
Department of Informatics
Technical University of Munich

Bachelor’s Thesis in Informatics: Games Engineering

Controlling a Physics Based Mech Simulation in
Room-Scale Virtual Reality

Andreas Leitner

Department of Informatics
Technical University of Munich

Bachelor’s Thesis in Informatics: Games Engineering

Steuerung einer physik basierten Mech Simulation in
Room-Scale Virtual Reality

Controlling a Physics Based Mech Simulation in
Room-Scale Virtual Reality

Author: Andreas Leitner

Supervisor: Prof. Gudrun Klinker, Ph.D.

Advisor: M.Sc. Sandro Weber

Submission: September 15, 2017

I confirm that this bachelor’s thesis is my own work and I have documented all
sources and material used.

Munich, September 15, 2017

(Andreas Leitner)

Acknowledgments

I would like to thank Prof. Gudrun Klinker and Sandro Weber for allowing me to
write this thesis about the topic I presented them.

I would also like to say that I am very grateful that the Informatics: Games Engi-
neering course of studies exists, and that it offers its students the possibility to try
out new technologies like virtual reality and augmented reality.

Abstract

The goal of this thesis is to implement an immersive physics based mech simulation

that is controlled in Virtual Reality. The user stands in the cockpit and can control

the mech and its hands. To increase the realism and improve the interaction with

the environment every part of the mech is physics based. This means that physical

forces have to be used to keep the mech parts at the desired rotation.

The thesis first explains how the information we get from the user is utilized to

control the simulation. This is more complex than most in mouse and keyboard

games because we can track the position and rotation of both hands, the head, and

additionally have six buttons and two touchpads on the controllers. After that the

techniques that are used to control the physics simulation are explained in detail.

Lastly the design process to the final mech models is described.

Controlling a Physics Based Mech
Simulation in Room-Scale Virtual
Reality
1 Introduction 1

1.1 Motivation . 1
1.2 HTC Vive . 2
1.3 Unity . 3

2 User Interaction 4
2.1 Game modes . 4
2.2 Head Position . 5
2.3 Hand Position . 6
2.4 Inverse Kinematics . 7
2.5 Mech orientation . 8

3 Physics based Control 10
3.1 Motivation . 10
3.2 Unity Joints . 11
3.3 PID controller . 12
3.4 PID controller in Unity . 13
3.5 Mech position control . 17

3.5.1 Position PID . 17
3.5.2 Velocity PID . 18
3.5.3 Angular Velocity PID . 18
3.5.4 Combined Velocity and Angular Velocity PID 18

3.6 PID Tuning . 19
3.7 Improving the physics simulation . 21
3.8 Interaction with the Environment . 24

4 Mech Design 25
4.1 First Prototype . 25
4.2 Second Prototype . 26
4.3 Final Mech . 27

5 Discussion 30
5.1 Related Work . 30
5.2 Future Work . 31
5.3 Conclusion . 31

References 33

Chapter 1

Introduction

This chapter explains the reasons for the whole idea in more detail. The tools used

to create the project are also described.

1.1 Motivation

The biggest challenge for every Virtual Reality application is to achieve a good and

suitable way of moving within the virtual world. Most games and experiences choose

to use the teleportation locomotion style because it is relatively easy to implement

and is basically free of motion sickness. It can sometimes be hard to integrate it

into action based gameplay and many users do not particularly like it. An other

often used method is artificial locomotion, were the player movement is controlled

the Vive touchpad or an other controller. This method is known for causing motion

sickness and is unplayable for some users.

Then there is the option of having the player inside a cockpit and giving him a way

of moving the vehicle he is sitting in. This has huge advantages because it can be

very immersive if done right, and is less likely to make you motion sick because

you always have parts of the cockpit in your peripheral vision. This also offers the

developer many possibilities for movement. Cockpit games often do not fully utilize

Virtual Reality because they mostly use VR as a more immersive way of displaying

the game with the possibility to look around.

The original incentive for this project was to create a cockpit game that still utilizes

the tracking of head and hands in the whole room. The chosen game mechanic that

Page 1

Chapter 1. Introduction

suits this very well is to let the player control a mech1 and its arms. The main goal

of this idea is to make the player feel like he is directly controlling the mech. In

order to achieve a realistic arm control and interaction with the environment, the

mech parts are fully based on physics simulation.

Figure 1.1: The mech the thesis talks about. The arms consist of a hand, a forearm
and an upper arm. For more about the mech design see Chapter 4.

This thesis will explain the process behind the development of this project.

1.2 HTC Vive

The HTC Vive was chosen as a VR device for this project because it has extremely

accurate tracking within a big play area. With their Lighthouse technique it can also

track the controller no matter the orientation of the player. HTC have also recently

introduced extra Vive Trackers that can be very useful to track the feet or back

orientation and position.

Because this project uses Steam VR it is playable with all VR platforms that support

Steam VR.

1A mech is a robot with humanoid appearance, which is often controlled by a human.

Page 2

Chapter 1. Introduction

1.3 Unity

Unity is used as a game engine for this project, mainly because I am already familiar

with it, and it is very good at rapid prototyping. The Virtual Reality integration is

also very easy with the official ”SteamVR Plugin”[1] and allows to test your game

without a VR device connected. This is very convenient when testing or debugging

because it is not necessary to take the HMD (Head-mounted display) on and off

every time you want to try whether something works like intended.

Page 3

Chapter 2

User Interaction

This chapter will explain how the user can interact with the simulation and how it

was implemented. First it will explain the two modes the user can be in. Then it

will describe how the head and hand position of the player are used in the different

modes.

2.1 Game modes

Figure 2.1: The handcon-
troller that can be picked up
to control the mech arms.

The game has two separate modes. In the cockpit

mode the player can freely walk inside the cockpit

and can also interact with the user interface. Since

the cockpit is relatively small2 there is no need for an

extra locomotion system because the user is already

be able to reach everything he is supposed to reach.

The second mode is the mech mode. In this mode

the user can control the mech position and rotation

and also acquires full control over the mech arms and

hands.

The transition between the modes is handled with

handcontrollers. They are objects in the cockpit the

user can pick up with each hand, and enable the con-

trol of the respective mech hand.

2The ground of the cockpit is about 1.3 m wide and 1 m long

Page 4

Chapter 2. User Interaction

2.2 Head Position

To obtain the head position of the user it is mostly sufficient to use the position

of the HMD. For applications that need a very accurate position to simulate body

parts, it is important to understand that the position of the center of the head is

about 14 cm behind the HMD since it is positioned on the face of the user. With

this correction the head position we use stays about the same when the user rotate

the head sidewards or upwards.

In the cockpit mode the user can freely move around in the cockpit and interact

with the user interface. Since the user is also supposed to be able to interact with

the back of the cockpit the mech does not rotate during this, otherwise the user

would only be able to see the front of the cockpit. The mech arms are not controlled

while the user is in this mode.

In the mech mode the position of the head is always fixed in the middle of the cockpit.

The reason for this is to make him feel like he is the mech, and he is only controlling

the mech, so separating the different movements is helpful. The movement in the

play area is added to mech movement, so when the user takes a step to the right,

the mech then also moves to the right. Since the user is limited by his play area

this can not be used as a main movement method. In addition to this the touchpad

of the Vive controller is used to additionally control the speed of the mech. It was

also tested to lean the mech in the direction the user moves away from the center.

This idea was quickly discarded after a test run because it was a very nauseous VR

experience, since it felt like falling in the direction one moves.

The main challenge of the fixed head position is to keep the user inside his play area

and also to encourage him to return to the middle of it. This is necessary because

the player has no idea where he is in the real world since his virtual position is

fixed to the middle of the cockpit. The first approach was to mark the center with a

colorful circle on the ground, with an line to the user. But since this was on ground

height the user would only see it when he was directly looking down, so it was not

making the user aware of his surrounding.

Page 5

Chapter 2. User Interaction

Figure 2.2: The miniature
with a 2 m by 3 m play area.

The current solution is to have a miniature of the

player in his play area boundary as a HUD (Head-

up display) element. It is positioned on the glass front

of the cockpit, so it is nearly always in the view of the

player. The miniature consists of the body, head, and

arms of the user, and is surrounded by the play area

boundary. For the arms the same Inverse Kinematics

is used as for the mech. There is also an arrow that

points from the body of the miniature to the center

of the play area. The boundary is turning red when

the user comes too close to the border to furthermore

warn the player. Since the boundary is probably not always in the sight, the hand-

controller model that is around the Vive controller when the player controls the

mech, also turn red. This works really well to keep the user aware of his position in

the real world, and is also far more effective than the standard grid that Steam VR

paints when the user comes to close to the boundary.

2.3 Hand Position

In the cockpit mode the hand can be directly moved in the cockpit and can be used

to interact with the user interface. The transition to the cockpit mode is triggered by

picking up both of the handcontrollers (see Figure 2.1). When picking up only one

controller, the user can control one hand of the mech. This was introduced because

it feels great to first pick up both mech hands and not press a button to suddenly

control the hands. It could also be used to quickly interact with the user interface.

The main feature of this simulation is the control of the mech arms, so it is very

important that they feel good. The overall goal is to give the user the feeling that the

mech arms are an extension of his own arms. The mech hand position is calculated

as follows. The vector from the users head to each of his hands is calculated and

scaled by a fix value such that fits to the length of the mech arm. This vector is now

added to the position of the cockpit. In order to make it fit the proportions of the

mech the resulting position is offset in the forward and upwards direction. The exact

values were chosen such that the user can utilize the distance of the mech arm. This

means that if the user stretches his arm as far forward as possible, then the mech is

supposed to do a similar movement. The same should happen in all directions. The

reason for this is to give the user the feeling of being able to utilize the mech arms

Page 6

Chapter 2. User Interaction

in full potential. The forward offset is necessary because the front of the cockpit is

about one meter in front of the shoulders and when the user has his hands in front

of his chest the mech hand is supposed to be close to the front of the cockpit.

The hand orientation is set to the controller orientation rotated by a factor such

that the hand looks forward when the user holds the Vive controller comfortable

in his hand. To ensure that the hand can always rotate like the user wants there

is no collision between the mech hand and the forearm. Objects like a sword hilt

could also collide with parts of the arm so the collision between this two objects is

deactivated to assure free hand rotation.

2.4 Inverse Kinematics

In order to control the mech arms an inverse kinematics algorithm is used, because

we only know the position the hand should have. Since the cockpit orientation is

directly controlled we have the following informations:

• The shoulder position,

• the length of the forearm and upper arm,

• and the position the hand is supposed to be.

What we need is the rotation of the forearm and upper arm such that the hand is

at the target position.

Figure 2.3:
A = shoulder,
B = elbow,
C = hand target.

Since this specific problem only has two unknown ob-

jects we do not have to use complex inverse kinematics

algorithms that support more than two unknowns. To

solve this problem the distance between the shoulder

and the hand target is used to calculate the angle the

arm has to be bend in order to have the right distance

to the target. This is a basic trigonometric problem

illustrated in Figure 2.3. Since the length of a, b, and

c are given we can directly calculate the angle alpha

with

alpha = acos((a ∗ a− b ∗ b− c ∗ c)/(−2 ∗ c ∗ b)).

Now the rotation from the shoulder towards the hand is calculated. This rotation

is rotated away by the result of the above equation. The direction to bend the arm

Page 7

Chapter 2. User Interaction

is chosen in a way that the upper arm seems natural and does not collide with

the cockpit. The forearm’s rotation is now trivial to calculate because the distance

between the elbow and the hand target is exactly the length of the forearm. The

mech arm now perfectly points its hand on the hand target position.

2.5 Mech orientation

Figure 2.4:
Head forward = red,
Head to right hand = blue,
Head to left hand = green.

During mech mode the user can control the direction

the cockpit is facing. To determine the mech target

rotation the following vectors are added up:

• Head forward,

• Head to right hand,

• Head to left hand,

• Current cockpit forward.

The y coordinate (the upwards axis) of all vectors is

set to zero and then the vectors are normalized. This

is done because the cockpit is supposed to only rotate

around the y axis. The head forward vector is multi-

plied with 2.5, so it is weighted more than both hands

together in order to keep the cockpit facing forward

when both hands are behind the head. The vectors

are then added up and are used as the new forward

vector of the cockpit.

Page 8

Chapter 2. User Interaction

A problem that occurs when directly using the head forward vector like this is when

the user looks more than 90◦ upwards or downwards. Then the cockpit suddenly

turns in the wrong direction. To fix this the head forward vector is calculated as

follows:

1 Vector3 headForward = Vector3.zero;

2 //When head.transform.forward.y is positive the head.transform.down is added to the forward

3 //When head.transform.forward.y is negative the head.transform.up is added to the forward

4 headForward = head.transform.forward − head.transform.up ∗ head.transform.forward.y;

5 headForward.y = 0;

6 headForward.Normalize();

This ensures that the cockpit points in the direction the head would point to when

it wasn’t rotated upwards or downwards.

Page 9

Chapter 3

Physics based Control

This chapter will first explain the main benefits of the physics based approach to

control and movement. Then the early version of controlling the Rigidbodies with

Unity joints will be explained. Afterwards the PID controller 3 and how they are

used in Unity will be explained in detail, followed by some methods that improve

the stability and responsiveness of the simulation. Lastly the interaction with the

environment will be shortly explained.

3.1 Motivation

The normal approach to control the parts of the mech would be to just set the

position and rotation according to the user input and some Inverse Kinematics

algorithm. By doing this one can exactly control what the mech itself should be

doing, but the interaction with the environment can be problematic since a physics

engine can not properly resolve the collisions of the teleporting colliders with no

velocity.

The physics based approach that is chosen for this project is to give all mech parts

Rigidbodies and colliders that are only controlled by adding forces to them. Unity

can now accurately simulate all parts physics and also resolve their collision correctly.

The main advantage we get from this is the realistic physical behavior that can easily

be used to interact with the environment. It also solves the problem that often occurs

in other VR fighting games that use the players hand position to directly control

weapons. Then the weapon can be moved arbitrarily fast and goes through enemies

3PID controller: proportional-integral-derivative controller

Page 10

Chapter 3. Physics based Control

or the environment. With the physics based approach the mech hands or weapons

will collide with walls and also transfer the impact through the whole mech body.

The main challenge of this approach is to make the movement and controls to be

responsive and fast.

3.2 Unity Joints

The first version to control the orientation of the limbs used Unity’s Configurable

Joints4. They were used to connect the different mech parts and fix their positions

relatively to each other, and their Angular Drive was used to rotate the limbs to

the result of our Inverse Kinematics algorithm. The three options to configure the

strength of the drive is to set the ”Position Spring”, which determines the strength

of the drive, the ”Position Damper”, which basically slows down everything, and

the ”Maximum Force”.

The main problem of this is that the drive doesn’t slow down enough before the

objects rotation is close to the target, it just uses less strength in that direction,

so it always overshoots. To improve the response time and reduce the overshoot of

the Drive the Position Spring is made higher when the angle was higher, and the

Damper is increased the closer it got to the target. All number tweaking didn’t help

much as the result was not stable and responsive enough and always included some

overshoot.

4See [2] for the Unity manual of Configurable Joint.

Page 11

Chapter 3. Physics based Control

3.3 PID controller

An alternative way of adding force is the PID controller5. It is a control loop feed-

back mechanism that is often used in industrial control systems. The PID controller

receives the the error between the current state and the target state as input. This

error is the proportional (P) part. Then the integral (I) and derivative (D) of the

error are then calculated in the PID controller. These three values are now multi-

plied with different factors and the result is added to the object as force. This done

every physics timestep.

• The proportional force grows linearly the further the object is away from its

target.

• The integral part grows with time when the object is constantly off the target.

This is used to counteract gravity and helps against steady-state error.

• The derivative part adds additional force depending on the change between the

target and the object. When the target moves away from the object, then ad-

ditional force towards the target is added, and when the object already moves

towards the target, force away from the target is added. This is very important

because it allows the PID to stop on the target without overshooting.

The PID controller are a very easy to use and overall a very valuable tool, but for

them able to do what they are supposed to do the factors for the proportional,

integral, and derivative parts have to be well tuned, what can be really hard. It

should also be noted that every part of the mech needs his own tuning and it

eventually has to be retuned when some properties in the simulation are changed.

5PID controller: proportional-integral-derivative controller. This two sites are helpful in understand-
ing how PID controller work: [7] and [3].

Page 12

Chapter 3. Physics based Control

3.4 PID controller in Unity

Normally the PID controller is only used to control one axis, since normal robot

arms have one motor per control axis. Because we do not have this restriction in

Unity this project always uses three PID controller combined to one vector PID

controller. So to control the final mech with ten Rigidbodies there are in total 30

PIDs updating every physics timesteps. This vector PID controller takes the error

as input, calculates the derivative and integral of it. It then multiplies these three

values with the corresponding factors.

The PIDs for position and velocity are very simple to implement, the current values

are read out of the Rigidbody and are used to calculate the error. This error is the

input for the vector PID controller. The result of the PID controller is then added

to the controlled object with Rigidbody.AddForce()6 . It can be beneficial to clamp

the result to keep the forces in a reasonable pace.

The rotational PID is a bit more tricky to implement in Unity, because rotations

are saved as Quaternions. The PID controller requires the difference between the

target and the current rotation. But since Quaternion.eulerAngels7 gives (90, 0, 0)

as output for the rotation (90, 0, 0) and (89, 180, 180) for the rotation (91, 0, 0),

we can’t use this to calculate the error.

Instead we do the following:

• Calculate the cross product of the current forward vector and the target for-

ward vector.

• Do the same for the right and the up vector and add all the cross products up.

• Use this as input for the PID controller.

• The result of the PID controller is directly added to the object with Rigid-

body.AddTorque()8.

In addition to this the integral of the PID controller is multiplied with 0.98 every

physics timesteps to limit the additional force that can come from the integral. This

is necessary when the arm collide with a solid object. Otherwise the integral would

rise every physics timesteps, and in the moment the solid object is gone the arm

6See [4] for scripting reference of Rigidbody.AddForce().
7See [5] for scripting reference of Quaternion.eulerAngels.
8See [6] for scripting reference of Rigidbody.AddTorque().

Page 13

Chapter 3. Physics based Control

would overshoot heavily. This PID does exactly what we want from a rotational PID

controller. It is used for all rotating parts, meaning the arm and leg parts, and the

cockpit.

It is very hard to visualize how the rotational PID controller works internally. The

following diagrams are all from the first scenario. In four seconds the z axis of the

hand is moved by four meters to the right and and back to the origin. In order to

better explain how responsive the hand control is there is a positional PID controller

(see in Figure 3.1)added to read out the values. This PID does not apply any forces.

On the following page the diagrams from the upper arm and the forearm rotational

PID controller are shown. The values in these diagrams are so small and have no unit

because they are the crossproduct of multiple unit vectors added together. That is

also the reason why they are so unintuitive and it is not possible to show the target

or current rotation in the diagrams. For all diagrams there are 50 physics timesteps

per second. The recording is stopped once the system is stable.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

0

1

2

3

4

physics timesteps

p
o
si
ti
o
n

in
m

proportional

derivative

current

target

Figure 3.1: Z axis of a hand position PID. It was only used to read out the values,
no forces were applied by this PID controller.

Page 14

Chapter 3. Physics based Control

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

physics timesteps

proportional

integral

derivative

Figure 3.2: X axis of the upper arm ro-
tational PID.

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

physics timesteps

proportional

integral

derivative

Figure 3.3: Y axis of the upper arm ro-
tational PID.

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

physics timesteps

proportional

integral

derivative

Figure 3.4: Z axis of the upper arm ro-
tational PID.

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

physics timesteps

proportional

integral

derivative

Figure 3.5: X axis of the forearm rota-
tional PID.

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

physics timesteps

proportional

integral

derivative

Figure 3.6: Y axis of the forearm rota-
tional PID.

0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

physics timesteps

proportional

integral

derivative

Figure 3.7: Z axis of the forearm rota-
tional PID.

Page 15

Chapter 3. Physics based Control

The same scenario is also tested on the last version with the Unity Joint drives. It is

very obvious that they heavily overshoot, take longer to react, and need some time

to stabilize.

0 50 100 150 200 250 300 350 400 450

0

1

2

3

4

physics timesteps

p
o
si
ti
o
n

in
m

current

target

Figure 3.8: Same scenario as in Figure 3.1 but with the old joint motors.

The next two diagrams illustrate the second scenario. This time the target moves

2.5 m to the right, then five meter to the left, and after than back to the origin.

Like the last scenario this is finished in four seconds. The main difference to the first

scenario is that it starts and stops abruptly.

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

−2

0

2

physics timesteps

p
o
si
ti
o
n

in
m

proportional

derivative

current

target

Figure 3.9: Scenario 2 with rotational PID controller. A position PID was used to
track the effectiveness of the rotational PIDs. No forces where applied by position
PID.

Page 16

Chapter 3. Physics based Control

0 50 100 150 200 250 300 350 400 450

−2

−1

0

1

2

physics timesteps

p
o
si
ti
o
n

in
m

current

target

Figure 3.10: Scenario 2 with Joint motor.

3.5 Mech position control

There are several ways the mech force to move the mech can be calculated and

applied. If the force were be applied to all mech parts, then it would act very weirdly

when colliding with static objects, so all forces accelerating the mech are applied to

the ball it stands on. This means the 185 kg heavy mech is moved by applying forces

to a 15 kg heavy ball.

3.5.1 Position PID

Using a position PID we have to set a target position. We do not want to control

the mech by pointing on the ground and letting it move there. Instead the target

position was set in the direction the user pointed on the touchpad. The distance of

the mech to the target position is controlled by the touchpad on the Vive controller.

The further away the target is, the faster the mech moves. The main advantage of

this technique is that the position of the user can be scaled and added to the position

that comes from the touchpad control. This way the position of the user is directly

translated to the mech so that the mech.

Page 17

Chapter 3. Physics based Control

3.5.2 Velocity PID

With an velocity PID we can directly control the velocity the mech is supposed to

have. The target velocity is set by the touchpad. This technique is more responsive

and easier to control than the position PID, but we can not directly use the user’s

position to additionally change the mech position. This was solved by adding the

velocity of the user to the target velocity. This does it’s job but is not as precise as

what is possible with the position PID. Overall the velocity PID with the touchpad

is definitely more responsive than the position PID.

3.5.3 Angular Velocity PID

This is not really an angular velocity PID. It uses the same input as the velocity

PID, but instead of applying the result as directional forces we now apply it as

torque. The PID input is the velocity difference and the output is used to change

the angular velocity. Even though the ball has very small touching ground for friction

it accelerates well and is also able to stop on point, but it feels like the mech does

not accelerate very smoothly. Overall it is the most physically realistic option, but

it is harder to tune properly and seems slower to react.

3.5.4 Combined Velocity and Angular Velocity PID

In the final game the mech uses both a velocity PID and an angular velocity PID.

This means that the ball is moved in the target direction, and additionally is ro-

tated towards the target direction. This more stable and responsive than the other

solutions.

Since the mech consists of a system of multiple Rigidbodies it takes some time to

slow down once the target velocity is close to zero. Especially the cockpit lags a

bit behind, and since the whole mech is tilted forward during the break the cockpit

moves backwards once the mech feet stop moving.

Diagram 3.11 shows the mech accelerating and decelerating with the combined ve-

locity and angular velocity PID to a target velocity of sine scaled by ten. The

proportional value are multiplied with 35, and the derivative values with 0.6. The

factor for the integral part is 0 so it is basically a PD controller.

Page 18

Chapter 3. Physics based Control

0 100 200 300 400

0

5

10

physics timesteps

v
e
lo
c
it
y

in
m
/
s

proportional

derivative

current

target

Figure 3.11: Accelerating the mech ball
with the final combination of the velo-
city and angular velocity PID.

0 100 200 300 400

0

5

10

physics timesteps

v
e
lo
c
it
y

in
m
/
s

proportional

derivative

current

target

Figure 3.12: Same simulation as 3.11 but
with tracked values from the cockpit.
There are no direct acceleration forces
to the cockpit, it receives all acceleration
over the leg.

3.6 PID Tuning

In order for the the PID controllers to work, they must first be tuned. This means

the three factors for the P, I, D terms have to be set to appropriate values.

PID tuning in Unity is a bit different than tuning a real PID controller, because

Unity is a simplified physics environment without friction and other influences. It

also directly applies the forces to the object. This results in the complication that

we can not use the normal PID tuning concepts for the PID controller in Unity, but

rather have to tune by estimating.

The general approach that was used when tuning the PIDs in this project was to

first find a suitable ratio between the factor for P and D, such that it was not

overshooting or oscillating. Then both values were increased as long as the system

was still stable and not oscillating or overshooting. This can be done by eye but it is

generally easier to plot the error, integral, and derivative in order to see how stable

and fast the system is. The I factor can be set after the P and D parts are tuned,

because it is often used to counteract the steady state errors and does not affect the

performance of the controller too much if it is not set too high. When knowing the

general dimensions of the factors, it is time to fine tune them. Table 3.1 can be used

as a reference what to expect when increasing the factors for P, I, D separately, but

due to the complexity of the system it is not always accurate.

Page 19

Chapter 3. Physics based Control

Increase in Rise time Overshoot Settling time steady state error
P Decrease Increase Small Change Decrease
I Decrease Increase Increase Eliminate
D Small Change Decrease Decrease No Change

Table 3.1: This Table describes what one can expect when increasing the factors for
the P , I, or D values [7].

To efficiently fine tune it is advised to change the values while the game is running

and to experiment a bit. PID tuning is not very intuitive, trying out new values can

sometimes help.

It is also important to test the PID tuning with a similar situation you would have

in the game. If there is an instant position change, then it should be moved in big

steps for the tuning. If there is continuous change like the Vive controller position,

then the position should be modulated with sine or cosine.

Page 20

Chapter 3. Physics based Control

3.7 Improving the physics simulation

This section will explain some methods that can improve the stability and overall

reaction of the whole simulation. To make the simulation to behave like we want

there is often a decision between realism and functionality. Since this project does

not aim to create a fully realistic physics simulation there are some parts physically

incorrect to improve the mech behavior.

• All the PID forces are applied with the force mode ”Acceleration”. This means

that it is supposed to be applied every physics timestep and that the force is

multiplied with the mass of the object. The main reason to use mass inde-

pendent force is to be able to change the mass without retuning of the PID

controller.

• One important aspect is to have adequate mass for all Rigidbodies. The mass

of a single object does not really matter for our implementation of the PID

controller since we use the mass independent force mode ”Acceleration” to

apply the forces. If there are multiple objects connected to each other, the

relative mass of each object is very important, because if an object has ten

times more mass it forces will also be ten times stronger, and it will be less

affected by lighter objects. This is used for the cockpit, since it is reasonable

to have more mass and to be less affected by it’s arms, and it overall helps to

achieve a stable cockpit orientation, what is very important to reduce motion

sickness.

• It is also advised to keep the mass and size in a realistic scale, because objects

with different sizes often behave differently in a physics engine. In this project

the cockpit weights 100kg, each arm 25kg and the leg 35kg. Objects that

weight about 1kg or less now behave strange and can be pushed into walls or

the ground by the mech arms. Every object we want the mech to interact with

should have realistic mass compared to its size, in order to have a realistic

looking physics simulation.

• The gravity of every object can be changed. In this project the gravity is ba-

sically a force that the PID controllers have to fight against all the time. In a

position PID the integral factor can counteract the gravity, but can cause ques-

tionable behavior with heavy overshooting when running against solid objects.

In the earlier version of this project the gravity of the arms was deactivated

because the joint motor was not able to counteract the force. This leads to

Page 21

Chapter 3. Physics based Control

very floaty and slow falling, because only about half of the mech’s mass is

affected by gravity. In the final PID version every physics object is influenced

by gravity, including the weapons the mech can pick up, without it being no-

ticeable to the user. The gravity helps to achieve realistic behavior of the arm,

so hitting an object from above adds extra impact due to gravity.

• The center of mass of Rigidbodies can be changed to custom values. Normally

Unity calculates the center of mass and the inertia tensor at the start of the

game depending on the colliders of the Rigidbody. This updates once the

colliders change. When these values are changed with a script, then Unity

does no longer update them, so we can set custom values at the start of the

game to better control how the Rigidbodies behave. For the mech arm parts

the center of mass is set to (0,0,0) because the way we add rotational force to

them can not specify the position the rotation is supposed to be applied to.

The new center is at their joints, where the force is supposed to be in order to

maximize the effectiveness.

• The inertia tensor of the arm parts is set to (1,1,1) multiplied with their mass

to have the same force on every axis. so it is not necessary to tune every axis

independently. The inertia tensor of the cockpit was also set to custom values

to reduce the tilting that the cockpit makes when accelerating forwards or

sidewards, in order to improve the user experience and reduce motion sickness.

• When using a chain of multiple Rigidbodies, like the mech arms, it is beneficial

to let every part try to reach it target rotation as if all other parts already

have the right rotation. This means that the target rotation of the forearm is

independent of the actual rotation of the upper arm. This is a very important

step to eliminate vibration and oscillation between the parts.

• A precondition of fluent movement and animations is to also have fluent input.

This can easily be achieved by applying Unity’s Slerp9 and Lerp10 to the dif-

ferent inputs, in order to decrease or remove jitter induced by tracked hand or

head position. This jitter does not necessarily come from inaccurate tracking,

and mostly is only noticeable when the hand rotation is used to rotate a bigger

object.

• With fast rotating Rigidbodies it is often necessary to increase the property

9Spherical interpolation between two vectors or quaternions [8].
10Linear interpolation between two vectors or quaternions [9].

Page 22

Chapter 3. Physics based Control

Rigidbody.maxAngularVelocity11. This value limits the maximal angular ve-

locity an object can have, and directly limits the turn rate by that. The default

is relatively low, and even limits the rotational speed of the robot arms. After

increasing it the mech was able to accelerate fluently and the arms respon-

siveness was improved. Diagram 3.13 and 3.14 show what effect this has for

the ball the mech stands on. When increasing this value, it should not be too

high because the physics engine becomes unstable when simulating objects

that rotate to fast.

0 100 200 300 400

0

5

10

physics timesteps

v
e
lo
c
it
y

in
m
/
s

proportional

derivative

current

target

Figure 3.13: Same acceleration as 3.11
with the maxAngularVelocity default
value of 7 instead of 25. At 3 m/s the
rotation limit begins to slow the mech
down.

0 100 200 300 400

0

5

10

physics timesteps

v
e
lo
c
it
y

in
m
/
s

proport.

derivative

current

target

Figure 3.14: Also same acceleration as
3.11 but with maxAngularVelocity =
20 instead of 25. The ball can not turn
faster so the mech can barley acceler-
ate over 9.1 m/s.

• The PID controller gives the theoretical force necessary to achieve the target

they are given, according to their tuning. This means they can give us very

big values that the Unity physics engine could not reliable work with. One

solution to this is to clamp the result values to a reasonable number, what

will increase reaction time. It is advised to retune the PID controller after the

clamp, and probably reduce the overall output when the results are nearly

always the maximum value.

• If the simulation is still not fast or reactive enough, then it is possible to add

forces that are extremely unrealistic but help to achieve the intended behavior.

It would be possible to add an additional positional PID that directly moves

the hand to the target position. This technique seems to be used by most

physics based games that use physics controlled animations. Before using the

11See [10] for the scripting reference of Rigidbody.MaxAngularVelocity.

Page 23

Chapter 3. Physics based Control

PID controller this idea was considered, but with the PID controller it is no

longer necessary.

3.8 Interaction with the Environment

Thanks to the physics based approach on the mech control there is only little left to

be done to achieve proper interaction with the environment. It is possible to pick up

cubes with a mass up to 50 kg with the friction of the hands, and it is also possible

to stack them accurately, or throw them around. The mech arms are also strong

enough to climb ledges that are about twice as high as it’s shoulders.

In addition to this natural way of manipulating the environment the user can also

pick up objects with the trigger. If the object is no weapon, the hand is simply

connected to the object by a fixed joint. If the object is a weapon, then the hand is

moved to the position and orientation this weapon is supposed to be held before the

fixed joint is created. Then the physics engine and PID controller repositions the

hand back to where the user wishes it. This way the weapon is always held correctly,

and as a user it felt better than teleporting the weapon to the hand or moving the

weapon slowly in the hand. This can be improved by limiting the distance to the

hilt where the weapon can be picked up, so it is not possible to pick a sword up at

tip of the sword.

Page 24

Chapter 4

Mech Design

Since the mech movement and control is physics based the design of the mech is

not only about aesthetics, but rather about function. This chapter will explain the

design process of the different mech versions. All models were created in Blender.

4.1 First Prototype

Figure 4.1: First prototype mech front
view.

Figure 4.2: First prototype view from
the inside.

The first model was a very early prototype where the main goal was to have a

cockpit with enough space for the player to stand in and to reach out with his arms.

It was also mainly used to help myself developing the concept how the mech arms

move and can be controlled. The model was oriented on human proportions, but

during tests it turned out that the arms were to short too feel useful. This is due to

the cockpit being very long, so the area where you can interact with the hands is

limited.

Page 25

Chapter 4. Mech Design

The main point to improve on this was to increase the cockpit field of view and to

reduce the amount of bars in the glass front.

4.2 Second Prototype

Figure 4.3: Second prototype from the
front.

Figure 4.4: Inside view of the second pro-
totype.

The whole design of this version was centered around the cockpit. The idea was to

make it big enough such that the player can take one step away from the middle

and reach out with his hand and still be inside the cockpit. This aspect worked very

well, the player was able to stand on a circle with 1.25 m radius and had about 50 cm

extra space for the hands to reach out. During testing it turned out that two meter

from the ground to the ceiling was not enough, even though the test person was

1.8 m tall. The reason for this is probably that we are used to walk in rooms with

a ceiling height of about 2.5 m, so it felt very limiting. The user could also easily

reach over the ceiling.

The arm parts are now connected to each other, and the user can see the orientation

of each part. The mech arms are longer than the arms of a human with the same

height, because the front of the cockpit is about 1.5 m in front of the shoulders. This

ensures that the user still has a big area in front of the mech where he can interact.

This model has legs, but since it is not feasible to use them with this physics based

concept they had no physical interaction. To keep the cockpit hovering over the

ground the ideal height had to be calculated with a script and then a position PID

was used to keep the the cockpit at this height.

Page 26

Chapter 4. Mech Design

4.3 Final Mech

Figure 4.5: View from inside the cockpit of the final mech.

For the final design the goal was again to reduce the number of bars in the glass

front of the cockpit. The glass is not like the previous prototypes out of many small

glass parts with bars in the edges, but out of one big arched glass part with 3 bars

in it. The bars are left in to give the user the feeling that he is inside a cockpit in

order to reduce motion sickness.

With the decision to set the player position to the middle of the cockpit during the

mech mode, the size of the cockpit is only dictated by the arm length of the user.

This cockpit is like the first prototype which was designed to fit when the user looks

in the same direction as the cockpit faces, and it is not necessary to give the user a

good sight no matter where he stands.

Even though the cockpit is only 2.1 meter high it does not feel as restricting as the

last prototype, probably because there are no horizontal bars in front of the users

face.

Another addition to this mech is a realistic movement option. Now, since the mech

has one middle leg with a free spinning ball as his feet, it allows us to use the Unity

physics and gravity to have the mech on the ground and have realistic, suitable

behavior. The mech is moved by applying forces to the ball and is overall easier and

more realistic to control than the old versions.

Page 27

Chapter 4. Mech Design

Figure 4.6: The final mech from the front.

In direct comparison to each other the mechs became smaller with every prototype,

and the arms became longer. Especially the mech legs became smaller with every

version since you do not see them in the cockpit, and reducing the distance to the

ground creates more action and also feels more immersive. It also makes it easier to

pick up objects from the ground.

Figure 4.7: View of all three mechs from the side. The distance between the black
lines is 2 m.

Page 28

Chapter 4. Mech Design

Figure 4.8: View of all 3three mechs from the front. The distance between the black
lines is 2 m.

Page 29

Chapter 5

Discussion

This chapter will discuss similar Virtual Reality projects, and then list some inter-

esting ideas that could improve the current simulation.

5.1 Related Work

Overall there are very few virtual reality mech games or simulations on the market,

even though parts of the Virtual Reality community really want them. During the

development of this project the first high quality mech VR game ”Archangel” was

announced and later launched12. It has the same core idea of controlling the arms

of a mech, but they took a different approach. The hands are used to fire an array

of different weapons, but can only be controlled in a very limited space in front of

the cockpit. It is intended to be a seated game, meaning that they do not utilize the

position of the player in the real world, and the objective is to shoot enemies. The

mech movement is not controlled by the player, but it rather follows a predetermined

path. Archangel is an immersive story driven rail shooter.

There are also some other mech VR games in development by indie teams, but

nothing I found gives the user control over the mech’s hands.

The inverse kinematics that is used in this project is very simplified and only works

for the specific scenario of arms and legs with two parts. Real inverse kinematics

algorithms allow to simulate whole character models with many limbs that can

consist of multiple joints. With this it would be possible to give the user a virtual

12Steam store page for Archangel: [11].

Page 30

Chapter 5. Discussion

body. This is done in many multiplayer VR games but is always inaccurate because

there are too many possible solutions with only tracking the head and hand positions.

5.2 Future Work

A feature I would like to add to the current miniature (Figure 2.2) is something

that helps the user to untwist the Vive cable. What this means is that it would

count how often the user turns around himself, and notify him how often in which

direction he has to turn to receive the original rotation of the Vive cable.

The recently released Vive Tracker13 would help to improve the simulation by giving

us more information about the user. The back rotation could be used to set the

cockpit rotation, and the forearms position and orientation would reduce our Inverse

Kinematics problem to one solution.

An other very interesting addition would be the upcoming Knuckles controller14.

This controller can measure how far the user closes each fingers individually. This

could be used to accurately simulate the mech hand with fingers, and allow the user

to realistically grab objects.

I tried to get automatic PID tuning to work, but I was not able to find any working

algorithms that I could implement in reasonable time. The problem is again that

the way I use the PID controller for the rotation is very unconventional. It would

help immensely to have the PIDs tune themselves, especially when adding physics

based enemies.

5.3 Conclusion

My goal was to create an immersive Virtual Reality mech simulation that uses

realistic physics to control the mech parts. The biggest concern about this project

was if the physics based arm control becomes responsive enough to be immersive

and enjoyable. Now with the tuned PID controllers and continued improvements

13Vive Tracker: allows the user to track the position and orientation of any object. See [12].
14Knuckles Quick Start guide that describes the functions of the new controller. See [13] for a detailed

description of the Knuckles Controller

Page 31

Chapter 5. Discussion

over the course of the project the hands turned out extremely responsive. Even fast

hand movements translate well to the mech.

The arms are even strong enough to climb ledges, and with the feature to connect

the hand to fixed objects it is even possible to climb vertical walls and to hang under

the roof.

Overall I am really happy with the current result, and will continue to add features

to eventually make a real game out of the current physics sandbox.

If you would like to try this simulation yourself, you can send me an email at

andi.leitner@tum.de

Page 32

References
[1] Valve Corporation. ”SteamVR Plugin”. https://www.assetstore.unity3d.

com/en/#!/content/32647

[2] Unity Technologies. ”Configurable Joint”. https://docs.unity3d.com/

Manual/class-ConfigurableJoint.html

[3] Wikipedia. ”PID controller — Wikipedia, The Free Encyclopedia”. https:

//en.wikipedia.org/wiki/PID_controller

[4] Unity Technologies. ”Rigidbody.AddForce”. https://docs.unity3d.com/

ScriptReference/Rigidbody.AddForce.html

[5] Unity Technologies. ”Quaternion.eulerAngel”. https://docs.unity3d.com/

ScriptReference/Quaternion-eulerAngles.html

[6] Unity Technologies. ”Rigidbody.AddTorque”. https://docs.unity3d.com/

ScriptReference/Rigidbody.AddTorque.html

[7] Messner, B & Tilbury, D. ”Introduction: PID Controller Design”.

http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&

section=ControlPID

[8] Unity Technologies. ”Quaternion.Slerp”. https://docs.unity3d.com/

ScriptReference/Quaternion.Slerp.html

[9] Unity Technologies. ”Vector3.Slerp”. https://docs.unity3d.com/

ScriptReference/Vector3.Lerp.html

[10] Unity Technologies. ”Rigidbody.maxAngularVelocity”. https://docs.

unity3d.com/ScriptReference/Rigidbody-maxAngularVelocity.html

[11] Skydancer Interactive. ”Archangel”. http://store.steampowered.com/app/

553880/Archangel/

[12] HTC Corporation. ”Vive Tracker”. https://www.vive.com/eu/

vive-tracker/

[13] Lawrence & JustJeff & Woodshop & jwmucha. ”Kuckles Quick Start”. https:

//steamcommunity.com/sharedfiles/filedetails/?id=943406651

All sites have been last accessed on September 10, 2017

Page 33

https://www.assetstore.unity3d.com/en/#!/content/32647
https://www.assetstore.unity3d.com/en/#!/content/32647
https://docs.unity3d.com/Manual/class-ConfigurableJoint.html
https://docs.unity3d.com/Manual/class-ConfigurableJoint.html
https://en.wikipedia.org/wiki/PID_controller
https://en.wikipedia.org/wiki/PID_controller
https://docs.unity3d.com/ScriptReference/Rigidbody.AddForce.html
https://docs.unity3d.com/ScriptReference/Rigidbody.AddForce.html
https://docs.unity3d.com/ScriptReference/Quaternion-eulerAngles.html
https://docs.unity3d.com/ScriptReference/Quaternion-eulerAngles.html
https://docs.unity3d.com/ScriptReference/Rigidbody.AddTorque.html
https://docs.unity3d.com/ScriptReference/Rigidbody.AddTorque.html
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://docs.unity3d.com/ScriptReference/Quaternion.Slerp.html
https://docs.unity3d.com/ScriptReference/Quaternion.Slerp.html
https://docs.unity3d.com/ScriptReference/Vector3.Lerp.html
https://docs.unity3d.com/ScriptReference/Vector3.Lerp.html
https://docs.unity3d.com/ScriptReference/Rigidbody-maxAngularVelocity.html
https://docs.unity3d.com/ScriptReference/Rigidbody-maxAngularVelocity.html
http://store.steampowered.com/app/553880/Archangel/
http://store.steampowered.com/app/553880/Archangel/
https://www.vive.com/eu/vive-tracker/
https://www.vive.com/eu/vive-tracker/
https://steamcommunity.com/sharedfiles/filedetails/?id=943406651
https://steamcommunity.com/sharedfiles/filedetails/?id=943406651

	Introduction
	Motivation
	HTC Vive
	Unity

	User Interaction
	Game modes
	Head Position
	Hand Position
	Inverse Kinematics
	Mech orientation

	Physics based Control
	Motivation
	Unity Joints
	PID controller
	PID controller in Unity
	Mech position control
	Position PID
	Velocity PID
	Angular Velocity PID
	Combined Velocity and Angular Velocity PID

	PID Tuning
	Improving the physics simulation
	Interaction with the Environment

	Mech Design
	First Prototype
	Second Prototype
	Final Mech

	Discussion
	Related Work
	Future Work
	Conclusion

	References

