the user input.

Although generally the role of the trigger agents is only
of limited importance, this is especially important for web
applications. Many of the functionalities related to user in-
put are provided by the browser. Therefore, the interaction
between application and the browser plays an important role
for dynamic animations.

4 Animations
In this section we will examine the structure of anima-

tions. Step by step we build up an overall pattern to get a
general model of animations. This model is shown in figure
4 on page 6.
To do this, we look at the actual content of the animation,
which defines the displayed behaviour and the hidden
control parameters that are necessary to play animations
dynamically.
We use this model to define the interface between our
animation control system and external animation libraries.

First of all, we examine what kind of objects can be
animated and which techniques are commonly used.

4.1 Animation Techniques
Animation is the illusion of motion.

The illusion of motion can be created by displaying a
sequence of still images of an object. [2, 25]

In order to obtain a sequence of still images of an object,
there are several common used animation techniques. Which
technology is suitable depends on many factors. One factor
is the format of the object.
There are two main representations of objects:

- Images of objects as two dimensional array of pixels.
The object is already rendered and represented as a two
dimensional array of colour information called pixels.
Typical examples are traditional image and video for-
mats. These formats are already available in a corre-
sponding format and can be displayed easily. An exam-
ple is shown in figure 2 A. on page 4.

- Spatial representations of objects as set of vertices.
These representations are used in 2D and 3D real-time

Fig. 2. Examples of two common object formats.

rendering engines. Three dimensional models often con-
sists of meshes and materials.
Typical examples are data formats such as the OBJ or
FBX format for 3D models. There are also similar struc-
tures in 2D such as Scalable Vector Graphics (SVG).
All formats in this section have in common that objects
are represented by a set of spatial vertices with addi-
tional information. A renderer have to render the ob-
jects each frame in order to get an image which can be
displayed to the user.
An example is shown in figure 2 B. on page 4.

Based on these two basic formats, various animation
techniques have evolved with different weightings between
complexity and performance:

- Traditional hand drawn Cel Animation displays a se-
quence of hand drawn images in a rapid succession.
[25] With the evolution of the computer, an electronic
equivalent to Cel Animation, the Sprite Animation, has
emerged.
Displaying prerendered and hand made images can be
very data intense and the possibilities of dynamic anima-
tions in a dynamic environment are limited. Especially
interactive real-time applications with lots of different
animations such as video games and web applications
can reach their limits.
These animation techniques are used for animated im-
ages.

- A simple way to animate spatial models is the Per-
Vertex Animation. It provides high complexity and
nearly unlimited possibilities for life-like animation cre-
ation.
Each vertex of a 3d model (or similar data structure) is
transformed individually each frame in order to simulate
motion. This technique is very data intense. [25]

- A simpler and less compute-intensive solution is the
Rigid Hierarchical Animation. [25] This approach
works similar to the Per-Vertex Animation. The main
difference is that not every vertex, but hierarchical col-
lections of vertices called rigid bodies are animated. The
result is that only groups of vertices need to be animated,
not each vertex individually.
In addition, the hierarchical structure of the rigid bodies



Fig. 3. Examples of three different poses of two common object for-
mats.

influences each other, so that not even every group needs
to be animated in order to achieve a harmonious anima-
tion. This significantly reduces the required amount of
data and the computing effort.

- There are many other animation techniques. Many of
them are based on the above-mentioned or are mixed
forms, such as the Skinned Mesh animation technique.

4.2 A General Animation Model
Now we will take a closer look at the technical imple-

mentation of animations. Therefore, we analyze them and
create a general model which is visualized in figure 4 on
page 6.

The illusion of motion can be created by sequencing and
visualizing discrete, still Poses of an object.
Poses are snapshots with concrete values of a property set
that determine the appearance of an object at a certain point
in time. These sets with concrete values could be:

- ...an image with a value for each pixel for sprite anima-
tions. An abstract example of poses of an object repre-
sented as a 2D array of pixels is shown in figure 3 A on
page 5.

- ...a set of vertices with concrete transforms and colour
properties for vector graphics or 3D models. An abstract
example of poses of an object represented as a set of
vertices in 2D is shown in figure 3 B on page 5.

Poses can be understood as basic elements of an animation.

A sequence of key poses on a local time line forms
a Clip. Each property of the poses results in a property
channel with a specific value at the respective points in time
of the key poses.

The playback of a clip takes place over time. [3, 25] A
Clip can be understood as a function returning a sampled
property snapshot for a given time t. With T as the Duration

of the clip, t=0 is the very first pose of the clip and t=T is the
end of the clip.

In addition to the poses, the clip can be extended by
further channels. Different types are conceivable. Simple
values as well as channels with event calls and function
calls are useful. These channels are used to implement
functionalities which do not directly control the appearance
of the object, but which must be synchronized with the
animation.
For example, a channel can specify at which point in an
animation the user’s interactions should be ignored and
when the user input should be able to change the state of the
object. Another use case is calling up audio functions to add
sound to the animation.
Simplified, a clip can be considered as a collection of
time-varying parameters. [2]

In real-time applications the frame rate of the ap-
plication depends on the processing power and program
settings. This results in strong variations in frame rate. As
a result, the poses of a clip are usually between the frames.
Interpolation between successive key poses is necessary
in order to provide pose sampling at any time t during the
clip. [25]

A clip may contain an entire sequence of motions. It
could play back the sequence of motions from the start of
the application and continue running until it is finished or
the user closes the application. Everything would be fine if
the user just wants to consume a static animation.
However, one clip containing a set of motions is not suitable
for interactive applications. Since the behaviour of the
objects and the resulting sequence of motions depends on
the user input, it is impossible to predict how objects will
behave at runtime.
That is why one general pre-sequenced clip containing all
movements does not make sense. Instead, a set of clips
with individual movements is required. At runtime, the
best matching clip can be selected from the set of clips and
played back. This dynamic sequencing of animation clips
at runtime depending on external properties is part of an
animation system.
To enable sequencing and management, the clips must pro-
vide an interface for the dynamic playback. This interface
can be understood as a Wrapper of the clip providing
control parameters.

Additional time parameters are required to control clips.
A Timescale property is the basis for playback. The
Timescale determines whether a clip is played in slow
motion or fast-forward, and whether it is played backwards.
The timescale factor is taken into account when converting
from query time t to the local time of the clip.
Another important factor for time related adaptations is the
concept of Easing Functions. Easing functions provide
time distortion effects. The result of the easing function is
used to sample the corresponding pose.



Fig. 4. A general animation model.

Furthermore it must be possible to trigger a clip.
A delay property is necessary to determine the interdepen-
dencies between trigger and the actual playback start of the
animation clip.

The completion of an animation clip should be a possi-
ble trigger as call-through for an animation clip. This en-
ables short scope sequencing without further knowledge of
the clip durations for specific triggers and animation loops.

5 Animation System Design
We have already seen how animations are used in web

applications and how animations work per se. The next step
is the quest of how animations can be sequenced and applied
dynamically at runtime.

To this end, we define a system that corresponds to all
the aspects mentioned above, implements common require-
ments and refers to existing systems for web applications.
Our system implements proven concepts of established
animation systems from the unity game engine [26] and the
unreal game engine [27] as well as common game engine
animation system aspects [25].

Animation systems are normally divided into three lev-
els: [25, 26]

Animation Pipeline This level is deeply integrated into the
system. For each animated element, the following steps
are performed: Multiple clips are taken and blended us-
ing blend properties. The output pose is then calculated
from the blend result. Subsequently, post-processing
tasks are applied. [25]

Action State Machine This layer is on top of the Animation
Pipeline. A finite state machine determines which clips
are forwarded to the animation pipeline depending on
the information from the Animation Controller. [25]

Animation Controller The Animation Controller is the
high level interface between the application and the ani-
mation system. It is used to hide the presentation details
from the application. [1, 25]

In web applications, the lowest layer, the animation
pipeline, is mainly controlled by the web browser. Imple-
menting this can be difficult and can have a strong impact on
the performance of the application.
Our system is limited to the other two layers, which is re-
sponsible for a reasonable control of the animations. The
actual application of the animations by the browser is not af-
fected.
Complete blending between animations at the same time and
at transitions is therefore difficult to realize, because this pro-
cess occurs in the Animation Pipeline Layer. We will only
offer a simplified approach to blending animations in state
transitions.

5.1 The Idea
The basic idea of the system is best illustrated by an ex-

emplary workflow. This process flow can be divided into two
segments: Topics which are part of the development phase
and the behaviour which are then executed at runtime of the
application.

5.1.1 Development Phase
The following tasks are carried out during development.

They only have to be done once and then remain constant
for the runtime. The tasks already reflect the various compo-
nents of the system.

Create the animations The developer implements Anima-
tion Objects for various elements of the application and
for the required different states of these elements. These
animations are created with respect to dynamic playback
and sequencing from an external animation controller.

Define a general status description Later on, the objects
should change their state according to the status of the



application and play the appropriate animations. To do
this, the status of the application must be determined:
the developer defines a model which describes the sta-
tus of the applications, the sections, the widgets or the
objects as required.

Define the animation controller properties Not every ani-
mated object or group of animated objects requires the
same information about the status of the application.
For each animation controller, the developer determines
which information and properties are of interest to the
controller. The developer also specifies where the in-
formation is to be obtained from if it has not been set
directly.

Implement the action state machines The developer has
already considered which states an object has in the first
step. Now the developer implements the states in the
Action State Machine. The states are also brought into
relationship with each other. The transitions between
states are based on the properties about the status of the
application, which were defined in the previous step.
The corresponding Animation Objects created in the
first step are referenced in the respective states of the
Action State Machine.

Feed the animation controller with information At run-
time, the animation controllers must be informed about
the status by the application so that the action state ma-
chines can behave correctly. For this purpose, the values
of the animation controller can be easily updated. The
developer can simply integrate the updates into his nor-
mal program code or implement a new script, which is
only responsible for the updates. Later on, the informa-
tion will be continuously updated in the normal program
flow.

5.1.2 Runtime Phase
The actions of the runtime phase are executed in a loop.

It is not necessary that all aspects are executed at the same
interval.
For example, the description can only be updated every few
seconds if the status of the application does not change, while
the animation controller changes the current state several
times.

1. The program code updates the information about the sta-
tus of the application.

2. The Animation Controllers update their description
model of the current application status using the infor-
mations from the program code and their dependencies
on other animation controllers.

3. The Action State Machine analyzes the current state of
the machine. Based on the application state description
of their animation controller, it may transition to a new
state if necessary. [1]

4. The Animation Object of the current state of the Action
State machine is resolved: The implemented behaviour
of the Animation Objects which handles the animations
are called up.

5. External visualizing scripts react to new classes or called

methods adjust the visualizing objects directly: The ele-
ments of the web application are animated as expected.

5.2 Property Based Approach
An important concept for our system is the property-

based approach of the system. The application does not
specify the actions to be animated directly, but merely de-
scribes the state of the application. The animation controller
behaves according to the description.

The great advantage of this is that the systems are even
more separated from each other. The application can de-
scribe its status in a fire-and-forget manner and does not have
to take care about the current state of the animation system
or the results. The application is spared by Animation micro
management. [25] Animation controllers can always behave
as defined, regardless of when the current description of the
application is from. The system can then react to the sta-
tuses if the internal processes make it possible. The system
remains consistent and does not block. In the worst case, the
system displays slightly past states.

5.3 Architecture
Based on our idea of the animation system, we get the

following architecture for our system. Our architecture is
based on the Seeheim Model. [1] An example overview is
shown in figure 5. The system consists of 4 major compo-
nents:

AnimationObjects This component contain the animation
itself implemented by the app developer. It provides
an interface for dynamic animation sequencing and con-
trolling. Each consistent animation of a state is repre-
sented by an Animation Object.

Animation Controller Each animated element of the appli-
cation, which later shows its own behaviour independent
of other animated objects, needs its own animation con-
troller. The animation controller facilitates the sequenc-
ing of animations in a dynamic and interactive environ-
ment. [1] This component consists of two major subsys-
tems:

Application State Model This subcomponent of an an-
imation controller contains a model with proper-
ties which describes the status of the applications
as required for each Animation Controller individ-
ually and the dependencies between the state mod-
els of the different Animation Controllers.

Action State Machine Each Animation Controller has
an Action State Machine. The Action State Ma-
chine defines the states of an object, the relation-
ship between the different states of an object and
how it will behave at runtime depending on the de-
scription of the application. [1]

Description Modules The Description Modules describe
the state of the application using the model defined in the
animation controllers by setting individual properties of



Fig. 5. A model of the architecture of the animation system.

the Animation Description Models of Animation Con-
trollers. These modules are either sparsely integrated
into the common application logic or can act collectively
in an extra component. The implementation can there-
fore be adapted to the architecture of the application.
They update the description of the status as required.
This can vary greatly from property to property - it can
be in certain situations only or every frame.

5.4 Performance

Our system primarily simplifies the application and han-
dling of animation control. It offers the possibility to imple-
ment animations and their control in a structured way and to
not have to worry about many needed features.
The system is always designed with a view to a high-
performance conversion, because otherwise the actual appli-
cation of the system would not be possible anyway. Once
you have understood the system’s behaviour, you still have
to take care of the efficient and meaningful use of the anima-
tions, as it is usually the case.
For example, rewriting layout properties, such as setting the
width or height of an element, can lead to expensive re-
painting of the whole website. This could lead to perfor-
mance problems. [28] Our animation system can not opti-
mize the animations implemented by the app developer or
scale down the requirements. The conscious and considerate
implementation of the animations for the system is therefore
indispensable.

6 Animation Object

The Animation Object Design is based on the general
animation model explained in section 4.2 on page 5.

Our Animation System provides Animation Objects
which are designed as wrappers for animation behaviour de-
fined in external animation libraries. The Animation Objects
serve as an interface between our animation system and the
application.
The animation system calls the desired behaviour on the An-
imation Objects. The application developer only has to im-
plement the respective behaviour blocks of the Animation
Objects.

6.1 Parameter
The parameters are grouped in an Animation Object

Property Block with the following properties:

Delay The delay of the animation start in seconds
Duration The duration of the Animation Object in seconds
Timescale The time scale of the Animation Object
EasingFunction The easing functions of the Animation Ob-

ject
CallThrough An Animation Object which will be invoked

after this Animation Object has finished.
CallThroughProperties An Animation Object Property

Block which will be used for the invocation of the call
through Animation Object.

It is conceivable that each property of a clip can be
passed with the invocation at runtime. If no values are
passed or this is undesirable, default values of the clip can
be used for calculations. If the clip has no default values
defined the animation system should provide fall back values
for such queries.

6.2 General Behaviour
As already mentioned, there are countless animation

systems and frameworks for web applications. Almost all
of them can be called and controlled within a JavaScript
function. The behaviour of our Animation Object is based
on this premise.

Our Animation Object is executed in at least two stages:

Start The first call occurs when the animation is started.
The start up behaviour defined by the developer is ex-
ecuted. External animation libraries can be called de-
pending on the properties defined in the Animation Ob-
ject Property Block of the current Animation Object.

End A last call occurs after the end of the animation. The
effects of the animation can be reworked. Call-throughs
are executed afterwards.

6.3 Update Behaviour
In order to support as many types of animation systems

as possible, we offer three modes how the system can be-
have during animation. These methods cover a wide range
of animation libraries. Almost all types are supported, from
a fire-and-forget manner to the manual resolving of the ani-
mation poses directly in the code.



UpdateType.Never The Animation Object methods are
only called at start and end. There are no further calls
during the animation. This method is preferable for an-
imation techniques where the animation itself is initial-
ized with a single call and the execution is then passed
on to an external animation system.

UpdateType.Fixed The wrapper fixedUpdate method is
called during execution in an arbitrary but fixed inter-
val. This method is used for animation techniques which
have to pass the execution of the animation intermit-
tently to an external animation system, but always call
new functions or validate the system state.

UpdateType.Frame The wrapper update method is called
each frame. The implementation by the developer can
set the values of the object depending on the current time
of the playback each frame.

6.4 Support for Dynamic Transition Handling
Dynamic transitions between animations can occur at

any time. It may happen that the animation is currently dur-
ing execution. We provide two approaches to deal with such
situations:

Abort Function An abort method should abort the anima-
tion started in the start method, so that the next anima-
tion activated by the animation system can work cor-
rectly.
The app developer must implement the abort function
and reset all behaviours that have been initialized so far.

Consistent Proberties at State Machine Level Later on, a
solution at the state machine level will be presented,
based on animation systems that completely overwrite
older animations when they set the same properties
without being influenced by these older animations.
Read more in the Consistent Property Principle subsec-
tion 9.1 of the Action State Machine section.

Which method is appropriate depends on the situation and
must be decided by the app developer. Both methods can
also be used in combination.

6.5 Animation Retargeting
A common requirement for animations is their reusabil-

ity. Animations are created once and applied to different
objects with similar structures. This process is called
retargeting of animations. [25]

An example is a walking animation for a human
being. The animation is created on the human model. This
animation should then usually be applied to any other human
model that has a body, a head, two arms and two legs. The
same walking animation for a human being can also be
applied to a slim elven or bulky orc. So a lot of work can be
saved and similar animations do not have to be created again
and again.

Based on the Document Object Model and classes, the
system of web applications makes it easy to assign targets
for animation using the classes or similar concepts.

An example: The close button of a widget should be
visible and selectable when the widget is opened.
The animation can be applied by animating the object with
the class close-button which belongs to the widget. Where
exactly the object is located in the structure is not relevant
and can vary slightly from widget to widget. We can retarget
our close button animation onto every widget which has a
similar close button and uses the close-button class for it.

Our animation objects are created with this concept in
mind. However, the final focus of the implementation on
the concept of retargeting is part of the animation implemen-
tation itself. This must be taken into account when imple-
menting the start and end behaviour as well as the update
behaviour of the animation object by the app developer.

7 Animation Controller
The animation controller controls and sequences the

animation clips of an animated element at runtime. The
Animation Controller orchestrates two included subsystems:
the Application State Model and the Action State Machine.

An Animation Controller has exactly one Application
State Model component and several layers of Action State
Machines. Each layer has an Action State Machine which
behaves completely autonomously and independently of
the other layers based on the information from the shared
Application State Model.

The multiple layers offer an easy way to animate several
similar sub-objects independently and still share the same
Application State Model.

The Animation Controller serves as a facade for its sub-
systems. The application code is not affected by the anima-
tion micro management. This is hidden by the Animation
Controller. [25]

8 Application State Model
The Application State Model is a collection of differ-

ent State Properties of different data types. These State
Properties serve as control parameters for the Action State
Machine.
The Application State Model is based on the property based
approach of the animation system (see section 5.2 on page 7).

The Application State Model represents the interface
of the Animation Controller to the Description Modules as
well as to the Action State Machine.
The Description Modules can provide the Application State
Model with current information about the application, which



is then provided to the Action State Machine.

The model defines the parameters describing the appli-
cation, which are interesting for this Animation Controller,
and where this information is obtained from.
Current information can be set by Description Modules or
obtained from other Application State Models of other Ani-
mation Controllers.

8.1 State Properties
State Properties are named key-value pairs. Each name

is unique for each Application State Model and serves as
identifier.
State Property values can have one of the following types:

- Int An integer number
- Float A floating point number
- String A string of characters
- Bool A truth value.
- Action An action acts as bool which causes only one

transition. It is set to false after a transition or a timeout
which is defined for this property.

- Class/Subclass The name of this value is used to check
if a class with this name is present on the element or not.

8.2 State Property Dependencies
For each State Property, it can be determined how the

value is updated. By default, it is assumed that the values
are set by Description Modules.

It often happens that many animation controllers need
the same properties of the application as parameters in their
Action State Machines. It can be cumbersome to set this
same value in all Animation Controllers independently.
State Properties can reference other Animation Controllers
and get their value from this Animation Controller if the
reference contains a state value with the same identifier.

The structure of the dependencies can correspond to the
structure of the sources of animation intentions (see section
3.2 on page 3).

An example: A Description Module can set a widget to
active because the widget’s function is currently available
from the widget’s point of view. The entire section may
be inactive at the same time, because a lightbox display is
active.
It would be disadvantageous if the Description Module of
the widget would have to check all the facts before it can set
the values. Nevertheless, the widget should be inactive in
this situation.
The property value isActive can be linked to the appropriate
property of its parents by dependency. The widget will only
be active if itself is active and all parents are active too.

These principles and the resulting functionalities are part
of the Animation Controller Application State Model in or-

der to keep the separation of the Animation Controller de-
pendencies and the Description Modules.

8.2.1 Referencing
It is conceivable that several animation controllers could

serve as a reference at the same time.
If the value is to be obtained from other animation con-
trollers, there are different ways of referencing it.

Direct Reference a specific Animation Controller.
Multiple Direct Reference multiple specific Animation

Controllers.
Level X Parent Reference the Xth parent Animation Con-

troller of this controllers element.
Until Level X Parents Reference all parent Animation

Controller of this controllers element until the Xth par-
ent Animation Controller (that included).

Root Reference the highest Animation Controller in the par-
ent tree of this controllers element.

Level X Children Reference all Xth child Animation Con-
trollers of this controllers element.

Until Level X Children Reference all child Animation
Controllers of this controllers element until the Xth child
Animation Controllers (those included).

Finding the referenced Animation Controller can be pre-
calculated and does not have to take place at runtime. Only
the number of referenced animation controllers and how their
values are combined has an effect on the performance at run-
time.

8.2.2 Combining Multiple Values
If multiple animation controllers are referenced, de-

pending on the type of the value, a method to combine all
values has to be determined. The method has to take an ar-
ray of values of the type of the values to combine and return
one combined value. It is conceivable that predefined func-
tions are offered for different types.
For example, the logical operators And, Or, exclsuive Or,
etc. could be offered for types, which are based on booleans
or algorithms such as Average , Min, Max, etc. for number
types.

8.2.3 Linked Dependencies
To be able to precisely define the dependencies between

two Application State Models, their relationship must be de-
termined.

- Should the value of the referenced Application State
Model always be transferred or only if the value was
not set on the element itself.

- In addition, it must be determine how the values are
transferred. Is the referenced value simply taken over di-
rectly, or, similar to combining multiple referenced val-
ues, combined with the original value in a certain way.



8.3 State Properties Update
The dependency of one State Property on another can

be implemented in an observer and observable relationship.
State Properties can be observer and observable.
This ensures that the dependent property can immediately
accept or calculate the new value as soon as a property
changes.

It is important to be careful not to create circles in the
dependencies. A tool that recognizes and warns against such
situations would be an advantage.

8.4 Setting State Properties
The Description Modules can interact with the Applica-

tion State Model in a fire-and-forget manner.
Values can be set by calling a method of the animation sys-
tem and specifying the Animation Controller, the identifier
of the State Property and the new value.

9 Action State Machine
An object should be able to perform various actions in

an application with different animations.
Action state machines provide an simple solution to control
and sequence these actions and the corresponding animation
clips. The solution is based on the assumption that an object
is always in a certain state at any given time. If certain
circumstances are accomplished, an object changes its state.

Simplified, a state machine is a graph consisting of
nodes connected by edges. Nodes are certain states which
define the animation of the object and edges are transitions
between the nodes with prerequisites. Transitions are per-
formed if the prerequisites are fulfilled.
Following this, an Action State Machine has always exactly
one currently active state and thus an active animation.
An exemplary Action State Machine is shown in figure 6.

9.1 Consistent Properties Principle
Consistent properties at State Machine level is one

approach to support flawless dynamic transition handling.

There are animation systems that simply overwrite pre-
vious definitions without previous calls remaining relevant
for the appearance of an object.
In these cases, a new animation can be called up without
having to actively cancel the old animation if all animated
property values are overwritten by the new one.
This can be guaranteed if properties are defined at state ma-
chine level, which are then set by each animation referenced
within the state machine.

If the consistent properties at state machine level ap-
proach is used, the consistency of the system should be au-
tomatically checked and warning messages issued in case of
rule violation.

Write Default An Action State Machine can provide a
method which sets the visual properties of all objects affected
by this Action State Machine to default values.
This method must be implemented by the application devel-
oper and should be in line with the consistent properties prin-
ciple.
It can be used in the scope of the entire Action State Machine
to restore the default values if needed.

9.2 States
States are represented as nodes of the Action State

Machine. Most states provide a final animation or pose. [27]
Special states that do not offer animation provide only
functional solutions for the developer. They are treated as
full-fledged states, except that no content has to be defined.
At runtime, they are never the active state. They are only
used to extend the flow of the Action State Machine and
their subsequent transitions are resolved immediately if they
would become the currently active state.

There is always one current state in a proper Action State
Machine. Following this, there is always an animation avail-
able for play back.

9.2.1 Common State
The common states form the basis of the Action State

Machines. They fulfil the task of the States in the simplest
form: they provide an animation.
A Common State have the following properties:

Animation Object The referenced Animation Object is the
content of the state.

Loop The loop property determines whether the clip should
be played in a loop or not.

Speed The speed property defines the speed of the anima-
tion playback. The duration of an animation playback
of this state is the duration of the content multiplied by
the inverse speed. For example a speed of 2.0 plays the
clip twice as fast and a speed of 0.5 doubles the playback
time of the clip.

Write Defaults This property defines whether the WriteDe-
faults method should be automatically called at the end
of the animation playback or not.

Transition A state has incoming and outgoing transitions
which describe how this state is linked to the rest of the
state machine.

Exemplary Common States are shown in figure 6 on
page 12.

9.2.2 Hierarchical Variation State
In many cases the appearance of objects and their

animation should not change fundamentally, but should still
react to modifications.
These requirements are similar to pseudo classes from CSS.
The interaction by the user should only cause small adjust-
ments of the animation, e.g. only increase the transparency



Fig. 6. An exemplary Action State Machine with three Custom States (Inactive, Hidden, Loading), one Hierarchical Variation State (Active)
and several Transitional States. The relations between the states are defined by Transitions and Conditional Hubs.

of an object without redefining the appearance of the whole
object.

In addition, it must be possible to arrange these
adjustments hierarchically. Many modifications of the
environment contain other modifications, but often only one
customization should be applied.
For example, clicking on an object often also means a
simultaneous hover interaction. In most cases, however,
only the click animation should be played.

In common animation systems for other target plat-
forms, this behaviour would be achieved with blend trees.
Unfortunately, blend trees require a deep integration into the
low-level layer of an animation system to be implemented
efficiently. [25] For web applications that have browsers as
their target platform, this is difficult to implement and for
our animation system this would be an overkill.
Nevertheless, we solve the problem with an approach based
on blend trees.

We are introducing a state type, which contains a sim-
plified state machine in the typical blend tree structure with
new states in the form of Common States. The concept is
shown in figure 7.

External Behaviour Externally, this Hierarchical Varia-
tion State behaves like a normal single state for the overall
Action State Machine. An exemplary structure is shown in
figure 7 A.
The internal behaviour of the state has no direct effect on the
behaviour of the action state machine. However, it is respon-
sible for the animation of the object.
The Hierarchical Variation State does not contain a fully-
fledged sub-Action State Machine, which gets the control
from the superordinate State Machine and is exited via an
exit state (Compare Sub Action State Machines 9.2.3 on page
13).

The current Action State Machine performs outgoing transi-
tions of the Hierarchical Variation State if they are fulfilled,
regardless of the internal state.

Internal Structure Internally, the state tree can consist of
several layers:

Base Layer The Base Layer is active the whole time the Hi-
erarchical Variation State state is active.

Default Layer The Default Layer is active if no other state
is active. For this reason, it has a default transition with-
out conditions.

Further Layer There can be any number of additional lay-
ers defined by the developer.
These layers have in-transition with conditions, which
define when they can become active.

The internal structure is shown in figure 7 B.

Internal Behaviour The layers basically behave according
to these rules:

- A layer has a higher priority than all layers below it in
the list.

- A layer becomes active when its in-transition is fulfilled.
- A layer is actually applied if it has the highest priority

of all active layers.

The layers behave in a similar way to normal states in
an Action State Machine. At least one state is active and
which one is active is determined by Transitions.

But there are special cases: It can be useful to have sev-
eral states active. For example, the shape of an object can be
defined in the first layer state. The other layers deal with
the user’s interaction and indicate them only by adjusting
the color of the object, e.g. hover effects and click anima-
tions. The shape should be always the same as defined in the
first layer. Determining the shape of each layer separately is
time-consuming and prone to errors. It makes sense to use a
cascading principle: Basic attributes are always applied and



Fig. 7. The concept of Hierarchical Variation States.

higher layers can overwrite and supplement them.
Therefore, the following aspects are introduced:

- Besides the first layer, there is a base layer which is al-
ways applied. Regardless of which state is currently ac-
tive (See figure 7 B).

- Each layer can reference different layers which are also
executed when the original layer is active. Even if the
selected layers themselves are not active. (See figure 7
B).

We provide two methods to ensure a uniform appearance
for layer states without the need to implement cumbersome
solutions with repetitions:

- The base layer is always applied and overwritten if nec-
essary.

- Multiple layers can reference another layer, which is al-
ways activated with them.

Execution Order The base level is executed first.
The rest of the execution is from back to front. So first the
states referenced by the active state with the highest priority
are executed, then the active state with the highest priority

itself is executed.

This ensures that the properties of the most specialized
layers can overwrite the more general layers if a value is set
more than once.

9.2.3 Sub Action State Machine State
This state is constructed in the same way as Common

States, except that an entire state machine serves as content
instead of an animation object.

When this state becomes active, control is given to the
Action State Machine referenced here. The sub-Action State
Machine starts its execution from its entry state. The super-
ordinate state machine is in an idle state until the sub Action
State Machine reaches an exit state and returns control to the
top level Action State Machine.

9.2.4 Transitional State
A Transitional State provides the simple possibility of

animated transitions. It links two states with each other via
an animation.
This approach allows complex transitions between two
animations.

For the app developer, this construct is like a normal
transition with extended possibilities. Thus, it should only
be able to be added to existing transitions between two states
in order to extend this transition by a Transitional State.
Internally, this construct is considered a predefined structure
from a state as a node and two transitions as edges. An
exemplary structure is shown in figure 8.
The state of the Transitional State is a Common State or
Hierarchical Variation State which is non-looped and with
an Exit Time of 1.0.
It has exactly one incoming transition with conditions de-
fined in the Transition of the Transitional State and exactly
one outgoing, unconditional Transition to the destination
state.
Its transition duration is the duration of the state. Both the
incoming and outgoing transition should have a transition
duration of zero, as other values would result in an additional
delay.

Generally seen a Transition with a Transitional State be-
haves similar to a normal transition: When a condition is ful-
filled, the transition from a state to a target state takes place
within a certain period of time. Only the internal structure
differs from normal transitions.

9.2.5 Entry State
The Entry State is a special state. It has no content and

is only connected to other states via transitions.

The Entry state is the entry point of the Action State
Machine. It has exactly one transition to another state. This



Fig. 8. The concept of Transitional States.

other state is the default state. At runtime, the Action State
Machine immediately transitions to the default state which
becomes the active state.
If no transition has been set, the first created state should be
used as the default state.

9.2.6 Exit State
The Exit State is a special state. It has no content and is

only connected to other states via transitions.

The Exit state defines the end point of an Action State
Machine. The state has only incoming transitions.
In the case of nested state machines, control is returned to the
higher state machine that has activated this state machine if
the exit state becomes active. Otherwise, if the current State
machine is not part of a nested state machine system, the
execution is stopped for the time being and the state machine
falls into an idle mode. No further animations are available
for playback.

9.2.7 Any State
The Any State is a special state. It has no content and is

only connected to other states via transitions.

The Any State represents, as the name suggests, any
other state. It implicitly has only outgoing transitions to other
states (You can not go from a state to ” any state ” ). [26]

The state machine continuously checks for each active
state whether an outgoing transition is true and performs it if
necessary. The Any State extends the list of transitions of the
active state by its own list of transitions. So in addition to the
transitions of the active state, the Action State Machine also
checks and executes all transitions of the Any State.
This can be advantageous if you want to go to a special state
in a situation, no matter which state you are currently in.
Otherwise you would have to insert a transition from all other
states to the special state.

9.3 Transitions
Transitions provide one-to-one relations between two

nodes (states and conditional hubs) of the Action State Ma-
chine. [26, 27] They are implemented as first order entities.

9.3.1 Transition Parameters
Transitions have the following properties:

Source State The source state of the transition
Destination State The destination state of the transition.
Is Bidirectional This property determines whether the tran-

sition can also be taken from the destination to the
source.

Is Negated Bidirectional This property determines
whether the transition can also be taken from the
destination to the source with negated conditions.

Priority The priority of this transition. This property is rel-
evant if multiple transitions are fulfilled.

Mute Define whether the Transition is muted or not. Muted
transitions are ignored in all calculations.

Duration The total duration of the transition from invoca-
tion until the target state is the current state.

Delay The delay of the start of the transition process.
Has Exit Time This property specifies whether the exit time

is relevant and should be checked before the conditions.
Exit Time A time value greater than zero which defines the

temporal condition whether this transition can be taken
or not.

Conditions A list of Condition Statements. The transition
can be taken if all Condition Statement are fulfilled. The
list can also be empty. If the List is empty, the condition
of this transition is always true.

9.3.2 Condition Statements
A Transition can have any number of Condition State-

ments, including zero statements. If the Transition have no
Condition Statement at all, the condition of this Transition is
always fulfilled and only other aspects are considered such
as the Exit Time.

A Transition Condition Statement can be any test
against a State Property value of the Application State
Model which outputs a binary value indicating a truth value.

A condition statement has the following structure:



- A State Property value of the Application State Model
which is tested in the Condition Statement

- A conditional predicate that depends on the type of
the State Property. For integer numbers, for example,
the conditional predicates larger than, smaller than, or
equal as are possible.
A conditional predicate is not always necessary. A
boolean variable can already form a valid condition
statement.

- An optional parameter value. Some conditional pred-
icates, for example, greater or smaller than require a
value to resolve the statement. The parameter value has
the same type as the State Property value.

9.3.3 Transition Direction
The normal flow of a transition goes from source state

to destination state.

The bidirectional property can indicate that the transi-
tion is a bidirectional transition.
Internally, a copy of the state is then created interchanged
with the source and destination state. All changes to the
original transition are automatically applied to the copy. The
copy is treated internally as a normal transition.

The negated bidirectional property can indicate that
the transition is a bidirectional transition with negated
conditions for the transition from destination to source.
Internally, a copy of the state is then created interchanged
with the source and destination state and negated conditions.
All changes to the original transition are automatically
applied to the copy. The copy is treated internally as a
normal transition.

9.3.4 Competing Transitions
A state can have several outgoing transitions. This has

the consequence that the conditions of several outgoing
transitions can be fulfilled at the same time. Since the state
machine can only have one state at a time, only one transi-
tion can be performed. In such a situation, it is necessary to
determine which transition will be performed.
Transitions have a priority property to solve this problem.
Transitions with a higher priority are preferred to those with
a lower priority if the conditions of both transitions are met.

A state should not have outgoing transitions with equal
priority. All transitions should be brought into a clear
hierarchy in which each priority occurs only once. A mech-
anism that checks whether the priorities of all transitions are
consistent and outputs warnings if necessary is desirable.
In order to prevent unnecessary system failures, the system,
nevertheless, takes the first transfer of the highest priority
with fulfilled conditions to keep the state of the action state
machine consistent and outputs an error message.

The priority approach makes it possible to optimize the

system. Since the highest priority transition with fulfilled
conditions is taken irrespective of the other results, no fur-
ther transitions would be necessary.
Following this it makes sense to sort the transitions by prior-
ity in descending order and start with the highest priorities.
As soon as the conditions of a transition are met, the tests
can be aborted and that transition can be performed.

9.3.5 Exit Time
The exit time approach adds a precondition that must

be met for the Transition in order to be considered for a
state transition. If the exit time condition is not fulfilled, the
conditions of the Transition are not checked at all.

The HasExitTime property determines whether the
Exit Time property should be checked before evaluating the
conditions. If this is true, the exit time conditions must be
fulfilled for the system to check the conditions.

The Exit Time property defines the condition which
must be fulfilled. The type of condition depends on the value:

- value ≤ 1: The number represents the progress of the
animation in percent. For example, 0.75 stands for 75%
progress of the animation.
In addition, this condition is applied to each pass of the
animation when the animation is played back in a loop.
In our example, this means that the transition can only
be taken if the animation playback is between 75% and
100% of the animation, regardless of how many times
the animation has already been played.

- value > 1: The number represents the absolute play-
back time of the animation in seconds. For example,
2.5 stands for 2.5 seconds of animation progress. This
time ignores the length of the clip and includes repeti-
tions. For a clip with a length of 0.5 seconds, which is
played in a loop, this means in our example that the tran-
sition can only be taken when the clip has been repeated
5 times.

This system, in conjunction with a property value of the
state which determines whether or not to play a clip in a loop,
covers all cases that affect an Exit Time. [26]

9.4 Conditional Hub
Conditional Hubs provide more advanced transition

possibilities. They serve as a connection point with their
own conditions between arbitrary states.
In addition to the one-to-one relationships of transitions,
Conditional Hubs can model one-to-many, many-to-one and
many-to-many relations. [27]

Conditional Hubs are the only elements besides States
that are represented as nodes in the graph of the Action State
Machine. It has no content and is connected to other states
via transitions.



Fig. 9. A. Many-to-many Conditional Hub example. B. Many-to-one
Conditional Hub example

9.4.1 Conditional Hub Conditions
A Conditional Hub itself can have Condition Statements

equivalent to those of Transitions.
These Condition Statements must be fulfilled in addition to
the own conditions of an incoming Transition. This applies
to all incoming transitions.

9.4.2 Conditional Hub Use Cases
This behaviour can be used to the advantage in various

situations:
Generally required conditions can be specified once within
the Conditional Hubs and Transitions only have to imple-
ment special conditions which depend on their source state.
For one-to-many relations, it makes no difference whether
the conditions for the incoming transition are implemented
within the Conditional Hubs or whether they are imple-
mented in the incoming transition itself.

Many-to-one relations with one general set of conditions
can be easily implemented by only assigning conditions to
the Conditional Hub in combination with always true transi-
tions for all incoming and the outgoing transition.
It can be avoided that multiple transitions with the same con-
ditions and the same target state have to be created unneces-

sarily. An example is shown in figure 9 B.
Many-to-many relations can be easily implemented by

assigning conditions to the Conditional Hub in combination
with unconditional incoming Transitions and outgoing tran-
sitions with various conditions. An example is shown in fig-
ure 9 A.

9.4.3 Conditional Hub Behaviour
A Conditional Hub represents a node, but must never be

an active state itself, since it does not provide an animation.
Therefore, in addition to the Transition conditions to the
hub (conditions of the transition from state to hub and the
conditions of the hub itself), at least one outgoing Transition
must also be fulfilled from the hub to a fully-fledged state.
Otherwise, it cannot be transitioned to the hub.

A default transition is conceivable. Each hub can mark
an outgoing transition as default. This transition is always
selected if no other outgoing transition is accomplished.

9.5 Runtime Behaviour
At runtime, the Action State Machine behaves accord-

ing to its Application State Model and defined state machine
graph.

From the Entry State, the first current state is determined
immediately after start. From now on during runtime, the
Action State Machine is always in an active state until it
reaches an endpoint.

The Action State Machine always resolves its current
state or perform a Transition.
In order to behave as expected, the Next State is introduced.
It is needed to describe the internally state of the state ma-
chine and the behaviour that should be applied.
The runtime behaviour is defined by these two properties.
Basically, the system behaves in two steps in each iteration.

9.5.1 Determination Step
The system behaves depending on the Current State and

Next State when starting an iteration. Two situations can
occur:

- The Next State is not set: Currently no transition from
the last iteration is active.
It can be checked whether the state machine has to
change to a new state or stay in the current. A Transition
Test is performed.
If there is a transition with fulfilled conditions, the Next
State is set to this state.
If no outgoing transitions are fulfilled, the Action State
Machine should remain in its current state and the Next
State remains unassigned.

- The Next State is already set to a state: Currently, a tran-
sition from the last iteration is not yet resolved. This
state has to be resolved in order for the Next State to



become the Current State. In this situation, the already
present Transition will be accomplished in the Action
State. There are no further Transition Tests.

9.5.2 Action Step
The first step was to analyse the current situation. This

step defines the further behaviour of the Action State ma-
chine in order to resolve the current state:

- The Next State is not set: The system will remain in its
current state. The content of the Current State can be
applied. The processing power is forwarded to resolve
the animation content of the Current State.

- The Next State is set to a state: The system should tran-
sition to a new state depending on the information of the
Transition between the Current State and the new state.
The corresponding behaviour for resolving the situation
is called up.

9.5.3 Transition Tests
A Transition Test should check all outgoing Transitions

of the current state. This includes all outgoing Transitions of
the Current State itself and the Any State.

A Transitional Test requires the following optimizations
at the beginning of the runtime to work correctly. All
relevant Transitions must be determined for each state. This
list should then be sorted in descending order of priority.
Muted Transitions are excluded from this list.

If any outgoing Transition has a Conditional Hub
without outgoing default Transition as its destination, further
Transitions of the Conditional Hub must be included in the
test to ensure a consistent state of the Action State Machine.
The Condition Statements of all outgoing Transitions can be
linked together by logical Or operators and attached to the
statements of the original Transition. This Transition is then
only taken if a new state can be reached.

Basically, a Transition Test contains the following steps:

1. Get the sorted Transition list of the current state.
2. Start at the element with the highest priority and iterate

through the list. When the end of the list is reached,
no transition was fulfilled. The Transition Test does not
change the current state properties and returns.

(a) Check the Exit Time conditions
(b) Check all Condition Statements.

Cancel the check on the first statement that is not
fulfilled and continue with the next Transition.

(c) All checks were successful. The Transition is ful-
filled. The list iteration can be exited and contin-
ued with the next point.

3. Set the Next State to the destination state of the Transi-
tion.

10 Description Modules
Description Modules are code fragments that are

integrated into the application code. They describe the state
of the application without intending specific animations or
needing to know the current state of the system.
The Description Modules are based on the property based
approach of the animation system (see 5.2 on page 7).

A module consist of individual statements, whereby
each statement sets one State Property of an Animation Con-
troller.
They specify the Animation Controller, the identifier of the
State Property and the new value for the variable.

10.1 Code Structure
It is up to the application developer whether he inte-

grates the assignments scattered throughout his code, inte-
grates larger blocks with several assignments, or creates his
own script that sets all the values.
The modules can thus adapt to the architecture of the ap-
plication and correspond to the structure of the sources of
animation intentions (see 3.2 on page 3).

10.2 Consistency
The set of all Description Modules should describe a

consistent state of the application. Therefore, miscellaneous
code sections should not provide contradictory descriptions.
It makes sense to recognize situations when a value is set
more than once in a frame or when a property is set with
different, inconsistent values. In both cases there is proba-
bly some kind of error or inconsistency in the Description
Modules.

10.3 Conflicting Animation Intentions
Conflicting events over animation intentions cannot oc-

cur because the program code only describes the state and
does not directly call animations or status changes. The Ani-
mation Controllers always have exactly one consistent state.
So the Action State Machines can always work properly.

11 Conclusions
We have provided a design specification for an anima-

tion system which matches the requirements of the usage of
animations in web applications in a dynamic and interactive
environment and common interactive interfaces. Our system
is based on proven concepts of established animation sys-
tems from the unity game engine [26] and the unreal game
engine [27] as well as common game engine animation sys-
tem aspects as provided by Gregory [25].

12 Outlook
This paper has merely provided an initial design speci-

fication of the animation system.
The system can be improved. Many aspects can be pre-
calculated. A tool with a graphical user interface should be



provided to facilitate the animation creation process.

Subsequently, the system should be extensively tested
and evaluated with regard to normal software requirements
such as performance and reliability.
In addition, the application in a real environment should be
tested. Both the use of the system by the application devel-
oper and the user experience of the user of the end product
should be considered.

References
[1] Kurlander, D., and Ling, D. T., 1995. Planning-based

control of interface animation. Tech. rep., Microsoft
Research, One Microsoft Way, Redmond, WA 98052,
United States of America.

[2] Dragicevic, P., Bezerianos, A., Javed, W., Elmqvist,
N., and Fekete, J.-D., 2011. “Temporal distortion for
animated transitions”. In CHI ’11 Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. ACM New York, pp. 2009–2018.

[3] Bederson, B. B., and Boltman, A., 1999. “Does ani-
mation help users build mental maps of spatial infor-
mation?”. In Proceedings of the IEEE Symposium on
Information Visualization. pp. 28–35.

[4] Heer, J., and Robertson, G., 2007. “Animated transi-
tions in statistical data graphics”. In IEEE Transac-
tions on Visualization and Computer Graphics, Vol. 13.
pp. 1240–1247.

[5] Robertson, G., Card, S., and Mackinlay, J., 1991.
“Cone trees: Animated 3d visualizations of hierarchical
information.”. In Proc. ACM CHI 1991. pp. 189–194.

[6] Tversky, B., Bauer Morrison, J., and Betrancourt, M.,
2002. “Animation: Can it faciliate?”. In Int. J. Human-
Computer Studies, Vol. 57. pp. 247–262.

[7] Gonzales, C., 1996. “Does animation in user interfaces
improve decision making?”. In Proc. ACM CHI 1996.
pp. 27–34.

[8] Baudisch, P., Tan, D., Collomb, M., Robbins, D.,
Hinckley, K., Agrawala, M., Zhao, S., and Ramos, G.,
2006. “Phosphor: Explaining transitions in the user in-
terface using afterglow effects.”. In ACM UIST 2006.
pp. 169–178.

[9] Palmer, S. E., 1999. Vision Science - Photons to Phe-
nomenology. MIT Press.

[10] Chang, B.-W., and Unger, D., 1993. “Animation: From
cartoons to the user interface”. In UIST 1993. pp. 45–
55.

[11] Klein, C., and Bederson, B. B., 2005. “Benefits of an-
imated scrolling”. In CHI 2005 Extended Abstracts.
pp. 1965–1968.

[12] Oksama, L., and Hyn, J., 2004. “Is multiple object
tracking carried out automatically by an early vision
mechanism independent of higher-order cognition? an
individual difference approach”. In Visual Cognition,
Vol. 11. pp. 631–671.

[13] Oksama, L., and Hyn, J., 2005. “Tracking multiple tar-

gets with multifocal attention”. In TRENDS in Cogni-
tive Science, Vol. 9. pp. 249–354.

[14] Sundar, S. S., and Kalyanaraman, S., 2004. “Arousal,
memory, and impression-formation effects of anima-
tion speed in web advertising”. In Journal of Adver-
tising, Vol. 33. pp. 7–17.

[15] Vodislav, D., 1997. “A visual programming model for
user interface animation”. In Visual Languages, 1997.
Proceedings. 1997 IEEE Symposium on.

[16] Robertson, G. G., Card, S. K., and Machinlay, J. D.,
1993. “Information visualization using 3d interactive
animation”. In Communications of the ACM. pp. 57–
71.

[17] Harrison, C., Zhiquan, Y., and Hudson, S. E., 2010.
“Faster progress bars: Manipulating perceived duration
with visual augmentations”. In CHI 2010.

[18] Myers, B. A., 1985. “The importance of percent-done
progress indicators for computer-human interfaces”. In
Proc. ACM CHI’85 Conf. pp. 11–17.

[19] Nielsen, J., 1994. Usability Engineering. Academic
Press.

[20] Tversky, B., Bauer Morrison, J., and Betrancourt, M.,
2002. “Animation: can it faciliate?”. In Int. J. Human-
Computer Studies 57. pp. 247–262.

[21] Thomas, F., and Johnston, O., 1981. Disney animation:
The Illusion of Life. Abbeville Press.

[22] Baecker, R., and Small, I., 1990. “Animation at the
interface”. In The Art of Human-Computer Interface
Design. Addison-Wesley, pp. 251–267.

[23] Lang, A., 2000. “The limited capacity model of medi-
ated message processing”. In Journal of Communica-
tion. pp. 46–67.

[24] W3c standards. https://www.w3.org/
standards/. Accessed: 2017-08-27.

[25] Gregory, J., 2009. Game Engine Architecture. A K
Peters, Ltd, 5 Commonwealth Road, Suite 2C, Natick,
Massachusetts, United States of America.

[26] Unity3d documentation. https://docs.
unity3d.com/Manual/index.html. Ac-
cessed: 2017-08-25.

[27] Unreal engine 4 documentation. https://docs.
unrealengine.com/latest/INT/. Accessed:
2017-08-25.

[28] Lewis, P., and Thorogood, S. Animations
and performance. https://developers.
google.com/web/fundamentals/
design-and-ux/animations/
animations-and-performance. Accessed:
2017-09-27.


