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Abstract

With a traditional lock-step approach in games a unit ordered to move from location A
to location B follows the defined path in small steps defined by frames, and the game
logic engine checks whether the unit has arrived at location B at every frame. This thesis
describes, how an event-based game engine can predict events that happen for example
at the arrival at position B. It is therefore required to extend the waypoints of the given
path by a time dimension in order to achieve the prediction. The event “arrival at
location B” that is generated by the click is not executed as a direct consequence of the
click, but is merely scheduled at the time of the last waypoint. When a unit processes
the generated event, the state of the game world at the time of the event needs to be in
a defined state where the unit has arrived at location B, and all other values have to be
valid at the new time.

Beim traditionellen Lock-Step-Ansatz für Spiele-Engines folgt ein Spiel-Objekt, die
sich von Position A nach Position B bewegt, dem Pfad in kleinen durch Frames
definierten Schritten. Dazu prüft die Game-Logic-Engine in jedem Frame, ob die
Einheit an Position B angekommen ist. Diese Arbeit beschreibt, wie eine Event-Driven
Game Engine Ereignisse zu State-basierten Zeitpunkten planen kann, wie zum Beispiel
der Ankunftszeit der Einheit an Position B. Dies erfordert, die Wegpunkte des Pfades
um eine Zeitdimension zu erweitern, um genau vorherzusagen, wann die Einheit
diesen Punkt passieren wird. Das Ereignis “Ankunft an Ort B” wird vom User durch
Klick indirekt ausgelöst. Es ist keine direkte Konsequenz des Klicks, sondern lediglich
das Planen des Ereignisses zum Zeitpunkt des letzten Wegpunktes. Wenn eine Einheit
diese Ereignis verarbeitet, muss sich die Spielwelt zum Zeitpunkt des Ereignisses in
einem definierten Zustand befinden, in dem das Objekt an Position B angekommen ist.
Ebenso müssen alle relevanten Werte auch diesen Zeitpunkt widerspiegeln.
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1 Introduction

Event driven systems are widely spread in most modern programming languages,
either as language feature or as libraries [Pyt17][Mic17]. An event is commonly defined
as a detectable condition that will trigger a notification ([Fai], page 71).

The origin of event driven design lies in low-level computing and circuit design. In
circuit design, events happen in the form of interrupts and are called Interrupt Service
Routines [Int16]. An Interrupt Request (IRQ) is for example the interrupt by the network
hardware about an arrived package. This IRQ triggers the associated interrupt service
routine. The routine is part of the operating system, which in turn propagates the
interrupt to the running program. The receiving program can either wait for new data
by using blocking read [read], or poll the interrupt through polling techniques, such
as POSIX-epoll [epoll]. The architecture needed to wait for an interrupt may impose
difficulties onto system designers, as it usually increases the complexity of the program.
A common solution is the creation of network threads, which only wait for the network
hardware and are synchronized into the remaining part of the system. Solutions such
as network threads increase the complexity and can lead to bugs. This complexity has
lead to the development of higher abstraction layers, such as event-based networking,
for these kinds of problems.

In modern computer games events happen in the form of user input or internal
condition fulfillment: User input is provided through either peripherals or network
interactions with other instances, while internal conditions within the game logic (for
example a unit enters the attack range of another unit) are fulfilled during the game.
An important part of the game logic engine is to check those conditions and trigger the
associated events. The traditional approach is to integrate this condition evaluation into
the lock-step based engine [Nys14] and trigger the reactions within a frame. Lock-step
based game engines use the state of an object in the last frame, such as position and
velocity, and calculate the next frame using the time difference between those two
frames. A common problem with this approach is the so-called tunneling-effect, in
which an object may move through another object between two frames, and therefore a
collision reaction is not triggered. The tunneling-effect is possible to prevent as described
in [Fau03] . The resulting position of the two objects is interpolated to the time of first
contact. The collision reaction is calculated and the movement of the object is continued
into the next frame including the changed path caused by the collision.
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1 Introduction

This thesis explores the abandonment of the lock-step approach for a division of the
game logic into frames concerning the game logic and graphic frames. This method
uses lock-stepping for the graphic frames, while frames concerning the game logic are
triggered at the time when an event is predicted to happen. The approach is beneficial
in games in which the user input is interpreted in form of commands.

Events in real-time strategy games are triggered by the user through commands. The
command does not usually take effect immediately [Ont+13]. For example a unit is
ordered to move from location A to location B through a click on the map, and a path
is generated. With a traditional lock-step approach the unit follows the defined path
in small steps defined by frames, and the game logic engine checks whether the unit
has arrived at location B at every frame. Within this thesis, using an event-based game
engine, it is important that the unit has a defined moving speed which predicts the
time of arrival at location B. It is therefore required to extend the waypoints of the
given path by a time dimension in order to achieve the prediction. Using this approach,
the event “arrival at location B” that is generated by the click is not executed as a
direct consequence of the click, but is merely scheduled at the time of the last waypoint.
When a unit processes the generated event, the state of the game world at the time of
the event has to have a defined state in which the unit has arrived at location B, and all
other values are valid at the new time.

For this representation of an event-driven game state it is required to not only track
the position of an object, but also its additional properties, which can change during a
game. For example, the hit points of an object are tracked in order to determine the
time when it reaches zero and stop any movement of the object. It is necessary that
there is a timeline with the ability to store the past and the future as well as modify or
forget portions of it. This is because some events are triggered by the user, some are
executed immediately, such as the deletion of a unit by the user.

The technique used within this thesis is strongly related to key-frame based animation,
as used by ChronoCam in the real-time strategy game Planetary Annihilation [Smi13].

The primary goal of this thesis is to determine how a event-based game engine
logic is defined using events that are scheduled for executed at specific times and a
continuous key-frame interpolation for game-state representation.
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2 Motivation

The event-driven approach is not usually applied within internal game engine logic for
the physical and logical interaction between objects in the game-state.

Event driven programming provides an intuitive and scaleable solution to design
computer system workflows. It is currently largely used within service development,
in which different smaller services communicate events and notifications to provide a
larger fully featured service. As described in chapter 3.2 and 3.3, many programming
languages possess built-in event logic, which are either used to perform remote pro-
cedure calls or local procedure calls creating decoupled systems. Decoupled systems
allow system designers and programmers to eliminate dependencies from architectures,
and focus on developing interfaces. This approach is for example common in end-user
applications with input through user masks, in which usually a button-click is bound
to a callback procedure. When the user clicks on a button, the window management
system of the platform sends the click event, together with the cursor position, to the
application. The application subsequently receives the event, and is able to translate
the screen coordinate of the cursor position into the respective button and triggers
the associated callback. In certain domains, such as large scale web services, it is
common practice to use event driven distributed systems if the execution of requests is
distributed over multiple computers. As described in chapter 3.2, the python AsyncIO
system provides a comfortable approach for a developer to use event based logic, for
both input based and internal event sources.

One issue occurring in the application of event based systems in game engines is that
most events are not executed immediately. Currently existing event engines are not
designed to execute an event at a specific, later, point in time, but to react to incoming
events as quickly as possible. Some events, such as the completion of research or
damaging of a unit, are generated, but are executed at a later point in time. Within
real time strategy games, there is therefore usually a delay between the issuing of the
command and the actual completion of the action by the unit. Events therefore always
describe the future of the game state. Events defined before the requested frame time
are executed before this frame in order to receive a valid game state for the given time.
In games,the time when a certain condition could take effect is predictable. But it does
contain an uncertainty, if the user changes the state, which might lead to a change in
the condition. For example, a unit could receive a new command before finishing to
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2 Motivation

complete another task, such as the construction of a building.
Therefore it is inefficient to calculate the event right after it is generated. Based on

the game state at the time of issuing the command, the condition for the event changes,
and is recalculated every time a value changes.

With existing event based engines it is necessary to know the full state of the world
at the time of the event in order to calculate all effects. It is impossible to know the
exact state of the game state in the future in real-time strategy games with user input.
In order to represent the past and the future similarly while keeping a full history of
the value, curves are designed.

ChronoCam provides a history for any value used in the game state - and the history
is calculated into the future [Smi13] With a curve it is possible to interpolate to any
specific point in time, even the future, as long as there are enough valid key-frames
for this interpolation. This thesis describes how this is used to calculate the state of
the world at the time of rendering a frame or for any defined event. The interpolation
of the game state makes events to execute at the exact state to operate on and, if all
previous events have been processed, it is only needed to calculate the event at the
defined time of its execution. For example, a collision event is executed at the exact
time of the collision. It receives the positions of the colliding objects necessary with the
values already present in order to calculate the bounce [Pro16].

However, it is not enough to only keep track of the positions of the units, since any
value that can change over time is important for the game state and that it is tracked by
the curve system. Therefore tracked values are for example building progress, speed,
maximum damage, or current hit points.

This thesis follows the following goals in order to use this approach in a real-time
strategy game logic engine:

• Continuous representation of gamestate values of the game state to have every
intermediate value.

• Event driven game logic to define interactions between objects.

• Game-time triggered events to register events into the future.

• Developer-friendly API for usage by a large community.
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3 Related Work

Event-driven programming is a fundamental pattern in many functional programming
languages. However, it has been adopted by other programming platforms. As an
example, .NET provides built-in event handling, while AsyncIO was developed for
Python3. This thesis extends event-driven programming using a continuous repre-
sentation of values within the game-state of real-time strategy games, while utilizing
technologies borrowed from key-frame based animation systems.

The following sections describe techniques that work closely related to the proposed
game logic engine architecture. Existing event driven programming frameworks such
as python asyncio or .NET delegates are prominent examples for commonly used event
architectures. Time continuous representations of objects and worlds are important for
the proposed event framework. They have a long history within key-frame animation,
which is used in many games and movies today.

3.1 Environment of Realtime Strategy Games

Real-time strategy is a sub-genre of strategy games in which players build an economy
and military power. In this context, economy consists of gathering resources and
building a base. Military power comes from training units and researching technologies.
The goal is to defeat the opponents by destroying their army and base. They are
simultaneous games with more than one player can issue actions at the same time.
Additionally, these actions are durative, i.e. actions are not instantaneous, but take
some time to complete [Ont+13].

Real-time strategy games are command-driven which means that a player does not
directly control the immediate actions of an object: The player gives a command to a
unit, for example to move to a certain location, but the unit decides on the path that it
will take [Eme13]. Furthermore, if a unit is ordered to attack, the immediate action is
merely an animation, and the player has no direct control.

The game-state of a real-time strategy game usually consists of permanent, uncon-
trollable obstructions and modifiable, controllable objects. Permanent obstructions are
for example mountains or rivers on the game map, that cannot change in any way
during a game. Controllable objects, for example units, are modified during a game
and are controlled by the players Buildings are in between those classes in the context
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of path-finding - they are obstructions to path-finding algorithms, but can change over
time by being added or removed [Eme13] [Pot00]. Units moving around the map are
mostly independent, which means once the player has given the command to move to
a specific location, they follow their calculated path and no further interaction by the
player is required.

3.2 Python AsyncIO

In python, asyncio is used to parallel coroutines [Pyt17] using event loops. A coroutine
is a function, in which the execution is interrupted at predefined points, with the code
is for example waiting for input using the await keyword. The coroutine is resumed
exactly at the point it was stopped, containing the newly awaited data. An event loop
contains the queue, with tasks that should execute on certain conditions, or on which
other input such as network listeners, are registered. The arrival of data is a push of
data into the system, which then selects the correct task to execute. The advantage
of this framework is that it can run concurrently on a single thread. The coroutines
are suspended on await and resumed again upon the completion of the the awaited
condition. Coroutines save the stack and reload it again later, just as generators in
python use yield [Pyt17]. The developer benefits from a convenient way of defining
asynchronous dependencies, such as waiting for input or output. Other techniques
include the setting up of special polling structures such as epoll [epoll], or having a
separate thread that waits for input in a blocking manner.

The AsyncIO approach is a combination of push-based and pull-based events ([Fai],
pages 313-315). If set up to wait for the completion of other methods, it is able to solve
interconnected, asynchronous event executions while waiting for arbitrary events. The
main tasks are usually configured at start time. This includes waiting for input on a
socket. The event loop is also configured at run time by using await for a result of an
event or by creating a new task.

When used for networking I/O a receiver for a socket is defined. That receiver is
called every time that data is sent to the socket. Such an event is for example a new
network connection on a server or a file descriptor ready to read data. The system itself
has no control over what is arriving and when.

While a method is awaited, it executes another task in the event loop and polls the
result. The waiting method is resumed after the awaited call is completed.

Listing 3.1 shows an exemplary network client. It defines the coroutine tcp_client
using the async def keyword. This coroutine connects to an open connection using
the stream interface, and generates a reader and a writer object.

It further uses the writer.write method to send data to the remote server and waits
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for a line in return. The waiting call is marked async, so the execution of the main loop
will continue with other tasks. run_until_complete, with a coroutine as its argument,
is used to start the loop which returns when the given coroutine returns. The loop is
finally closed in order to clean up used resources [Pyt17].

Listing 3.1: Example TCP Server using
AsyncIO

# From Python 3.6.3 Sec. 18.5.5.7.1.
# TCP client sending and receiving

async def tcp_client(loop):
reader, writer =
await asyncio.open_connection(
’127.0.0.1’, 8888,loop=loop)

writer.write(’hello␣world’)
line = await reader.getline()

loop = asyncio.get_event_loop()
loop.run_until_complete(
tcp_echo_client(message, loop))

loop.close()

For delayed execution at specific times,
as required for the game engine pro-
posed in this thesis, there are mul-
tiple methods depending on whether
the method is called periodically or
once. The logic coming closest to
the one proposed in this thesis is the
loop.call_soon(time, callback) inter-
face. This method calls the callback
in exactly time seconds [Pyt17]. Events
started with the call_soon method do
not provide functionality to reschedule
nor does AsyncIO deliver a game state
representation as is required for the ap-
proach in this thesis. Furthermore, with
AsyncIO it is not possible to reschedule
or cancel a given event after it was fired.
The logic to reschedule and cancel events
is needed in the implementation of each event, generating an error-prone interface. For
this reason AsyncIO was not found fully suitable to achieve the desired game logic
engine.

3.3 Microsoft .NET

Microsoft’s .NET Framework uses two ways of message delivery models. They both
implement the observer-producer pattern ([Fai], pages 155ff).

The producer is the data container storing the data and observing any changes made
to the contained data. One usage example is the change-observation of singular types
or collections. Singular types, such as integers, use the Observable interface, while
collections, such as lists, use the ObservableCollection interface. A change of the
data stored inside an observable triggers the observer. The framework then calls the
observer’s delegate subscribed to the change of this value.

This approach is implemented for example in the Windows Presentation Foundation,
a modern and powerful user interface framework.

7
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The first approach of .NET to implement event callback mechanisms is the untyped
object call. This approach uses a delegate to reference the event-callback, which is
subsequently executed. A delegate is comparable to a function pointer in C-based
languages or method-objects in python. Delegates are stored in attributes using the
event keyword, which enables the modification of the list of subscribed delegates.
When the event is called, all subscribed delegates are triggered sequentially [Mic17].

The second approach for event-registration is the typed object call, in which a
subscriber object has to implement a predefined interface. This interface defines
a method for calling whenever a certain condition is met. With this approach the
subscribers are managed using traditional ways of list management [Mic17].

Listing 3.2: TCP Receiver using .NET

1 // Shortened from https://docs.microsoft.com/en-us/dotnet/framework/
2 // network-programming/asynchronous-client-socket-example
3 private static void ReceiveCallback( IAsyncResult ar ) {
4 // Retrieve the state object and the client socket
5 StateObject state = (StateObject) ar.AsyncState;
6 Socket client = state.workSocket;
7

8 int bytesRead = client.EndReceive(ar);
9

10 if (state.sb.Length > 1) {
11 Console.WriteLine(state.sb.ToString());
12 }
13 receiveDone.Set();
14 }
15 // Create the state object.
16 StateObject state = new StateObject();
17 state.workSocket = client;
18

19 // Begin receiving the data from the remote device.
20 client.BeginReceive( state.buffer, 0, StateObject.BufferSize, 0,
21 new AsyncCallback(ReceiveCallback), state);

Listing 3.2 shows how a client is implemented using asynchronous interfaces in
the .NET framework. The ReceiveCallback are called upon arrival of new data. The
function reads data from the socket using EndReceive, which will return a buffer of
the read bytes. The received data is printed to the receiver’s console. The argument
to ReceiveCallback is used to communicate the result back to the caller, signalling
that all bytes have been received. A StateObject is used to track the progress of

8
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multiple callbacks for the same connection. The receive process is started by calling the
BeginReceive method with the associated buffers and callbacks.

Scheduled execution is also possible by using the provided method from the .NET
framework System.Threading.TimerCallback. It is invoked using a timer object which
triggers the timer regularly, which in turn triggers the execution of the callback. The
callback is call>ed periodically until the timer object is disabled. The period of the
call is adjusted while waiting for the timer. The callback itself is dispatched to another
thread provided by the system.

The .NET frameworks approach of handling events and notifications is well suited for
front end interactions and network stream handling. However, it also lacks properties
required for a game logic engine such as the modification of the time until the execution
of a scheduled event.

3.4 Key-frame Animation

Animated movements in film sequences are usually generated using key-frame anima-
tion and motion capturing. A key-frame is a fixed point in the movement of a joint or
object, that defines the path of movement. Motions are generated using interpolation
methods such as linear or cubic spline interpolation [FC80].

Key-frames are also set for the whole world at fixed intervals, or only for parts of the
model, at relevant times in the motion process, as described in [Stu84]. Fixed intervals
give snapshots of the world at regular times, independent of the movement of joints or
objects. If it is acceptable to sacrifice some accuracy, it is possible to use only first order
linear interpolation [FC80].

Figure 3.1: Key-frame animation of a
jumping ball [Aut09]

Key-frame animation provides a large re-
duction of complexity for cinematic, com-
pletely predefined sequences. This enables
efficient compression of movement sequences,
but it is not suited for a game logic engine
in which interactions are defined as well, as
key-frame animation is predefined. However,
the general idea is suitable for usage in a time-
continuous description of a game state.

Figure 3.1 shows an example of a bounc-
ing ball represented as key-frame animation.
There are actually two dimensions of the ball
being interpolated, the first one being the x
and y coordinate of the ball, which is fixed
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at the bottom of the bounce, at its highest point and on the bottom of the bounce
again. The positions between these key-frames are interpolated using splines, which is
apparent due to the irregular distances of the in-between frames. The second dimension
that is interpolated is the shape of the ball, which is compressed along the y-axis on
impact.

The interpolation method used here is either discrete, as having only this shape at
the bottom of the bounce or as asymptotical to the round shape of the ball at the bottom
key-frames.

3.5 Chrono Cam: Planetary Annihilation

Planetary Annihilation is a real time strategy game in which players start on different
planets, build an economy on their planet and can send troops, or even moons, into
other players’ planets. It uses a system called ChronoCam that allows the player to
view the timeline flexibly, in a way comparable to video player search bars. [Smi13]
describes it as:

“The ChronoCam is similar to a replay system except it’s in the live game.
While you are mid-game you can jump back to look at the world from any
point in time, play in slow/fast motion, scrub the timeline from start to
finish, and even play in reverse.”

In figure 3.2 shows a screenshot of the running Planetary Annihilation with active
ChronoCam. On the bottom of the screen the navigation bar is shown with controls for
fast and normal forward and reverse playing. Above the buttons is a slider to show the
currently viewed time, which is the filled bar, in relation with the actual game time,
which is the full width of the bar.

At its core the ChronoCam tracks each value of each unit via key-frames. The se-
quence of key-frames in ChronoCam is called curves. This is more efficient than keeping
track of every value in every frame, because intermediate values are interpolated based
on their surrounding key-frames. The key-frames are usually extrapolated into the
future by a short time frame. If the user sends a command, the change is applied
at the correct time within ChronoCam, and the following key-frames are corrected.
Key-frames also greatly reduce the amount of data for sending through the network
for multiplayer synchronisation, since only key-frames and corrected key-frames are
transmitted. The physics engine runs at a significantly lower frame rate than the
graphics by using curves, but it can generate more than one key frame for every value
per physics frame [Smi13]. Furthermore, physics is not required to re-extrapolate from
their last prediction, if they still contain valid key-frames.
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Uber Entertainment on https://youtu.be/VOas6EFJ9X4

Figure 3.2: Screenshot of ChronoCam in a running game of Planetary Annihilation

ChronoCam is utilized in Planetary Annihilation as a game play feature, in which
the player can go back in time and re-view things that have happened. However,
ChronoCam is not incorporating a fully event-driven design into the game logic engine.
The game physics for Planetary Annihilation runs at a distinct frame rate, not utilizing
the predictive capabilities of curves for event execution.

3.6 OpenAge: Open Source Real-time Strategy Game

OpenAge [OAge15] is a free and open source remake of the Age of Empires game engine
(www.ageofempires.com). OpenAge was originally designed to make use of the original
game assets. Its goal is being more extensible than the original Genie engine, which
powers the Age of Empires series. Furthermore, due to its open source character
its main platform is GNU/Linux, with a Windows-compatible version currently in
the making. Another goal is to test different technologies and use modern language
features of python and C++14.

The current game engine is based on a traditional lockstep approach, integrating
positions from frame to frame, and executing condition checks during every frame.

11
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3 Related Work

Figure 3.3: OpenAge Screenshot

The game state currently consists of a
container holding every object in the game.
Each object is assigned a list of attributes
and abilities. These attributes define the
available active and passive action and tar-
get abilities for a unit. From these attributes
actions are activated, for example AttackA-
bility enables a unit to target another unit
with HitpointAttribute, in order to attack
and do damage.

Figure 3.3 shows a screenshot of a run-
ning game of OpenAge in the version 0.3.0.

12



4 Event-based Game Engine Concept

Within this work the game state evolving over time while playing a game is logically
divided into section of a timeline containing the past and the future. The game state
contains all values of all objects in the form of key-frames as well as the events that
are executed in order to generate more key-frames. The past contains the key-frames
that have already been calculated. The key-frames also store information about the full
history of the game-state, the currently displayed frame and at least one future frame.
The future contains events that generate more key-frames. Events are only executed
at the time when their referenced time is relevant for the displaying logic, as they are
going to change with a high probability, or might not happen at all. The game state
can be advanced forward through the execution of events, filling the past section with
more data to be displayed eventually. It is easy to reschedule or cancel an event it until
it is executed, if the conditions change. For the past section, this work uses the curve
logic, as described in chapter 4.1. The future logic is a event system that is optimized
for the time-scheduled execution, as described in chapter 4.2. Whenever something in a
curve changes, it is reacted to by the event logic. The method used to interlink these
two technologies in order to monitor for changes is described in chapter 4.3.

4.1 Curves

Curves are values that are tracked over time using interpolation between key-frames.
Defined curves are evaluated continuously within their defined ranges. A key-frame is
a tuple of a specific time in milliseconds defining when this value is set, and the value.
The type of value defines which type of interpolation is supported.

A curve is a description of how the value of within the gamestate changes with time.
It is defined as a function f (t) = v, with v as the value of the described variable at time
t. This method is an interpolation on top of key-frames, which are added as the game
progresses. A key-frame is defined as the tuple k := (t, v) with t as the time and v as
the respective value. A specific key-frame is noted as ki = (ti, vi).

Every curve is constructed using a default-constructed value at time 0. This ensures
that a curve is always defined and can it is always possible to evaluate it at one point in
time.

13
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For higher order interpolation the value type has to support basic mathematics
including multiplication with a constant and addition with itself 4.1.1. For discrete,
step-function interpolation the value is any copy-constructible type, since it does not
require any calculation to deduce the value. Discrete curves are described in section
4.1.2. There are also curve-containers, that can hold any number of objects. One
container type can track the creation and destruction of contained objects in curved
sets as described in 4.1.3. The second container type contains the impulse occurrence of
values valid at one single point in time, which are curved queues as described in 4.1.4.

4.1.1 Continuous Curve

Continuous curves represent the world as a linear interpolation between set key-frames.
It is used for any continuous change or movement, such as building progress or unit
position. If the requested time lies outside the range of already defined key-frames, the
last currently defined key-frame is assumed, with the interpolation staying constant.
This means that a value with no further key-frames stays constant, as shown in figure
4.1.

For a continuous curve the value has to support multiplication with a constant, and
addition and subtraction with the same type have to be defined. The continuous value
is interpolated at time t using equation 4.1, with two key-frames ki, k j that surround
the value at time t with vi as the value of the key-frame ki at time ti.

continuous(t) = vi + (vi − vj) ·
t− ti

tj − ti
(4.1)

with the key-frame times defined as the closest key-frames to reference time.

ti = max{ti|ki = (ti, vi) with ti ≤ t}

tj = min{tj|k j = (tj, vj) with tj > t}

ti ≤ t < tj

If either of ti, tj is undefined, the value max{ti|k} or min{tj|k} is assumed respectively.
Figure 4.1 shows an example for the progress of a building being built, and subse-

quently existing in its finished state. The vertical dotted line represents an evaluation
using the two marked key-frames ki and k j. Previously calculated event output is
shown on the left-hand side of the vertical dotted line, while the current prediction of
the future is shown to its right-hand side.

Functions of higher order than linear interpolation can be closely approximated using
short key-frame intervals to be usable in the game engine, as stated in [Smi13].
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time

building progress
100%

ki

k j

Figure 4.1: Continuous curve
A continuous curve of a building construction having one, later
two workers.

4.1.2 Discrete Curve

It is also possible to use a step function for interpolation, which is defined as the
discrete interpolation in equation 4.2, using vi as the value of the key-frame ki right
before t.

discrete(t) = vi (4.2)

ti = max{ti|ki(ti, vi) with ti < t}

Values represented by a discrete curve do not need to fulfill any special type re-
quirements. Therefore a discrete curve can hold any type, such as objects and strings.
Discrete curves hold values that have logical reasons that they should not be inter-
polated, such as resources or population count which is always discretely defined.
They can also hold values that do not support interpolation, for example references or
pointers to other objects.

time

hit points
100

Figure 4.2: Discrete curve showing hit points of a building being attacked
The building initially possesses 100 hit points. The irregular vertical
distances between the short plateaus are due to the building being hit with
different amounts of damage. The vertical dotted line represents an
exemplary evaluation of the curve, using the marked key-frame.
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It is important to note that game-changing variables such as hit points are stored in
discrete curves. These values are not designed for interpolation, since an interpolated,
and therefore delayed, removal of a unit from the battlefield can change the future in
major ways.

Figure 4.2 shows an example how the hit points of a building being attacked are
reduced. The building is hit with different damage dealt, resulting in the non linear
reduction of hit points.

4.1.3 Curved Sets

Curves are also used to describe containers such as sets. A set is iterated over a snapshot
at a given time t, were all values that are marked as alive during that time frame will
be listed. The listed set contains all objects whose time of birth happened before, and
time of death will happen after the given time, as formalized in equation 4.3.

set(t) = {o|o(tbirth) ≤ t < o(tdeath)} (4.3)

tbirth is set to +∞, if the object has no scheduled time of birth. tdeath is set to +∞, it
the object has no scheduled time of death. Curved sets can contain other curved values,
which track their own value over the livespan of the container. The developer has to
make sure to set the death time of objects in the set because the set does not track hit
point values and cannot detect deaths on its own.

Figure 4.3 shows an example of a set with different live spans of registered objects.

time

objects

Figure 4.3: Curved Set
A curved set of alive units. There are two units that were
created and destroyed before the evaluated time, visible
starting and ending on the left-hand side of the vertical dotted
line. The units that are alive at the given time are marked with
circles.
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4.1.4 Curved Queues

First-in-first-out (FiFo) queues work similar to pipelines, in which the first value inserted
is first to be taken out again. FiFo-queues are also an integral component of the curved
world, in which they represent building-queues, action-queues, and other lists.

Queues consist of singular, non-lasting events o at time ot. Events are accessed by
selecting all events that happen between the times t f rom and tto:

queue(t f rom, tto) = {ot|t f rom ≤ ot < tto} (4.4)

In a curved queue an object has exactly one time when it happens. Curved queues
are used to describe pending objects, that will happen within the requested time frame.
In figure 4.4 several building events from a factory are shown.

time

impulses

Figure 4.4: Curved Queue
A curved queue with events happening at the indicated times.
The two vertical lines indicate the from- and the to-marker. The
three filled circles represent the events that are active within
the defined time-frame between the dotted lines, while the
empty circles show events that happen outside of the chosen
time-frame.
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4.2 Events

Event driven systems engineering has been solved for many programming languages
[Fai], therefore this chapter will focus on the differences compared to a standard event-
system. The event system does not provide a notification logic, as is used commonly. It
allows developers to create events triggered at pre-calculated times. These events are
generated in response to either user input or the predicted fulfillment of conditions such
as the completion of a building. For example a user input event, such as a change of
destination for an already moving unit, can lead to the internal rescheduling of already
planned events. A change within an event can either lead to the event happening at a
different time, earlier or later, or not at all. The event “reset game” may happen earlier,
if the player’s panel misses and the speed of the ball is increased. The same event may
happen later, if the ball is slowed down, and it does not happen at all if the player
moves and hits the panel.

Traditional event systems provide functionalities to trigger events when predefined
conditions apply or change. With the proposed event system the time when a condition
is met, and therefore an event is triggered, is predicted. For example, in order to
monitor change, it is mandatory to not only execute events at pre-calculated times.
Predictions need to change whenever one of the input parameters changes, and need
to recalculate according to the changed conditions.

The execution of events is triggered as a to request to execute all events up until a
certain time. The game logic engine is iterating over the events that have a associated
time t before the requested time. The order of events in the time line is kept in order
to execute earlier events first. This execution is triggered regularly for example by
the graphics. Because these events are usually less frequent than graphics frames, the
execution for an event can take longer than one frame. An event can generate data for
multiple frames using curves by predicting a key-frame far into the future, A prediction
is not re-run until a change in preconditions has happened.

While creating an exemplary game logic it was necessary to create the following
event types in order to generate hook points for different functionalities.

once(time) Is triggered at the given time and is not repeated.

on-execute(time) Is triggered when the execution is about to execute this point
in time.

on-change(time) Is triggered when the relevant timeframe comes into play,
and the value has changed to the state when the trigger was
registered.
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on-change-immediately Is triggered upon a change of something somewhere in the
timeline.

on-pass-keyframe Is triggered when a key-frame is not relevant for the interpo-
lation anymore.

Some events are recalculated, whenever a dependency changes. As conditions can
change before an event is executed it is important to recalculate the prediction. The
following chapters describe the above-mentioned types of events and their interactions
with the curve environment.

Every event prediction consists of the time of execution, the callback, and the single
target it is called on. Some events also have a list of dependencies that are monitored
for changes and can trigger the re-calculation of the prediction.

The target for the event is either an object from the game state, such as the ball, or
any value from within, such as position and speed. The target is also passed to the
callback, in order to reuse one event implementation for multiple events. For example
to move a players panel, an event “player.move_panel” is defined and instantiated
twice, once for each of the panels of player A and player B.

4.2.1 Event Type once

The once(time) event type is called at the time defined to issue the event. The event
defines monitored dependencies, in order to recalculate the exact point of execution. If
the event is canceled during recalculation, it is removed and no effort is made to revive
it.

This event type is used for user interaction, as it usually only requires one single
response, with no predictable repetitions. It is applied for the completion of research
and other game-internal events that happen only once, or if cyclic behaviour is unpre-
dictable.

4.2.2 Event Type on-execute

The on-execute(time) event type is called at the defined time and it is re-predicted
and repeated after it is executed. If a prediction disables the event, it is not entirely
removed. It is kept on hold, and is recalculated whenever one of the dependencies
changes. This mechanism allows the event to re-enable itself in order to come back into
action when the conditions are met again.

This event is used for cyclically appearing events that are possible to predict. It is
applied for cyclic events such as damage dealt by a defence tower guarding an area
within a defined range. The dependency list of the “ball.reflect_wall” is dependent on
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the speed of the ball, because it is re-predicted, if the speed changes. A wall reflection
is also rescheduled as soon as it was executed.

4.2.3 Event Type on-change

The on-change(time) event type is triggered at the defined time whenever a depen-
dency value changes. The exact execution time is determined when the change happens.
This event type is re-activated after it has been executed.

This event type is only executed if the targeted value is changed between the time of
registration and the planned time of execution. This is required for example for path
planning, to “protect” the calculated path. If a obstacle, such as another ball, moves
into the path of the ball, the path has to be changed. No re-prediction is necessary, if
no such influence occurs.

4.2.4 Event Type on-change-immediately

The on-change-immediately event type behaves similar to the on-change event type,
but instead of triggering at the time given on activation, it is triggered immediately after
a change has happened. This decouples the execution of this event type completely
from the normal timeline, and provides a method of reacting to changes immediately,
and not only on changes in the future.

This event is not used during normal game play, because it disrupts the execution
workflow, and can also use a lot of resources, if the event needs recalculation for every
change that happens. It is preferable to use the on-change type, as it accumulates
changes until the event is executed, and only executes once for any number of changes
that have happened before.

4.2.5 Event Type on-keyframe

The on-keyframe event type is used for managing the internal integrity of the curve
constructs. Whenever a key-frame has passed the scope, all previous key-frames can be
erased from memory in order to free up memory. The scope is defined by the now-time,
which is the time that is currently displayed on-screen. If a key-frame is not involved
in the interpolation for future values, this event is triggered, receiving the associated
time of the key-frames.

The event is ignored, however, if the memory consumption of the curve is unlimited,
it may eventually use all main memory. It is therefore the most effective solution to
delete the past key-frames, freeing the consumed memory. Another solution to free
memory, writing it all to disk, is discussed in 4.4.
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4.2.6 Example

The correlation between curves and events is best shown using a small and self-
contained example. Within the example, the different event types are applied to a
continuous curve and a change is made. The curve, as displayed in figure 4.5, and the
events that are associated according to table 4.1, are executed. The continuous curve
through key-frames k0 and k1 is modified at the time t0 for the time t2:

1 curve.set_drop(t2, 0); // will remove k1 at t1
2 curve.set_insert(t3, 1);

The key-frame k1 is deleted and replaced with k2 := (t2, 0) and k3 := (t3, 1).

k0 = (t0, 0) k2 = (t2, 0)

k3 = (t3, 1)

k1 = (t1, 0)

d

τ0 τ1Time t t0 t2 t3(t1)

Figure 4.5: Visualisation of a change in the timeline

event type parameter triggered at

on-change-immediately() – t0

on-execute(time)

t0 t0 − d
τ0 τ0 − d
τ1 τ1 − d
t1 t1 − d, without k1

t2 t2 − d
t3 t3 − d

on-change(time)

t0 never
τ0 never
τ1 τ1 − d
t1 t2 − d

on-pass-keyframe() –
t2 with k0,
t3 with k2

Table 4.1: Trigger calling times
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Table 4.1 describes which trigger is called and when, depending on the arguments
and the values of the curve.

d represents the time period between the last frame and the next frame, as events are
executed regularly and in batches, as described in 4.2.7. All events are executed within
this time period, for example for a next frame at τ0i, all events planned to happen at
times t < τ0 are executed. According to the mapping in table 4.1 this includes the
events on-change-immediately(t0) and on-execute(t0).

The most simple event type is on-change-immediately. It is triggered exactly when
the change happens at t0. It is registered without any parameter.

The on-execute event is called in the time-frame before the time in its parameter is
relevant for the rendering. If it is registered at t0, it is called in the time range d before
t0 has to be ready. The value of the curve at t0, τ0, t2 is 0. τ1, t3 will evaluate to the
linear interpolation on the curve between k2 and k3. t1 is not bound to a key-frame
anymore and is interpolated between k2 and k3.

The on-pass-keyframe is called at times when the next key-frame has been passed,
and the previous one can safely be dropped.

The on-change event is called if the value the event was pointed to was changed
since the event was registered. The value between k0 and k2 was not changed, therefore
any registered change events between k0 and k2 is not triggered. However, at the points
where the value was changed, the event behaves in the same manner as on-execute
and calls d before the time is relevant for the execution.

4.2.7 Execution of Events

In the main game loop the event execution is triggered to create the next frame. The
time of the frame is handed over to the event execution to execute the relevant events.
This time is set in a way, that even more complex calculations can finish in time before
the result of the execution gets relevant for the next requested frame. If in a subsequent
frame an event arrives, which was required for a previous frame, it is still executed,
but all events happening afterwards are recalculated. This is important, because the
conditions may have changed, and the result of a later event may have been overwritten.

With the set time a subset of events are extracted from the event queue, if they are
scheduled to happen before this time. These events are then executed sequentially as a
batch job of the queue.

User input may generate events that are scheduled before frames, that have already
been executed. If such an event is received, all events that were scheduled after the
new event are executed again. The time, that such an event is applied in the “past” is
limited, to avoid heavy recalculation chains and a possible loophole for cheater.

The set time of the execution of events might be a few frames in the future. The
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number of frames this execution is scheduled before the time it is actually drawn on
screen depends on the scenario. In a game with a low frequency of user input, it is
possible to calculate multiple frames in advance, because it is not likely that a user
produces events that are scheduled before the ones already executed. In a game with
a high frequency of user input additional events that are scheduled at a time before
the ones that have already been executed requires more frequent recalculation. This
resulting in a higher computing load than necessary.

The execution queue is not modified during an execution cycle by automatically
generated change events. Change events are stored sorted in a background buffer.
This change buffer is converted into events, that are executed after current queue is
completed. The detailed change logic is described in chapter 4.3. Normal, manually
created events are immediately inserted into the execution queue in order to avoid
re-calculation.

4.2.8 Event Rescheduling

An event is re-predicted if a change in a dependency happened. All changes during a
batch execution of the event queue are accumulated. Events with a changed dependency
are then re-predicted at the end of a batch execution. Re-prediction are executed
frequently, because every change might have large consequences on a single event. An
event can decide, that it is not scheduled again during the re-scheduling process. It
does this by returning +∞ from the prediction function. The event is removed or only
not executed, depending on the event type. The event is removed completely from the
execution if it is not designed for reactivation or is paused from execution and can be
rescheduled later, if it is a reoccurring event.

4.3 Changes

When a value of a curve changes the on-change-events is triggered as well as all events,
that depend on the changed value. A change can happen for example by interaction of
the player or by the continued execution of the normal game flow.

A change and its execution can lead into deadlocks and dependency loops, that is
why it is important to address the special handling of those changes.

In the naive implementation, a change-callback is called in the setter-function of
the curve. The changing method would have to wait, until the change callback has
completed. If the change callback now changes another value, another callback is called
and so on, leading to a recursive deadlock of callbacks, and furthermore a crash of the
running program.
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So to address the issue of recursive deadlocks, the changes is tracked and executed
out of bounds. That means to track the changes a callback has made and execute
them after the changing callback has completed. This decouples the change-callbacks
from the changing logic itself and avoids the recursion. This approach itself is also
error-prone, if the event system itself is not acyclic.

If an event changes a value, the change callback is inserted into the change-queue.
The change queue is then executed when the callback has completed, possibly changing
the same value again. This on the other hand would lead to the same callback being
inserted into the change-queue again, leading to a cyclic dependency within the logic.

One solution is, to detect such a cyclic dependency during run time using the
methods as described in [Jon+08] and [CCG02]. But these approaches are infeasible,
since the flexibility is given to the developers, that they can design however the engine
should behave. Also, it is required to change a curve twice, in order to insert one bend,
as seen in the example 4.5, which would require dependency tracking.

The method applied here is the use of a double buffer and change accumulation.
In the execution phase all events that is triggered are executed in the time sequence

they appeared. When one of these events changes the key-frames of a curve it is
checked, if any event depends on this change. If it does, it is stored into a pool for later.

This pool is used to eliminate duplicates - so if one value was changed multiple
times during the execution phase it is still only stored one time. It is implemented as a
Hash-Map that uses the eventclass and the target id for its hash. The earlieset time for
multiple changes is selected, because every later change is handled by this one call to
the event-callback. If a change has already been processed within this frame, it is not
added again. Instead, it is pushed into the next iteration of event executions. This is
done using double-buffering between the current and the next frame. In the beginning
of the next execution the buffers are swapped.

In the change application phase the changes are then processed and re-added into
the event queue. This is then repeated until the change and the event queue are empty.
Possible deadlock situations are solved, as described above, using double buffering and
backing off execution into the next frame.

4.4 Serialization

For multiplayer games it is important enable multiple devices to share the same game
state. To enable the transmission, it is required to serialize the running curves into a
stream of changes and updates, and apply it to a running game state. Every curve
is serialized individually by serializing the operation, the key-frame time, and the
associated data. To reconstruct the curve, each curve needs a unique identifier.
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Listing 4.1 provides an exemplary serialization of the position of a ball in the Pong
game into a json interface. The ball’s position caries the identifier “1”, its speed the
identifier “2”. In this example it is important to note that the key-frames are sorted by
the times they are defined. This procedure is important for applying the key-frames
back into a running game-state on the receivers end. Speed and position are serialized
alternatingly, because in Pong-scenario the key-frames for both speed and position are
always set at the same time.

Listing 4.1: Serialized key-frame

1 [{’time’:102,’id’:1,’op’:’set_drop’,’value’:[102,0]},
2 {’time’:102,’id’:2,’op’:’set_drop’,’value’:[-1,-1]},
3 {’time’:152,’id’:1,’op’:’set_insert’,’value’:[40,56]},
4 {’time’:152,’id’:2,’op’:’set_insert’,’value’:[-1,1]},
5 {’time’:205,’id’:1,’op’:’set_insert’,’value’:[0,23]},
6 {’time’:205,’id’:2,’op’:’set_insert’,’value’:[-1,1]},]

The exact definition and procedure on how the networking works on top of the curve
is not in the focus of this thesis.

Serialization is also important for storing key-frames to disk. The disk-serialization
is registering the on-pass-keyframe event for notification when a key-frame is in the
past. The key-frame is subsequently serialized in the same way as for networking. This
list of key-frames is used as a save-game, as well as the replay of the game played up
to this point.
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In the scope of this thesis the game engine has been developed and applied to a
simplified subset of the game, which is a game similar to Pong, in order to demonstrate
the features of the engine. In Pong two players move their paddles up and down the
left and right edge of the screen, while trying to play a ball between them. The concept
is similar to the concept of air-hockey. The ball reflects from the top and bottom edge
of the screen and from the players’ paddles. The players’ lives count down from three,
removing one life every time the player’s panel misses the ball.

The described game implementation at is base provides the same challenges to the
game logic engine as exist for real-time strategy games. Path-following is a large
component in both types of games, as is user interaction. Independent objects in both
game types behave according to their state, which may change over time.

The simplified approach taken from Pong was therefore tested for its applicability
within real-time strategy games such as openage, which is an open-source real-time
strategy game based on the game Age of Empires, as described in 5.2.

This chapter follows the researched solutions and describes why and how the specific
design decisions were made. The game-state is described using curves in chapter 5.1.1,
including an exemplary implementation. The simplified version of the event system,
called triggers, is described in chapter 5.1.2, along with their application to the event
system itself. The event system and its application is described in chapter 5.1.3

5.1 Proof of Concept

A proof of concept was designed with the goal to keep the challenges minimal and
solvable and still come up with as many challenges as they are in real-time strategy
games. It was decided to use a a Pong clone using text-based rendering in order to
demonstrate these features. Simple text-based rendering utilizing ncurses was found
appropriate in order to keep the proof of concept simple and self contained, yet
complete. ncurses is a terminal-based text presenter allowing a developer to draw any
character at any position within a terminal in curses mode.

The a screenshot of the running game is in figure 5.1. The current time of the
screenshot was at millisecond 1378 of the running game. The red and blue paddle of
the players are located on the left and right hand side of the screen. The ball, moving
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to the bottom right, is represented by the red “M” in the right half of the screen. White
“X” mark the path of the ball, as far as it is currently predicted. On the top left corner
of the screen different variables are printed. These are from top to bottom: the current
“now” value, player states, position of player 1 and player 2, and the prediction of the
ball in steps of 10 millisecond. On the top right hand corner of the screen the event
queue with two events is displayed The event demo.ball.reflect_wall is scheduled
for executed at 1972 millisecond. The event demo.ball.reflect_panel is scheduled
for execution at millisecond 2177, which will then check if the player’s paddle is in a
position to reflect.

Figure 5.1: A running game of Pong
The ball is marked as the red “M”, moving to the bottom right as indicated by the

predicted positions marked with “X”.

5.1.1 Game-State: Curves

A simple game state was designed for the proof of concept consisting of the two players
and one ball as described in chapter 5.1. The different values within the state are created
using discrete and continuous curves. More complex objects within the game state
are implemented using the EventTarget interface, to group all properties for into one
group for events to target. The game state in listing 5.1 is sufficient for the Pong-game
to run.
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Listing 5.1: Pong game state

1 class PongPlayer : public EventTarget {
2 public:
3 curve::Discrete<float> speed;
4 curve::Continuous<float> position;
5 curve::Discrete<int> lives;
6 //...
7 };
8 class PongBall : public EventTarget {
9 public:

10 curve::Discrete<Vector<2>> speed;
11 curve::Continuous<Vector<2>> position;
12 };
13 class State {
14 public:
15 PongPlayer p1;
16 PongPlayer p2;
17 PongBall ball;
18 };

with the root of the game state being the class State containing two PongPlayers
and the PongBall.

The PongPlayer contains a discrete speed value because speed is interpolated, as it
is simply reflected every time it collides with a wall or a paddle. Lives are also discrete
from the inherent logic. The position of each player’s paddle is a continuous curve,
because it is interpolated between the key-frames.

Both player and ball are event-targets to function as a dependency and targets for
the event system. This topic is discussed further in section 5.1.3.

5.1.2 Triggers

Curves themselves do not offer any logic for interaction design. So-called triggers are
used to design interactions for the curves. Triggers are designed to modify curves at a
defined time, if defined conditions apply. A trigger is a callback defined with a time on
a certain curve. The callback does not perform any re-predictions or change monitoring,
as provided by the higher level event system. Upon registration, a trigger is inserted
into the execution queue. The execution queue is sorted by the time its events are to
scheduled for execution. Upon execution of a frame in the queue this list are iterated,
and the events between the last frame-time and the defined frame-time are executed
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sequentially. As described in section 4.2.7, the time is defined by the next rendered
frames.

Listing 5.2: Ball reflection using the trigger interface

1 // time: time when the ball hits the other side of the field
2 void reflect_wall(PongState &state, const curve::curve_time_t &now) {
3 auto pos = state.ball.position.get(now);
4 auto speed = state.ball.speed.get(now);
5 speed[1] *= -1.0;
6 state.ball.speed.set_drop(now, speed);
7 state.ball.position.set_drop(now, pos);
8 predict_reflect_wall(state, queue, now);
9 }

Listing 5.2 shows how a function is registered at the trigger interface using plain
function pointers. The function reflect_wall will trigger reflections of the ball on
the top or bottom of the screen, turning the movement speed of the ball around and
triggering the re-prediction of the event.

Listing 5.3: Prediction of the time when the ball is reflected at the wall

1 void predict_reflect_panel(PongState &state,
2 const curve::curve_time_t &now) {
3 auto pos = state.ball.position.get(now);
4 auto speed = state.ball.speed.get(now);
5 double time_delta = 0;
6 // ... calculate time_delta as the time until the next wall
7 auto hit_pos = pos + speed * time_delta;
8 state.ball.position.set_drop(now + time_delta, hit_pos);
9 TriggerManager.on(now + time_delta,

10 [](PongState &state, const curve::curve_time_t &now) {
11 reflect_wall(state, now);
12 });

The prediction logic is shown in listing 5.3. First, position and speed of the ball are
extracted from the curves. Second, the time time_delta until the next hit on a wall is
calculated, depending on the movement direction. Third, this new time is used to set
the exact point, when the ball collides with the wall using the speed. Fourth, the event
defined above is re-inserted into the queue. The defined time of the re-inserted event is
set in the future, because the ball has to cross the field again first.

There are two types of triggers: one for reflection from the walls (reflection in y-
direction), and one for reflection from the panels (reflection in x-direction). Because
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these axes are orthogonal, the triggers for the axis are executed independently.

The low-level trigger logic is sufficient for defining simple and predictable depen-
dencies. The trigger logic is not sufficient if an event has to continuously check for its
condition and tune the exact point of execution. This is only possible by monitoring
dependencies and providing the functionalities to recalculate. For example, if the Pong
game-play is extended with random reflections, all triggers are manually re-calculated,
leading to a highly coupled interface. A higher-level interface alongside the trigger
logic is the event interface, which is especially designed handle the dependency logic.

5.1.3 Events

On top of the trigger interface it is required that events need to contain more function-
ality, especially re-prediction and dependency management. The logic of Pong, together
with the planned application in a real-time strategy game, requires the use of more
than one event type, as it is the case using triggers. These event types are explained in
table 5.1.

These event types are managed with EventClasses, which define the actions to take
in order to re-predict the execution time. Also, every object within the game state has
to implement the interface for EventTarget.

An Event is derived from applying the EventClass to the EventTarget, maybe
accepting additional arguments. This is controlled by the EventManager, which keeps
track of all registered event classes, the queue, and the changes.

An event is registered at a defined time as follows:

Listing 5.4: Event registration

1 eventmanager.on(unit.damage,
2 target,
3 GameState,
4 time,
5 {{damage, 1}});

This applies the event “unit.damage” to the target, which is an EventTarget, using
the GameState, the time and the additional parameter “damage”. The GameState
argument provides the full game-state. The event is scheduled for the time time, with
the additional parameter “damage” defining the amount of damage.
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ONCE Is triggered exactly once, but is rescheduled whenever a dependency
changes. This is used for player interaction events such as movement.

ON_EXECUTE Is triggered at the set time without further conditions necessary. The
initial time is calculated using the re-prediction mechanics. When
the event has been executed, it is rescheduled immediately without
the need to trigger it again. This is used for regulary game logic,
such as wall reflection.

ON_CHANGE Is executed at the set time, if the target value has changed. When
a dependency changes, the execution time is reevaluated. : This is
used to observe whether a decision that is still in the future stays
valid.

ON_CHANGE
_IMMEDIATELY

Is executed immediately after a change was made, independently
of the set time. It has no option for rescheduling, because it has no
planned time of execution. This is used to make general assumptions
over the gamestate, that do not depend on the actual time the change
comes into execution.

ON_KEYFRAME Is executed whenever a curve has passed a key-frame, and this
key-frame is now in the past. This is only useful for internal house-
keeping, for example forgetting the history or writing it to disk to
save memory.

Table 5.1: Implemented event types

5.2 Application in Real-Time Strategy Games

Based on the implementation done for a Pong-clone it is possible to create a game
state for a real-time strategy game. At the core of the game architecture lays the game
state defined by curves. A snapshot of a curve is made in order to interface with the
different parts of the game engine, such as graphics, sound, and AI. Snapshots contain
the key-frames that are relevant for the current time, reducing the amount of data
required for the snapshot while providing the complete world.

Objects within the game state consist of properties, abilities, and attributes. Properties
are information shared across all units and required for basic functionality such as
hit-points and position. Properties are implemented as curves in order to enable the
tracking of these values. Abilities are actions an object may take, such as movement,
attacking and producing of units. Abilities are implemented as EventClasses, because

31



5 Implementation

when an action is triggered either by the user or by the game mechanics, an Event is
derived from the ability. The application and features of EventClasses is described in
chapter 5.2.1 Attributes, as described in chapter 5.2.2, define which types of actions
can target an object. The player themselfes possesses some attributes, such as their
resources and population limit.

5.2.1 EventClass

An EventClass is defined by the event type, as described in chapter 5.1.3, the callback
to trigger, the recalculation method, and its setup routine. EventClasses are registered
at the game logic engine, for calls using their descriptive name as seen in listing 5.4.
This name enables the possibility to decouple the different events while maintaining a
high quality debug output. An instantiated Event consists of the tuple EventClass and
the target EventTarget. EventTargets are special classes for example PongPlayer and
PongBall in listing 5.1. Curve types are also EventTargets. The EventTarget provides
functionality to track the values contained within itself.

game state EventClass

event pool

Event

register event at time tevent

EventClass::setup(Event, Target, tevent)

EventQueue

EventClass::predict EventClass::call

EventTarget

repeat

Figure 5.2: EventClass workflow

Figure 5.2 describes the flow control of the EventClass. First an EventClass is
registered at the event pool, being accessible by the defined full-string identifier. The
game state consists of EventTarget, that hold the values of the currently running
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game in form of curves. An Event is created by calling an EventClass on a certain
EventTarget to create an event invocation with a reference time t. This instance
also contains the additional parameters that have been specified on invocation. This
tuple consisting of the event instance, the target and the time is passed on to the
EventClass::setup method, that will register all dependencies within the target and
the remaining game-state. After the event is created and its dependencies are defined,
it is stored in the EventQueue to wait for its execution. The actual invocation, the time
tevent of the event can be rescheduled by the predict method whenever a registered
dependency is changed. This method can reschedule the event, it can remove it from
execution or reorder the event execution pipeline. When the EventQueue is requested
to execute all events up until a time tnow > tevent, the event classes call method will
be called, with the target, the time, and the event instance containing the additional
parameters.

Certain event classes are being rescheduled after execution, which is done by calling
the predict method again, with tevent as the reference time for calculating the next
occurrence.

5.2.2 Attributes and Actions

Attributes are either shared, in a way that the existence of the attribute is defined by
the units objects type, or they are unshared, which defines attributes only a single unit
holds based on its actions.

Shared attributes are information stored for this unit type. It changes over time,
however this is an issue for the game designer utilising this concept. Shared attributes
contain information that does not change as often as for example the health points of a
unit.

These can be: armor, attack, heal, hitpoints, population, speed
Unshared attributes are unique for each unit. These attributes are used to track and

the individual behaviour of a single unit. These values usually change more frequently
than shared attributes.

These are: direction, formation, garrisson, projectile, resource
If an action is applicable to another unit is dependent on the units abilities. For

example an object that does not have the resource-ability can not be targeted by a
GatherAction.

Actions are the actions a game state object can perform. They are heavily dependent
on the actual object. For example a production building has a TrainAction which can
produce new units, while a Worker object can create new build-sites and work on those
build-sites.
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Actions are generally implemented as EventClasses, as they are invoked by a com-
mand, accepting a single target, with little to no dependencies within the full game-state.

Using this separation into actions, that can target objects that have certain abilities it
is possible to implement the majority of interaction logic within the real-time strategy
game.
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An event-driven logic is an uncommon approach in game logic engines although it is
widely spread in other areas, such as systems engineering or web development. Using
techniques borrowed from local event-based mechanisms such as python asyncio, the
concept itself is known to developers. Using small, self-contained events as descriptions
for interaction mechanics enables developers to decouple the different parts of the
logic using the same core event mechanism. If for example a user input is received,
it is translated into an event of type once. The same input, however, is received from
a network component if it is transmitted to the game server. By applying the same
arguments and state to the same event, the generated event will have the same end
results.

Using curves to define the path of an object in the game world, as well as for any other
changing value, has been proven beneficial within the scope of this thesis. Especially the
possibility of decoupling the physics calculation from the graphics frame interpolation
has been found advantageous. In Pong, as well as in most real time strategy games, the
path a unit will take is predicted, and is represented using key-frames. This path does
not need to be re-calculated for every frame and the unit’s arrival time and location on
the path is always clear. The path is only changed if an obstacle in the path changes the
timing of the path itself.

Variable interconnection is an important feature for both, multi-player real time
strategy games and the Pong game that uses curves. By applying the methods described
in 4, it is possible to use the engine concept as it was shown in the proof of concept. In
order to apply the concept to a real-time strategy game, an excessive pool of standard
interaction functionalities, such as damaging of units, is required. The proof of concept
has shown that such standard functions can are incorporated in the engine using their
fully qualified names. The wall-reflection functionality is such a library function. It is
always registered and makes the ball behave in the desired way, although extensions
to the ball mechanics can change the default behaviour. The introduction of variable
reflection patterns at the panels is a modification of the panel reflection behaviour,
while all other logic still applies. This is possible through the use of a dependency list
that includes the ball’s position and speed. Similar situations are found in real-time
strategy games, here the default behaviour of units is configured using context-aware
events such as on-change and on-execute to formalize their actions.
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An important feature for multiplayer-enabled game engines is the ability to effectively
serialize their game state. Although this thesis does not compose a networking archi-
tecture to use with curves, the general concept to serialize a game state into a stream is
discussed in chapter 4.4. Since the serialized game state is valid for multiple frames, it
is possible to use only changes on the curves within this game state to synchronize over
the network. Lock step based games often use a hybrid between input synchronization
and game world synchronization by transmitting all input, and a part of the world,
with each frame.

A real-time strategy game engine has to solve computational expensive tasks during
its execution without losing to the graphics frame rate. Such a task is for example to
find a long-distance path for a group of units. There is the approach of using a separate
thread for the execution of such a task, but this still leaves the unit immobile until the
full path has been calculated and it is committed back into the game state. Using a
poll-event based approach, the unit requests a new path whenever it has completed
the previously followed section, spreading the execution over multiple frames. This
is also a possible approach in sequential game engines, but its high level of coupling
deeply in the core of the game engine is producing large amounts of interconnected
code. The benefit of the event-based approach is the improvement in readability and
the increased decoupling of the subsystems in the game engine.

This game logic engine approach is advantageous when its logic is applied to a fully
featured Pong game. It was also shown that real-time strategy games have largely
similar demands to the game logic engine as the ones solved in the Pong engine. The
event driven game engine using curves is favourable to a newly designed game, but it is
challenging to implement it into already existing games using a lock step approach. The
full game logic would need to convert into the new architecture. The benefits include a
decoupled event interface, with event classes defined at startup and instantiated within
the normal game workflow. Furthermore, it is a way to define a continuous game state
that tracks its changes and allows the modification of values in the past and future.

The game engine is usable if the following preconditions are met:

• Command-based

• Few actions per minute

• Predictable game logic

• Game logic able to approximate using linear functions

Command-based means that the input to the game is not usually entered as direct
control over a unit, but as commands to one or more units. The units themselves act
independently once a command is received.
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Few actions per minute means that the game engine is not feasible if the behaviour
of a single unit is designed for change on a high frequency. Highly frequent input is
the case in games in which the player controls one unit using direct keyboard input to
move around, such as first-person shooters. Such a behaviour is not predictable and
challenging to integrate into the event driven game engine on a large scale.

Predictable game logic is required, because curves are defined into the future. A
high degree of randomness within the observed curves produces one key-frame per
random movement, which will lead to one key-frame for every graphics frame. It
therefore does not provide any benefits over exiting methods. Such a hard-to-predict
scenario is better approached using finite-element-methods or lock-step methods.

Linear functions are used for interpolation in the curve engine, which means that
for a game using curves the game is approximated using these linear functions.
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This thesis evaluates a different approach for an event driven system, as it is used
over prolonged periods of time. It was shown that it is possible to create an event
system to trigger events at specific times. These times are introduced from the user, for
example the duration of research the user requested as well as by interactions within
the system itself such as one unit damaging another. The event system requires a game
state representation that is valid at any requested time. If an event is executed, it needs
the currently known game state at the time of execution. If there were no user input,
events are executed as defined by the game logic. The Graphics subsystem requests the
next frame-time. All events, that are registered before the frame time are subsequently
executed.

The game-state is represented continuously in order to generate the game-state at
the time of the event. This is achieved using curves as described in 4.1.

It was shown, that a game state is represented continuously using continuous and
discrete curves and curved sets and queues. The biggest change in game logic is that
the curve logic is used for every value in the game-state, since the event logic requires
to track every value, that can change during the period of a game. It was shown, how
events are used to describe the interactions between objects and their values and how
the timely-triggered events can implement things such as on-change logic.

This concept and subsequently the API was used to redesign the game state of
openage. Together with feedback from the community it was possible to provide a
developer friendly interface.

Altogether it is shown that event driven game logic is not only usable design, but it
provides a general and extendable and to define logical interactions and constraints in
an environment designed exactly for the requirements of real time strategy games.

Further work on this game engine concept includes the networking and distribution
logic in order to synchronize multiple game-states. This can be either achieved with
incremental serialization of the changes, the events have locally applied by transmitting
only the changes to every connected client. Or it can be achieved by transmitting all
events to one central authority which will distribute the changed game-state.

Another important extension is to extend curves with the possibility to apply relative
changes. This will lead to the ability, that a value has not to be exactly set at a time, but
merely relative, which will be converted into an absolute value at the time of the event.
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This will enable a optimized chaining of events, that not every change that is made in
the future has to be guarded with its own event.

The third important extension to the curve and event logic is advanced debugging
serialization, in which a developer can easily see all planned events and interactions.
Such an interface is already proposed within the proof-of-concept, but it is currently
only usable for positional values, which can be tracked as paths on the map.
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