
DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

3D Environment Reconstruction Based on
an Externally Tracked Camera in Virtual

Reality

Lukas Bonauer

DEPARTMENT OF INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Bachelor’s Thesis in Informatics: Games Engineering

3D Environment Reconstruction Based on
an Externally Tracked Camera in Virtual

Reality

3D-Rekonstruktion der Umgebung anhand
einer extern getrackten Kamera in Virtual

Reality

Author: Lukas Bonauer

Supervisor: Prof. Gudrun Klinker

Advisor: Sandro Weber

Submission Date: 2017-09-15

I confirm that this bachelor’s thesis in informatics: games engineering is my own work

and I have documented all sources and material used.

Munich, 2017-09-15 Lukas Bonauer

Acknowledgments

I want to thank my advisor Sandro Weber for pointing me in the right direction when

needed and for answering all my questions and Frieder Pankratz for introducing me to

the wonders of Ubitrack.

Abstract

Room-scale virtual reality has arrived on the market and with it the size of somebody’s

room has become a limiting factor for immersive experiences. Rectangular boundaries

displayed in VR roughly indicate where the available area ends, but they cannot account

for smaller obstacles or more complex room geometry.

In this thesis, the potential use of the integrated camera of a current VR headset for

online 3D reconstruction is investigated in order to allow a more accurate display of

room boundaries. The feature-based SLAM algorithms PTAM and ATAM are adjusted

to incorporate data from the SteamVR tracking system and the resulting sparse point

clouds are visualized in a virtual scene. The results show that the quality of the

reconstructions of both algorithms still suffer from considerable noise and require

further tweaks and optimizations in order to be usable. Surprisingly, it is found that

while the added information about the camera poses does contribute to a more globally

consistent result, it seems to increase the noise in the point clouds. Overall, the approach

provides a decent foundation for future work.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

1.1 Problem statement . 1

1.2 Contributions . 2

1.3 Overview . 3

2 Background 4

2.1 Camera model . 4

2.2 3D reconstruction . 5

2.3 OpenVR and SteamVR . 7

2.4 Ubitrack . 9

3 Related work 12

4 Approach 13

4.1 OpenVR for Ubitrack . 13

4.1.1 Initialization . 14

4.1.2 Polling rate . 14

4.1.3 Camera calibration . 15

4.1.4 Image data . 17

4.1.5 Pose data . 17

4.2 Adaptation of PTAM . 17

4.2.1 Overview over PTAM . 18

4.2.2 Integration of the reference pose 21

4.2.3 Integration into Ubitrack . 22

v

Contents

4.3 Adaptation of ATAM . 24

4.3.1 Overview over ATAM . 24

4.3.2 Integration of the reference pose 26

4.3.3 Integration into Ubitrack . 26

4.4 Visualization in virtual reality . 27

4.4.1 Technical framework . 27

4.4.2 Interactivity . 27

4.4.3 Displaying stored point clouds . 28

5 Evaluation 29

5.1 Comparison of camera calibration modes 29

5.2 Comparison of PTAM and ATAM . 30

5.3 Impact of the reference pose . 32

5.4 General observations . 34

6 Future Work 36

7 Conclusion 37

List of Figures 38

Bibliography 39

vi

1 Introduction

Virtual reality is on the rise again, with consumer hardware ultimately becoming

powerful enough to provide a satisfactory user experience through affordable head-

mounted displays. With room-scale positional tracking, walking around in your living

room while immersed in a virtual game world is no longer just a dream of the future.

But the available space is limited and as a result, the real world still plays a necessary

role in the experience. VR systems typically allow the user to define a rectangular

boundary of the available space, which is displayed as a warning in the virtual scene.

But what if the real world could be modeled more accurately than that? If a detailed

representation of the surrounding geometry were available, it would open up a range

of new possibilities: The virtual warning boundary could closely fit obstacles and

walls in the room, thus allowing users to make better use of the available space, for

example empty spots above low furniture, with decreased risk of hitting something

while immersed. Furthermore, an application could display the full 3D model of the

room in the virtual scene and overlay it with virtual content, enabling many of the

possibilities of augmented reality, while avoiding the technological complications of

see-through head-mounted displays and having the user fully immersed in a controlled

environment instead.

In this thesis, the vast research on 3D reconstruction is combined with current virtual

reality systems to work towards an implementation of this idea. The front-facing

camera of the HTC Vive is used in combination with its room-scale tracking system to

reconstruct 3D information about the environment in real time.

1.1 Problem statement

The goal of this project is to create a framework that is able to automatically construct a

detailed and textured 3D model of a VR user’s environment in real time, using only

1

1 Introduction

the hardware capabilities of an off-the-shelf HTC Vive headset. This framework could

then be used in a utility service, enhancing the coarse Chaperone bounds displayed

by SteamVR today, or as part of a full VR/AR application that can augment the

reconstructed model with additional content and interactivity.

For the scope of this thesis, this ambitious goal is narrowed down to a framework

capable of creating a real-time sparse reconstruction and rendering it as a point cloud

into a VR scene, true to scale and properly aligned with the real world. Further

converting the point cloud into a 3D model and texturing it is not covered here, but is

left open as a future research topic.

This particular set-up is unusual and rarely studied in literature: Real-time algorithms

usually assume unknown camera poses and try to estimate them at the same time as

they are reconstructing the environment (SLAM). This may be because a tracked camera

as the by-product of a virtual reality consumer device is a very recent innovation.

1.2 Contributions

It was decided to build the solution on top of existing algorithms in order not to

reinvent the wheel. Parallel Tracking and Mapping (PTAM) by Klein and Murray [8]

and Abecedary Tracking and Mapping (ATAM) by Uchiyama et al. [23] were chosen

because they are open-source, relatively easy to understand and match the requirements

of the problem. They serve as two alternative implementations and are later compared.

As its middleware, the project uses the Ubitrack framework [13]. The main code

contribution is the development of several Ubitrack components:

• a device driver that obtains tracking poses and camera images from an OpenVR-

enabled device such as the HTC Vive

• modification of PTAM to make use of known camera poses

• integration of ATAM into Ubitrack and equivalent modification to use known

camera poses

2

1 Introduction

1.3 Overview

The thesis is structured as follows: Chapter 2 explains important background knowledge

used throughout the thesis and puts the presented solution into the global context of

3D reconstruction. Chapter 3 then gives a brief overview of related work on different

categories of 3D reconstruction. It is followed by the main approach in chapter 4, which

describes the developed software components and their integration into a VR scene in

detail. The quality of the results and their suitability for the presented use cases are

discussed in chapter 5, while chapters 6 and 7 give an outlook on the work left to do

and possible developments in the future.

3

2 Background

This chapter explains necessary background knowledge about the topics covered in

this thesis.

2.1 Camera model

An essential mathematical aspect of vision-based algorithms is their representation of

the camera. Its model is usually split into its internal parameters (intrinsics) and its

external parameters (extrinsics).

For the camera intrinsics, there exist many complex and generic representations that

account for distortion as well as algorithms that can directly deal with them [11]. But

in this context, a simple pinhole model is sufficient, as it simplifies the calculations and

because it is possible to undistort captured images before processing them.

With a pinhole camera, the transformation from world coordinates to the image

plane is linear and can be described by the 3 × 3 matrix

K =


fx 0 px

0 fy py

0 0 1


where fx and fy denote the focal length (expressed in pixels in the respective di-

mension) and px and py the center of projection (also in pixels). K is usually called

the camera calibration matrix [5]. The 3D reconstruction algorithms used here assume

that this matrix is fixed over time and known, that is, the camera is assumed to be

calibrated.

The camera extrinsics – here referred to as the camera pose – describe the camera’s

location and orientation in the world. They consist of a rotation matrix R and a

translation matrix T (when using homogeneous coordinates (x, y, z, 1)T), which together

4

2 Background

describe the transformation from world space to a camera-centered coordinate space [9].

Note that T denotes the location of the world origin with respect to the camera, not

vice versa.

2.2 3D reconstruction

The extraction of 3D information from different types of sensor data is a very diverse

topic. A practical distinction is between active and passive methods, where the former

use sensors that illuminate the scene in a controlled fashion (for example with a laser

or projector), often modulated over time or space, while the latter solely rely on passive

sensors, most commonly cameras [9].

Another distinction can be made between the number of vantage points involved.

It is possible to infer depth information from a single vantage point – for example by

looking at textures, occlusion, the defocus caused by camera lenses or the time-of-flight

of a laser beam. More commonly, two or more vantage points are used: a camera paired

with a projector (structured light [18]), a stereo camera rig, a moving camera, etc.

Depending on the goals and available hardware, the 3D reconstruction problem can

be solved with many different algorithms, some of which are laid out in chapter 3.

The focus of this thesis lies on one particular passive multi-vantage-point method:

structure from motion. For this method, images from a monoscopic moving camera are

used as the foundation. More specifically, we look at incremental and real-time structure

from motion, where the reconstruction is extended and improved while the camera is

still active.

Furthermore, we focus on feature-based structure from motion, where the importance

lies on high contrast areas of the image – salient edges and corners. Since such features

are usually not present on low-textured surfaces such as single colored walls, feature-

based reconstructions result in sparse point clouds, with 3D points only where enough

feature points could be detected. In contrast, dense methods make use of all available

pixel data and produce much more detailed point clouds and full depth maps, at the

cost of more computation power and complexity. In order to be feasible for real-time

reconstruction, they need to make heavy use of parallelization [12].

Common tasks in feature-based structure from motion include:

5

2 Background

view 1 view 2

X

x2x1

R

r

Figure 1: Epipolar relationships between two views. Two measurements x1 and x2 of

the 3D point X. The ray R through x1 projected onto the image plane of

view 2 is the epipolar line r, which intersects x2.

• Feature extraction From a given image, find a set of the most salient features and

return their projected points. A very popular algorithm for this is FAST [17].

• Correspondence / Feature matching Given two views and a set of projected

points for each view, find pairs of points that represent (approximately) the same

location in the world.

This task is facilitated if the transformation between the two views is known: By

taking the first view and constructing a 3D ray from the camera origin through a

point on the image plane, this ray will correspond to a line on the image plane of

the second view, known as the epipolar line (see figure 1). If the spatial relationship

between the two image planes is known, the location of the epipolar line can

be calculated. Since a potential feature match has to lie somewhere on that line,

this reduces the possibilities to a one-dimensional search space. As a result, both

computational complexity and the amount of false positives is reduced, since

similar looking features at different spots are less likely to be misidentified as

matches.

• Triangulation Given the 2D projections of a 3D point in two views with known

poses, find the 3D coordinates of the point. This is equivalent to finding the

6

2 Background

intersection between the rays from the two camera origins through the respective

projected points. However, under the influence of noise, those rays generally do

not intersect, so it is necessary to find the most probable point of intersection [6].

The distance between two views used for correspondence and triangulation is called

the baseline and has a significant impact on the quality of reconstruction. If the baseline

is too small, the rays are almost parallel and the noisy intersection has a large margin

of error [9]. But if the baseline is too large, the quality of feature matching is impaired,

as fewer points may be visible in both views and their visual disparity increases when

viewed from more different angles.

When a video camera is used for feature-based structure from motion, performing

triangulation every frame is impractical. Not only due to performance concerns, but

also because the baseline is too small for triangulation. This is why algorithms have

to decide which frame to promote to a keyframe first and only perform triangulation

between keyframes, thus ensuring a good baseline.

The additional data between keyframes can be used to assist feature matching: due

to the small timestep, the relative movement of feature points on the image plane is

minimal, so they can be matched more easily by a technique called trail tracking.

Note that the most common use case of real-time structure from motion is visual

SLAM (simultaneous localization and mapping), where 3D reconstruction is coupled

with an estimation of the camera pose. In our use case – because of the use of the

SteamVR tracking system – the camera pose is known with high accuracy, thus (in

theory) reducing the problem to mapping only.

2.3 OpenVR and SteamVR

OpenVR is an API developed by Valve in order to allow applications to interface

with virtual reality hardware without directly programming for a specific hardware

vendor [24].

At the time of writing, Valve’s SteamVR is the only known runtime that implements

OpenVR and the HTC Vive is the only OpenVR-enabled hardware that is also equipped

with a camera.

7

2 Background

SteamVR tracking (also called Lighthouse tracking) uses two stationary base stations,

which are installed in opposite corners of the tracking space. They send out beams of

infrared light in a 120◦ cone with an effective range of about five meters. Each tracked

object – in a standard setup the head-mounted display and two controllers – contains

up to 32 infrared sensors spread out across its surface, which detect the beams of the

base stations.

Tracking is achieved by the base stations sending out precisely timed signals: First, a

pulse is sent out in all directions, synchronizing all sensors in the room. Next, each

base station sweeps its beam across the room, first horizontally then vertically. The

sensors measure the delay between when they were hit by the pulse and the sweep and

send this data to the host (the computer running SteamVR), which calculates the angles

between the base station and the sensors and from this the position and orientation of

each object relative to the base station.

While the information from a single base station is enough to calculate the pose,

sensors need to have a line of sight to the station, so using two stations makes tracking

more robust to occlusion, for example caused by the human who wears the VR headset

standing in the way. Additionally, the accuracy of the pose is increased if a device is

visible to both base stations.

Note that the base stations do not need to be connected to the host or the tracked

devices, but they need to be placed in view of each other so they can synchronize

themselves and automatically calculate their placement relative to each other.

By combining the data from the infrared sensors with inertial measurement units

(IMUs) on the devices, SteamVR achieves consistent tracking with submillimeter accu-

racy at an update rate of 1000 Hz [25].

The camera used in this project is part of the head-mounted display of the HTC Vive.

Its out-of-the-box usage at the time of writing is somewhat limited: If enabled, its video

is displayed in VR in a tiny window next to one of the hand controllers in the settings

menu of SteamVR. It is also used for the “room view” mode, which overlays a stylized

version of the camera image in the virtual world, as shown in figure 2. This allows

some rough interaction with the real world without taking off the headset. Because

the camera is angled slightly downwards on the headset, the overlay does not fill the

top section of the user’s field of view. The overlay can also be configured to only be

8

2 Background

visible when the user comes close to the edge of the play area (as part of the Chaperone
system), but due to the monoscopic nature of the camera, the projection appears flat

rather than as actual geometry, so knowing when exactly you will hit a small obstacle

is difficult. Also, since the camera is several centimeters away from the user’s eyes, the

view is not perfectly aligned with what the user would see with their own eyes.

Figure 2: Room view overlay of SteamVR

The camera is exposed to VR applica-

tions through OpenVR’s tracked camera
interface, which allows access to its video

stream as well as to its pose, as deter-

mined by the SteamVR tracking system.

The transformation from the pose of the

whole head-mounted display to the pose

of the camera is already applied by the

runtime, presumably by applying a pre-

programmed offset and rotation.

2.4 Ubitrack

Ubitrack is a framework developed by the

Forschungsgruppe Augmented Reality at

the Technical University of Munich and

heavily used in all components of this

project. It is designed as a generic middleware for dynamic and heterogeneous tracking

environments and its goal is to provide an optimal estimate of geometric relationships

between arbitrary objects [13].

Ubitrack has many features which are not relevant to this project, such as the

automatic deduction of spatial relationships at runtime or the distribution of tracking

via multiple networked devices. This section only includes a brief summary of the

concepts relevant to the approach, for more details please refer to the respective

literature on Ubitrack [13, 15, 16].

A scene in Ubitrack is defined in a spatial relationship graph (SRG). It specifies the

arrangement of devices and objects in the scene with respect to each other. Formally,

9

2 Background

nodes represent coordinate systems and edges represent transformations between them.

These transformations are estimated by measurements, which can come from various

sources: They may come from an actual sensor, be read from a file or be inferred by an

algorithm. An edge also has various properties, like the data type of its measurements,

for example a full 6 DoF pose (3D position and rotation) or a 3 × 3 intrinsics matrix.

The data may also contain information about the measurement uncertainty (like a

covariance matrix for a pose), allowing the system to propagate information about the

accuracy of values through the graph. Some edges are also considered static: their

values are fixed over time, for example the transformation between rigidly attached

objects or the camera intrinsics [7, 13].

Measurements are taken at discrete points in time, so they need to include a time-

stamp. Since sensors usually generate measurements asynchronously, great care must

be taken when combining measurements from multiple sources. If differences in

the timestamps of measurements are not accounted for, tracking accuracy is greatly

reduced [15]. Hence, edges are also marked with their synchronization mode: A push

edge generates an event every time a measurement is made and sends it to interested

consumers. Conversely, a pull edge provides a time-continuous function that can be

queried for measurement values at any given time. In practice, this works either if

the value is constant or if a push-pull-conversion has been applied – for example by

interpolating or extrapolating sensor data.

While the formal model asserts edges as transformations between coordinate systems,

in practice there is some leeway in what they may represent: Data types also include

raw image data and the button type – a scalar value indicating that some command

has been sent. A “button” edge is usually necessary when a tracking scenario re-

quires user interaction and – by convention – connects the abstract nodes “Event” and

“Event Space”, which do not represent real objects, but are necessary for button events

to fit into the model of the framework.

The actual computations in Ubitrack are performed in components, which are

decoupled algorithms that implement a specific subtask, for example sensor drivers,

vision algorithms, camera calibration or debug output. A component defines patterns,

which are subgraphs of an SRG. A pattern represents the signature of an algorithm: It

defines its inputs and outputs, and also places constraints on the geometric relationship

10

2 Background

between them [16]. When visualizing a pattern, input edges are drawn with a dashed

line, output edges with a solid line1.

Figure 3: Example of a pattern: In-

version

Figure 3 shows one of the simplest possible pat-

terns: the inversion of a pose. It takes a transfor-

mation from coordinate system A to B through its

input edge Input Pose, which is of type POSE_6D

and internally represented by a 4x4 transforma-

tion matrix. The software component behind the

pattern inverts the matrix, which then represents

a transformation from B to A, and provides the result through its output edge Inverted
Pose. Both edges have the synchronization mode AUTO, which means the pattern can be

used on both a push or a pull edge.

Finally, a data flow network (DFN) connects multiple patterns in order to form a

full SRG. Each input edge needs to be connected to an output edge with compatible

data type and synchronization mode, so the underlying component knows where it can

get its input data from. Usually, a DFN contains at least one pattern with only output

edges (the sensor data) and at least one pattern with only input edges (the consumer

processing the data that the application is interested in). The DFN is what Ubitrack

uses at runtime to propagate data between the components and to answer queries by

the application.

1 This corresponds to the convention used by the graphical tool trackman. In most literature about
Ubitrack, the visualization is actually converse: input edges are drawn with solid lines, output edges
with dashed lines. In order to be consistent with the included screenshots, trackman’s version is used
in this thesis.

11

3 Related work

3D reconstruction based on imagery has been studied for decades. There is no consen-

sus on the naming in literature: structure from motion, multi-view geometry and multi-view
stereo often appear while describing the same thing, while some differentiate the terms

and see one as a subset of another.

More importantly, the most glaring distinction between methods is whether they are

designed for real-time use or allow long-running calculations. The former usually work

incrementally, processing new images as they come in, while the latter receive a fixed

set of images to work with.

For long-running structure from motion, there exist ready-to-use tools such as

openMVG [10] or COLMAP [19, 20].

Real-time algorithms that work on video input most commonly solve the SLAM

problem – estimating both the camera position and a map of the world at the same

time. Feature-based examples include MonoSLAM [4], PTAM [8] and ATAM [23].

Other approaches part ways with the reliance on feature points and calculate depth

information for every pixel, such as DTAM [12] and REMODE [14].

Using the tracked camera of the HTC Vive results in an unusual set-up: It combines

real-time mapping with a fully calibrated (internally and externally) moving camera.

To the author’s knowledge, no algorithms with published implementations exist that

fit this scenario (while Carceroni et al. [3] use GPS data as priors for camera locations,

these do neither include orientations nor is the presented algorithm designed to work

in real time). Since SLAM is the problem most closely related to the goal of this thesis,

it builds on two established algorithms from that field – PTAM and ATAM – and

augments their calculations with reference poses from the external tracking system.

12

4 Approach

In the scope of this thesis, an application was implemented that can read camera data

from the HTC Vive and run either PTAM or ATAM, while displaying their resulting

point clouds in a VR scene. This pipeline can be broken down into several decoupled

components.

Section 4.1 describes the acquisition of camera images and reference poses from

the VR headset through OpenVR and its integration into Ubitrack. It also describes

the various options for camera calibration and image undistortion in the context of

OpenVR’s API.

After an undistorted image and its pose have been acquired, the 3D reconstruction

algorithms come into play. Section 4.2 explains the original PTAM algorithm and then

focuses on the modifications that were made so it can be used in combination with the

reference pose. Section 4.3 does the same with the modifications of ATAM, and also

highlights key differences to PTAM. Both algorithms can be used interchangeably as

they operate on the same kind of data and they both provide a sparse point cloud as

output.

Finally, section 4.4 examines the integration of the algorithms into an interactive VR

scene and the visualization of the point clouds obtained from PTAM and ATAM.

4.1 OpenVR for Ubitrack

The first step is to interface with the OpenVR API to obtain the camera images and

tracking information from the HTC Vive. This has been achieved by implementing a

Ubitrack component to expose the data to the SRG. While the API provides a variety of

tracking data, only access to the relevant part has been implemented in the scope of

this thesis: the tracked camera. The camera of the HTC Vive has an unusual resolution

of 612x460 pixels and runs at 60 Hz.

13

4 Approach

4.1.1 Initialization

OpenVR is designed to allow multiple applications to access the HMD at the same

time. It allows each process to independently connect to and disconnect from the

OpenVR runtime. Upon initialization, the application can specify one of the following

application types:

• “VRApplication_Scene – A 3D application that will be drawing an environment.

• VRApplication_Overlay – An application that only interacts with overlays or the

dashboard.

• VRApplication_Background – The application will not start SteamVR. If it is not

already running the call with VR_Init will fail [...].

• VRApplication_Utility – The application will start up even if no hardware is

present. [...] This application type is appropriate for things like installers.” [24]

Only one application of type Scene can be active at the same time. For the purpose of

3D reconstruction, the Background mode is sufficient (if SteamVR can be assumed to be

already running when the process is started). For other use cases, the application type

can be set as a parameter on the component.

Note that the initialization is scoped to the entire process, so if Ubitrack is embedded

into a VR-enabled application (as exercised in section 4.4), the component has to skip

both initialization and shutdown, since it would otherwise interfere with the hosting

application.

4.1.2 Polling rate

OpenVR currently only exposes a polling interface to the camera, so the images have to

be polled at regular intervals. Valve recommends polling approximately every 16 ms1.

However, when the polling rate is merely equal to the camera framerate, it has proven

to be difficult to synchronize them reliably. This results in missed frames and irregular

delays between new measurements. This problem can be mitigated by making use of

1see https://github.com/ValveSoftware/openvr/blob/5d0574bf6473130d25dd296ad30206ccd148590b/
headers/openvr.h#L3231 (accessed 2017-08-17)

14

https://github.com/ValveSoftware/openvr/blob/5d0574bf6473130d25dd296ad30206ccd148590b/headers/openvr.h#L3231
https://github.com/ValveSoftware/openvr/blob/5d0574bf6473130d25dd296ad30206ccd148590b/headers/openvr.h#L3231

4 Approach

the frame sequence number that is provided in the frame header of each API calls. This

enables the polling thread to only copy the new image data once the sequence number

has actually increased, thus it can poll at a much higher frequency with minimal

additional CPU cost, reducing the likelihood of skipping frames and the overall latency

between the time a new camera frame is available and the time it is pushed to the

output port.

In the Ubitrack component, the polling rate can be set as a parameter. Latency-critical

applications can set it to a high frequency in order to get measurements as early as

possible and also to ensure no frames are skipped. In contrast, applications that do

not need to process the full 60 frames per second can set it to even lower values,

intentionally skipping every nth frame while saving processing power.

4.1.3 Camera calibration

Many computer vision algorithms – including the ones used later for 3D reconstruction

– need knowledge of the camera intrinsics as well as images that are free from distortion.

OpenVR provides some functionality to facilitate this, but Ubitrack also has existing

camera calibration components that can be used instead.

Images can be requested from OpenVR in one of two modes: distorted or undistorted.

The distorted mode uses the native image of the camera – where the distortion is caused

by the fish-eye lens. In undistorted mode, the image is internally transformed with

some unknown parameters and only then returned to the caller.

Additionally, the API can be queried for the focal length and the center of projection
(but only in undistorted mode), which is sufficient to build the intrinsic matrix. Hence,

the Vive camera can be fully calibrated without any additional steps if you are willing

to rely on the values used by OpenVR.

Alternatively, undistortion and intrinsics can also be done with the help of Ubitrack.

This requires a camera calibration step, where images of a calibration grid from multiple

angles are used to calculate the distortion parameters as well as the focal length and

center of projection. After calibration, the parameters are stored in a camera model file,

which can later be used in the actual application.

15

4 Approach

Figure 4: SRG patterns of the OpenVR component. On the left: uncalibrated, right: file
calibrated or software calibrated.

The Ubitrack component leaves the choice of calibration to the user, providing three

different versions of the pattern:

• uncalibrated: This pattern only outputs the raw image data obtained from

OpenVR. It can be configured to use either distorted or undistorted mode. It is

intended to be used in the camera calibration SRG.

• file calibrated: This pattern takes a camera model file generated in the calibration

step as input, undistorts the image based on the model file and outputs that and

the intrinsic matrix.

• software calibrated: This pattern uses the undistorted images as well as the

intrinsic matrix provided by OpenVR and outputs both.

The impact of the calibration mode on the spatial relationship graph of the component

is visualized in figure 4.

16

4 Approach

4.1.4 Image data

Images are read in RGBA mode from OpenVR with 8 bits per channel. Note that the

alpha channel is unused in all modes described here.

In all versions of the pattern, the unmodified data is pushed to the Raw Image port

(see figure 4). In the calibrated version, the undistorted image is also pushed to the

Undistorted Image port and converted to grayscale (Undistorted Gray Image port).

4.1.5 Pose data

Each camera frame is augmented with tracking information about its pose, consisting

of a 3x4 transformation matrix and a vector for the camera’s linear and angular

velocity. OpenVR provides these in the frame header struct and already applies the

transformation from the headset’s origin to the camera’s position on the headset. The

pose data is already in sync with the camera frames and is pushed together with the

image data.

In the Ubitrack component, only the transformation matrix of the pose is currently

provided as an output port (the Camera Pose edge in figure 4). While the velocity

could theoretically be used later for further processing, this is not done in the current

implementation. If no pose is available for a frame (because the trackers are obstructed

or out of range of the base stations), the frame is skipped entirely.

4.2 Adaptation of PTAM

The original Parallel Tracking and Mapping (PTAM) algorithm by Klein and Murray [8]

is designed for simultaneous localization and mapping (SLAM), so it works without

external knowledge of the camera pose. It takes a video stream and incrementally

estimates the camera pose (tracking) and a 3D map of the world (mapping) relative

to each other in real-time. The tracking works at framerate, while the mapping runs

on a separate thread, allowing more computationally expensive tasks such as bundle

adjustment to be executed to improve accuracy.

For this project, only the mapping aspect of PTAM is relevant for the 3D reconstruc-

tion since the camera poses are already known from the OpenVR tracking system.

PTAM’s tracking component is thus redundant in this scenario. However, because

17

4 Approach

tracking and mapping are closely interconnected, it is beneficial to understand both of

them before looking at the necessary adaptations for this use case.

Note that before the start of this project, the original implementation of PTAM had

already been modified by the Forschungsgruppe Augmented Reality at TUM, albeit

with a different purpose. It was already converted to a Ubitrack component and some

integration of a reference pose had been started. For this thesis, several changes have

been made, including better handling of different frame sizes and a full use of the

reference pose.

4.2.1 Overview over PTAM

In this section, the original PTAM algorithm is briefly described. Details that are not

relevant for further discussion have been left out or simplified. For a full description,

please refer to Klein’s and Murray’s original paper [8].

PTAM works with undistorted grayscale images and assumes that the camera intrin-

sics are known.

A core idea behind PTAM is to split tracking and mapping into two separate threads.

This allows tracking to be performed continuously at framerate, while the mapping

thread can run much more computationally expensive tasks in parallel. The mapping

thread runs continuously in the background and prioritizes its work based on what

new data it has to work with:

1. if a new keyframe is available, integrate it into the map

2. run local bundle adjustment

3. run global bundle adjustment

4. find new map points in old keyframes and reevaluate outliers

Initialization

To bootstrap both tracking and mapping, an initial map has to be acquired in a special

initialization step: The user presses a key to indicate they want to start tracking (first

keyframe). Then they translate the camera sideways and press a key again once the

baseline is wide enough (second keyframe).

18

4 Approach

In the meantime, PTAM tracks the trails of salient feature points (FAST corners [17])

and uses their locations in the first and second keyframe to get matching stereo pairs for

the five-point algorithm [21], which gives an initial estimate of the camera movement

between the first and second keyframe.

Using those two pose estimates, the first map points are inserted by triangulating the

stereo pairs in the two keyframes. Next, to get a good initial map, bundle adjustment

is run to refine the map.

Lastly, PTAM attempts to find a dominant plane (for example the surface of a table)

in the points and aligns the map’s coordinate system with it.

Tracking

Incoming images are first decomposed into four pyramid levels, each with half the

width and height of its predecessor. This is done primarily so points viewed from

different distances can be matched better by finding their pixels in a different pyramid

level. For example, after moving closer to an object until it appears twice as large in

the image, it now occupies roughly the same amount of pixels in pyramid level 1 as it

did before the movement in pyramid level 0 – because at pyramid level 1 the image is

scaled down by a factor of two.

For each pyramid level, FAST corner detection [17] is used to find feature points in

the image. These feature points are then used to find existing map points in the current

frame (referred to as patch search in PTAM) – the essential step to obtain observations of

a world point from multiple viewpoints.

For this to happen, each map point is first projected into the camera coordinate

system of the current frame (based on the camera intrinsics and a prior estimate of the

camera’s current pose). Next, a patch template is generated – a small 8x8 pixel region

of the image in which the map point was first discovered – and warped according to

what the square patch would look like from the current perspective. The pyramid level

which matches the size of the warped patch best is selected and all feature points of

that level within a fixed radius of the projected map point are searched. The best match

is selected (based on its zero-means sum of squared differences score) and used as a

measurement, if its score passes a fixed threshold.

19

4 Approach

To improve accuracy and performance, some further refinements are made to the

measurements, which are left out here for simplicity reasons.

Once all measurements have been made for the current frame, the new camera pose

is estimated by minimizing the overall reprojection error of the points (answering the

question “Which pose of the camera best explains the new image positions of the map

points?”).

Lastly, the tracker assesses the current tracking quality by looking at the percentage

of successful measurements and uses that to decide if it is good enough to submit a

new keyframe or bad enough to require relocalization.

If the tracking quality is good enough and the current pose is far enough away from

the closest keyframe, the current frame is submitted to the mapping thread as a new

keyframe.

If relocalization is required, PTAM attempts to recover by comparing a heavily down-

scaled and blurred version of the current frame to all other keyframes and selecting

the most similar image. Then, it finds a rotation-only estimate of the transformation

between the selected keyframe and the current frame by using the ESM algorithm [1].

Mapping

New keyframes Once a new keyframe has been submitted by the tracking thread,

the already measured features are used as the foundation for new map points. PTAM

only filters out features points that are far enough away from existing map points (on

the image plane) and uses them as candidates for new map points.

To extract depth information from those candidates, it searches for corresponding

features in the closest existing keyframe by performing epipolar search. If a match was

found, it triangulates the 3D point and inserts it into the map.

Bundle adjustment When the mapping thread is not busy adding keyframes, it starts

bundle adjustment to improve the accuracy of the map. Due to the inherent complexity

of bundle adjustment, it first performs it locally – only considering the most recently

added keyframe and the four keyframes closest to it, and only including the map

points visible in those keyframes. Once that has converged, global bundle adjustment

is considered, but it is aborted as soon as a new keyframe arrives.

20

4 Approach

Data association refinement At lowest priority, the mapper tries to find map points

in older keyframes where they have not been attempted to be measured yet. This

increases the number of viewpoints from which the points are visible and can thus lead

to a better optimization in the next bundle adjustment run.

The mapper also reconsiders outlier decisions: Points that have previously been

judged as “not fitting the data” are given a second chance and points that have not fit

well into the map during bundle adjustment are marked as outliers.

4.2.2 Integration of the reference pose

The addition of the reference pose from OpenVR simplifies and changes some aspects

of PTAM. First and foremost, the coordinate systems of the map and OpenVR have

to be aligned, so the reference poses correspond to the keyframe poses. This requires

several changes:

At the initialization stage, the 5-point-algorithm, which usually calculates the dis-

placement of the camera for the initial two keyframes, is replaced with the already

known values of the reference pose at the respective times. The world origin is thus

no longer at the origin of the first keyframe, but identical to the origin of the reference

poses.

The search for a dominant plane in the initial map and the alignment of the coordinate

system with it is redundant now as well – after room setup, OpenVR’s coordinate

system is already aligned with the floor, so it can be removed.

PTAM’s tracking system is not completely removed. While its main purpose – to

determine the camera pose – is in theory unnecessary due to the more reliable and

drift-free reference pose, the system still remains active so it can decide when a new

keyframe should be added to the map and so it can update important data about

the underway keyframe that the mapping thread uses (for example, the set of FAST

corners).

Furthermore, in practice, the accuracy of the map may actually improve when

PTAM’s internal tracking is used despite the reference pose, as long as the tracker can

measure enough points. This phenomenon is discussed in more detail in chapter 5.

As long as a reference pose is available, relocalization should never be necessary.

Even when the tracker cannot find any existing points, the frame can still be eligible for

21

4 Approach

a new keyframe.

When the mapper runs bundle adjustment (no matter if local or global), it originally

minimized errors by adjusting both the keyframe poses and the map points. However,

this is now detrimental to the mapping result, as it breaks the alignment of the

coordinate system with the reference pose. Bundle adjustment needs to be restricted

so all keyframe poses remain fixed (only the map points are changed). Even in this

mode, it still remains an important optimization, because the initial triangulation of

a point only uses two viewpoints, but by the time bundle adjustment is executed,

it may have also been observed by more recent keyframes or even found in older

keyframes by the data association refinement process described in the previous section.

These additional measurements can be leveraged by bundle adjustment for a more

accurate and consistent result.

Note that because the reference pose is available even before initialization, a good

point of time for the second keyframe could be determined automatically (when there is

a sufficient baseline and enough tracked features for a high-quality initial triangulation)

instead of requiring the user to press a key again. This has not been implemented.

4.2.3 Integration into Ubitrack

The spatial relationship graph of the Ubitrack component is shown in figure 5. At

startup, the component is idle and waits for an event on the Command Inputs port, which

starts the initialization stage of PTAM. All further user interaction is done through this

port – primarily initialization completion and resetting the tracker.

Images are received through the Image push input port. They are assumed to be

free of distortion and in grayscale format, analogous to the original PTAM algorithm.

Each received measurement is directly processed by the tracker. It first pulls the

corresponding measurement from the Reference Pose input port and then proceeds as

described in the previous sections. Note that the Camera Intrinsics port is only read

from once at startup, since the intrinsics are assumed to be constant over time.

These inputs are compatible with the OpenVR component described in section 4.1.

Its Undistorted Gray Image and Camera Intrinsics outputs can be directly connected to

the Image and Camera Intrinsics inputs of PTAM, respectively. OpenVR’s Camera Pose

22

4 Approach

Figure 5: SRG pattern of the modified PTAM component

output has to be inverted and converted to a pull edge (using a buffer) before it can be

used as the Reference Pose input.

While designed for use with OpenVR, the modified PTAM component is resolution

and framerate agnostic and can also be used with any other setup that provides a

camera with known intrinsics and known pose.

The output ports are also visualized in figure 5. The most important one is Feature
Points, which is a sparse point cloud – a list of 3D positions – containing all the map

points of the ongoing reconstruction. It is pushed every time the map is updated (when

either a new keyframe is added or bundle adjustment has completed).

The Camera Pose output contains the internal state of the camera in PTAM. This is

usually equal to the reference pose, but it differs if PTAM is configured not to use the

reference pose for its frame-by-frame tracking, but only for initialization and in case its

internal tracking is lost.

Information about the set of keyframes is provided through the Keyframe Poses and

Last Keyframe Pose ports, which are filled with a complete list of keyframes in order

of insertion and the most recent keyframe, respectively. They are updated whenever

a new keyframe has been added. Depending on the needs of the consumer of the

component, only looking at the most recent keyframe may be more appropriate.

Right now, only the keyframe poses are provided as output, which is mostly useful

for visualization (section 4.4), but the data could easily be extended to also include the

23

4 Approach

full images or even the set of visible map points per keyframe, which would be helpful

for further postprocessing of the reconstruction.

Finally, for debugging, the component provides pairs of 2D image positions through

Trail Start Positions and Trail End Positions. These are only relevant during PTAM’s

initialization stage, where the initial map is built from trail tracking. Both lists are

pushed at the same time and have the same length, the first one contains the pixel

coordinates of the tracked features in the very first keyframe, the second one for the

current frame.

4.3 Adaptation of ATAM

After several instabilities and problems with PTAM arose, which are described in

chapter 5, adaptation of a second SLAM algorithm for comparison became apparent.

ATAM was chosen because of its recency and its clean code design, promising easy

extensibility and integration into Ubitrack.

4.3.1 Overview over ATAM

Abecedary Tracking and Mapping (ATAM) [23] is an open-source toolkit for visual

SLAM that was developed for the ISMAR tracking competition 2015. According to

its authors, it is designed for beginners and to be easily modified. It is based on very

similar principles as PTAM and works with the same setup: a single moving camera in

an unknown environment.

The toolkit also comes with modules for camera calibration and video capture, but its

main component is the SLAM algorithm – which is split into frame-by-frame tracking

and keyframe-based mapping, just like PTAM. It is also a feature-based solution and

uses bundle adjustment for optimization. However, there are a few key differences to

PTAM:

• ATAM does not use epipolar search to match feature points between keyframes.

Instead, it tracks their trails frame-by-frame with the Lucas-Kanade feature

tracker [2] (KLT), which produces feature correspondences over a period of

time. While PTAM only uses KLT in its initialization stage, ATAM uses the

resulting trail start and end positions for each triangulation.

24

4 Approach

Figure 6: Example of the interactive relocalization process of ATAM

• ATAM performs both tracking and mapping on the same thread – which is made

possible by not requiring expensive epipolar search. Only bundle adjustment is

run on a separate thread.

• ATAM does not do any data association refinement – past keyframes are not

searched for possible observations of new map points.

• PTAM does not insert new map points at locations where there is an existing map

point in very close proximity. ATAM does not have this check, so its point clouds

often contain noisy batches of many points in a small space for longer mapping

runs, which should have ideally been recognized as a single feature point.

• When tracking is lost, ATAM starts an interactive relocalization process. It

automatically selects the keyframe closest to the pose where tracking was lost, but

also allows the user to manually select a keyframe in the interface. An overlay of

the edges in the selected keyframe is displayed to the user and they are instructed

to move the camera back to the corresponding location, while ATAM attempts to

refind the mapped features that were visible in the keyframe to continue tracking.

Figure 6 shows an example of such an overlay.

25

4 Approach

Figure 7: SRG pattern of the modified ATAM component

4.3.2 Integration of the reference pose

Due to its similarity to PTAM, the adaptation of ATAM to make it operate with a

reference pose required almost identical steps as with PTAM, which are described in

section 4.2.2. One notable difference is that the tracker still plays a central role, since

the trails produced by KLT are directly used for mapping.

4.3.3 Integration into Ubitrack

ATAM’s integration into Ubitrack had to be built from the ground up. The SRG

pattern of the component, shown in figure 7, was modeled to be mostly equivalent

to the pattern of modified PTAM. The input and output edges are the same, with the

exception of a new Debug Image output port. This allows direct display of ATAM’s

internal state for debugging purposes, showing the received image in the background

with various overlays. Most of the data is the one displayed in the original algorithm,

for example the currently tracked feature points are shown (white, if they already exist

in the map, blue if they are new point candidates).

Another small contribution that was made is a bugfix in the cvsba library [26] used

by ATAM for bundle adjustment: Switching bundle adjustment to the mode where it

only optimizes the map points and not the poses caused the wrapper to accidentally

discard all the changes made to the map points, because of a small typing error.

26

4 Approach

4.4 Visualization in virtual reality

While the point cloud is in the process of reconstruction, it is desirable to view it

directly within virtual reality. This enables an interactive reconstruction process, where

the user can move the camera to areas of interest that have not been reconstructed with

enough detail yet.

An immersive visualization of the feature points also provides a much more intuitive

experience than displaying them on a regular screen. The user can judge the accuracy

of the approximated geometry by physically moving around it and touching the real

surfaces with their hands or controllers.

4.4.1 Technical framework

Unity was chosen as the game engine to display the generated point clouds. An

integration of a Ubitrack DFN into Unity has already been developed at the chair [22].

To make this work, the desired output edges in the SRG are connected to an Applica-
tion Sink component with a specific name, which can be used by a Unity component to

read the data into the application.

The current implementation takes the generated point cloud from either ATAM or

PTAM and puts it through a custom vertex shader that renders it as dots. Note that

Unity imposes a technical limit of 65535 vertices per mesh, which can be circumvented

by splitting the point cloud into multiple meshes. However, due to the sparseness of

the point clouds, this has not been necessary in the applied scenarios so far.

The second type of data that is displayed is the set of keyframe poses, which both

ATAM and PTAM provide as output. These are displayed as small floating cameras

and help to understand which angles have been used for the reconstruction so far.

4.4.2 Interactivity

The reconstruction process can be started and stopped by pressing spacebar on the

keyboard or the trigger button on one of the Vive controllers. After moving the camera

horizontally, the same button must be pressed again. If successful, the rest of the

reconstruction is automatic and points should start appearing in the scene.

27

4 Approach

The reconstruction can be stopped with the same keys (PTAM) or with the R key on

the keyboard or menu button on the Vive controller (ATAM). To save the point cloud to

a file, the 8 key can be used. With ATAM, it is also possible to view the current camera

image and the active trails by using the touchpad.

4.4.3 Displaying stored point clouds

Separated from the immersive live reconstruction, stored point clouds can also be loaded

and displayed in VR. This allows manual comparison of different reconstructions. In

the scene, stored point clouds matching some file name pattern can be cycled through

with the menu key on the controller.

28

5 Evaluation

In this chapter, the quality of the reconstruction pipeline will be assessed. Section 5.1 in-

vestigates the accuracy of the different camera calibration options available in OpenVR.

It is followed by a qualitative comparison between the two main reconstruction algo-

rithms PTAM and ATAM in section 5.2. Next, the effect of using the reference pose on

accuracy is discussed in section 5.3. Finally, the general suitability of the approach for

bringing the real environment into VR is evaluated in section 5.4.

Quantitative tests for the accuracy of the generated point clouds are difficult to make:

An objective measure of the quality of a reconstruction would require comparison to

a ground truth, which was not available for the test environment. While acquisition

of ground truth data with a high-quality scanner would be possible, that would be

beyond the scope of this thesis.

Consequently, most of the results are derived from working with the algorithms, from

the analysis of their principles and from the interpretation of the generated example

point clouds.

5.1 Comparison of camera calibration modes

Accurate camera calibration is an important prerequisite for precise reconstruction

results. As described in section 4.1.3, there are multiple paths to obtain an undistorted

image and the camera intrinsics that are necessary for the reconstruction: (a) use

OpenVR’s internal undistortion algorithm and its hardcoded intrinsic parameters

or (b) use OpenVR’s undistortion algorithm, but do manual camera calibration to

get intrinsic parameters or (c) use the raw distorted image and do manual camera

calibration to get undistortion and intrinsic parameters.

Table 1 lists the resulting values (focal length and center of projection) for the camera

intrinsics of each calibration mode. For manual calibration, images of a known chess-

29

5 Evaluation

Mode Intrinsics

OpenVR undistortion Manual calibration fx fy px py

(a) yes no 279.60 279.60 -302.80 -224.04

(b) yes yes 279.79 279.18 -305.91 -236.49

(c) no yes 278.68 278.76 -303.20 -237.64

Table 1: Camera intrinsics of different calibration modes

board structure were taken from different angles and used to compute the parameters.

Images were added until convergence was reached. Note that mode (c) also resulted in

distortion parameters, which are only significant for that mode and are not displayed

in the table.

The focal lengths of each mode differ very little – the hardcoded values deviate less

than one pixel – while the focal point shows differences of up to four pixels, suggesting

some inaccuracy of the static parameters included in OpenVR.

A more precise analysis would be possible by calculating the reprojection errors of a

fixed set of 3D points.

5.2 Comparison of PTAM and ATAM

While testing, PTAM showed several shortcomings, some of which were difficult to

reproduce consistently and to debug, which motivated the adaptation of ATAM as an

alternative. Notable problems include:

Lack of synchronization As its name suggests, PTAM’s tracking and mapping run in

parallel. Despite continuously accessing shared resources (most importantly the map

points), the code does not contain traces of any attempts to synchronize such access

or using concurrent data structures. This enables many race conditions throughout

the algorithm. While it is unclear how frequently race conditions in PTAM occur in

practice and how much they contribute to the experienced instability problems, they

make the algorithm very unreliable.

In contrast, ATAM only performs bundle adjustment in a separate thread and takes

30

5 Evaluation

accordant measures to ensure thread safety: Relevant keyframes and map points are

copied while protected by a mutex, bundle adjustment is run only on this copy and

the results copied back inside a mutex as well. Additionally, no new keyframes may

be inserted while bundle adjustment is active to prevent incorrect associations when

copying back the data.

Retrofitting proper synchronization into PTAM would be a possible but time-

consuming task, as shared resources are accessed in many places in the program

and resource-intensive operations such as bundle adjustment would most likely have

to be redesigned so performance is not impacted too much.

Instability Occurring both in the original PTAM algorithm and its modification, the

map is occasionally corrupted during longer runs. It is unknown if this happens

because of the concurrency issues mentioned above or because of another bug. The

corruption usually originates as a numerical error during bundle adjustment, after

which every subsequent adjustment of the map is unsuccessful, producing a barrage of

errors and sometimes resulting in a full crash. Resetting PTAM and starting over with

an empty map fixes the problem.

Crashes In the modified version of PTAM, its initialization process crashes the entire

application for a particular set of reference poses for the initial two keyframes. In the

test environment, it could be reproduced every time the camera was pointed in one

particular direction of the room when the initialization key was pressed. The crash

has been traced down to occur within the initial bundle adjustment that is performed

immediately after trail tracking has finished. It may be caused by an oversight during

modification or have a different cause. The original algorithm had no reference pose

and used hardcoded coordinates for the initial two keyframes (placing the world origin

at the first keyframe), so the issue did not apply there. A possible workaround would

be to use the original hardcoded coordinates for initialization and transform the map

right after the initial bundle adjustment has finished, so its coordinate system matches

the one used by the reference poses again.

ATAM has much more concise and simpler code than PTAM. On the one hand,

this is possible because it was written much more recently than PTAM and makes

31

5 Evaluation

heavy use of built-in features of the OpenCV and cvsba libraries. Its up-front design

to be targeted at beginners and modifiable was also noticeable during its adaptation

and integration into Ubitrack: Redundant parts of the code such as image acquisition,

camera calibration and rendering to a window could easily be removed.

On the other hand, ATAM also lacks several features of PTAM, as described in

section 4.3.1. One drawback that is noticeable in the resulting point clouds is the noisy

batches of map points that should have been recognized as a single feature, which

PTAM manages to do considerably better. Other than that, point clouds generated by

PTAM and ATAM look visually very similar.

Another drawback of ATAM is its reliance on feature trails: For a new point to be

added to the map, it has to have a complete trail, whose start and end positions are

used for triangulation. Since new trails are only started when a keyframe is added, a

trail needs to be tracked across all frames between two subsequent keyframes. If a trail

is lost due to shaky camera motion or obstruction, the candidate is discarded. This

enforces careful operation of the camera to ensure that enough new trails “survive”

between keyframes, otherwise expansion of the map is completely hindered. Contrast

this with the epipolar search in PTAM, which only relies on the measurements of the

new keyframe and which considers matches in all other keyframes in the map (not

just the most recent one). Evidently, this comes at the cost of increased computation

time, but since PTAM performs this step on the mapping thread and it is still orders of

magnitude faster than bundle adjustment, the spent time is negligible.

In summary, PTAM tends to produce reconstructions with slightly better quality,

but with less detail and an implementation that is much more unreliable and prone to

crashing than ATAM. Furthermore, ATAM is also much more convenient to work with

with respect to code quality and maintainability.

5.3 Impact of the reference pose

Despite the reference pose from OpenVR being very precise and globally consistent, its

use as a replacement for the internal tracking system seems to increase the noise in the

reconstructed map points instead of decreasing it. This holds true for both PTAM and

ATAM, but the induced noise in ATAM is much more noticeable.

32

5 Evaluation

Figure 8: Comparison of point clouds, shown as an orthographic projection from the

front of the table. On the left: PTAM, on the right: ATAM, at the top: tracking

with reference pose, at the bottom: original tracking

33

5 Evaluation

Figure 8 shows a side-by-side comparison of point clouds by PTAM and ATAM

operating in two modes: On the top, the modified algorithms that always use the

reference pose as described in the approach. On the bottom, the algorithms using their

original tracking modules. Here, the reference pose is only used to initialize the map at

the correct origin and scale and for relocalization when tracking is lost. Each picture

is an orthographic projection of the respective point cloud viewed from the side. The

data was generated by capturing a short image sequence as well as their corresponding

reference poses and playing them back in real time for each version of the algorithm.

Especially the point clouds of ATAM show a drastic difference: On the bottom, the

flatness of the table is much better captured and the general shape of the water bottle

in the scene can be recognized, despite the orthographic view.

However, this seeming higher accuracy of the map is contrasted with a lack of

consistency with the world. While the shape of objects and surfaces appears to be better

reconstructed with internal tracking, their location and orientation in the world are no

longer accurately represented. A potential cause for this could be that as soon as the

internal tracking pose deviates from the reference pose, measurements are no longer

made in the same coordinate system as the reference pose and thus drift away further

and further from their “real” location.

This has been tested with ATAM in “internal tracking mode”: In the beginning,

the internal pose remains relatively close to the reference pose (about 2-5 cm distance

in position). But as soon as about a dozen keyframes have been added and bundle

adjustment has run a couple of times, the distance quickly increases to 15 cm or more.

Both tracking and mapping continue without any problems, but when viewing the

point cloud in VR, the reconstructed geometry is often quite far away from its real

counterpart.

5.4 General observations

Beyond their differences in the details, PTAM and ATAM largely rely on the same

principle: feature-based real-time visual SLAM. But are the scans they produce suited

for the pursued goal of warning the VR user of obstacles or even allowing interaction

with the real world?

34

5 Evaluation

Figure 9: Example of a scene (left) and its point cloud (right) reconstructed with ATAM

As a matter of principle, the feature-based nature of the algorithms makes them very

weak with untextured objects [9]. Areas of the room with low-contrast colors barely get

any feature points, so they are mostly missing in the reconstruction. An example of

this can be seen in figure 9: While high-detail areas like the table and drawers have

plenty of map points, the largely single-colored wall and floor have almost none.

When SLAM is used with localization of the camera as the primary goal, this is less

of a problem: Tracking continues to work as long as there are any visible high-contrast

areas. But here, the focus lies exclusively on the resulting map, and the holes in the

map become glaringly apparent. When these reconstructions would be used to warn of

obstacles (after further processing), entire objects may be missing from the model.

As of right now, the reconstruction process is also not ready to be used by users

not familiar with the algorithms. Care has to be taken to move the camera smoothly

enough at the beginning to get a good enough initialization and to make sure that

moving it into new areas is done at a pace where mapping can keep up. For example,

when ATAM requires relocalization, the user has to stop exploring and go back to a

good section of the map before continuing. However, these are limitations imposed by

the current implementation and could still be made more robust and “out of the way”

of the user by automatically reinitializing the algorithms with the help of the reference

pose whenever required.

35

6 Future Work

A lot remains to be done to make the software produce usable reconstructions and

to incorporate it into VR experiences. In order to move beyond sparse point clouds,

algorithms that generate actual 3D meshes from them can be deployed. They can

connect neighboring points to create surfaces and use image data from the keyframes

to generate textures for them.

It is questionable if the quality of the point clouds as of now is sufficient for that. A

likely prerequisite would be another post-processing step that reduces the noise and –

for example – detects the batches of points often created by ATAM and merges them

together. This may be enough to at least find larger flat surfaces in the scene with

acceptable accuracy.

Another problem is the current choice between local consistency and global align-

ment, depending on whether the reference pose is used for tracking or not. Further

investigation has to be done to identify the cause of the noise introduced by using the

reference pose.

Once the issues with regard to accuracy have been resolved, the algorithm can be em-

bedded as a background service to replace SteamVR’s Chaperone system. Realistically,

it would use a stored map and display parts of it that the user is too close to, while

having a separate application to generate such a map. If the performance overhead can

be made small enough, it could even be possible to continuously run mapping in the

background (while the user is engaged in a different VR experience) in a mode that

tries to detect changes in the environment, so an update of the scan can be made, for

example when furniture has been moved.

If it is found that the quality of the scan is not satisfactory despite all efforts of

post-processing, a switch to a completely different algorithm should be considered.

Aforementioned options that directly produce dense reconstructions and rely on prob-

36

abilistic models may be better suited for an accurate real-time map. If that still does

not produce good results, the “incremental” and “real-time” requirements for the

reconstruction could be dropped altogether, settling for a long-running one-time com-

putation, which would in turn require a more intricate guidance of the user to take the

appropriate pictures.

7 Conclusion

In this thesis, two options to do 3D reconstruction in real time with a camera tracked

by SteamVR have been explored. For this, a Ubitrack driver to obtain camera and

pose data from OpenVR was implemented, as well as components that run a modified

version of PTAM or ATAM based on this data and a VR application to control and

display them. The differences between the two algorithms have been highlighted, most

notably PTAM’s instability and ATAM’s simplicity and smaller feature set.

Modifications to both algorithms revolved around the reference pose, which was not

present in their original design. It has been observed that completely replacing their

internal tracking with the reference pose paradoxically leads to an increase of noise in

the point clouds, but it still helps them with staying aligned with the real world.

The current implementation is a decent start and can be used for a rough estimate of

the environment, but it leaves a lot of work to be done in order to reach a high-fidelity

3D model and to further integrate it into VR. Once that is achieved, tight spaces can be

used to full capacity and would no longer be such a big limitation for virtual reality

enthusiasts around the world.

37

List of Figures

1 Epipolar relationships between two views. Two measurements x1 and x2

of the 3D point X. The ray R through x1 projected onto the image plane

of view 2 is the epipolar line r, which intersects x2. 6

2 Room view overlay of SteamVR . 9

3 Example of a pattern: Inversion . 11

4 SRG patterns of the OpenVR component. On the left: uncalibrated, right:

file calibrated or software calibrated. 16

5 SRG pattern of the modified PTAM component 23

6 Example of the interactive relocalization process of ATAM 25

7 SRG pattern of the modified ATAM component 26

8 Comparison of point clouds, shown as an orthographic projection from

the front of the table. On the left: PTAM, on the right: ATAM, at the top:

tracking with reference pose, at the bottom: original tracking 33

9 Example of a scene (left) and its point cloud (right) reconstructed with

ATAM . 35

38

Bibliography

[1] S. Benhimane and E. Malis. “Homography-based 2d visual tracking and servo-

ing.” In: The International Journal of Robotics Research 26.7 (2007), pp. 661–676.

[2] J.-Y. Bouguet. “Pyramidal implementation of the affine lucas kanade feature

tracker description of the algorithm.” In: Intel Corporation 5.1-10 (2001), p. 4.

[3] R. Carceroni, A. Kumar, and K. Daniilidis. “Structure from motion with known

camera positions.” In: Computer Vision and Pattern Recognition, 2006 IEEE Computer
Society Conference on. Vol. 1. IEEE. 2006, pp. 477–484.

[4] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. “MonoSLAM: Real-

time single camera SLAM.” In: IEEE transactions on pattern analysis and machine
intelligence 29.6 (2007), pp. 1052–1067.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Second.

Cambridge University Press, ISBN: 0521540518, 2004.

[6] R. I. Hartley and P. Sturm. “Triangulation.” In: Computer vision and image under-
standing 68.2 (1997), pp. 146–157.

[7] P. Keitler, D. Pustka, M. Huber, F. Echtler, and G. Klinker. “Management of

tracking for mixed and augmented reality systems.” In: The Engineering of Mixed
Reality Systems. Springer, 2010, pp. 251–273.

[8] G. Klein and D. Murray. “Parallel Tracking and Mapping for Small AR Workspaces.”

In: Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented
Reality (ISMAR’07). Nara, Japan, Nov. 2007.

[9] T. Moons, L. Van Gool, M. Vergauwen, et al. “3D reconstruction from multiple

images part 1: principles.” In: Foundations and Trends® in Computer Graphics and
Vision 4.4 (2010), pp. 287–404.

39

Bibliography

[10] P. Moulon, P. Monasse, R. Marlet, et al. OpenMVG. An Open Multiple View Geometry
library. https://github.com/openMVG/openMVG.

[11] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. “Generic and

Real-Time Structure from Motion.” In: BMVC. Vol. 7. 4. 2007, p. 6.

[12] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison. “DTAM: Dense tracking

and mapping in real-time.” In: Computer Vision (ICCV), 2011 IEEE International
Conference on. IEEE. 2011, pp. 2320–2327.

[13] J. Newman, M. Wagner, M. Bauer, A. MacWilliams, T. Pintaric, D. Beyer, D.

Pustka, F. Strasser, D. Schmalstieg, and G. Klinker. “Ubiquitous tracking for

augmented reality.” In: Mixed and Augmented Reality, 2004. ISMAR 2004. Third
IEEE and ACM International Symposium on. IEEE. 2004, pp. 192–201.

[14] M. Pizzoli, C. Forster, and D. Scaramuzza. “REMODE: Probabilistic, monocular

dense reconstruction in real time.” In: Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE. 2014, pp. 2609–2616.

[15] D. Pustka. “Construction of data flow networks for tracking in augmented reality

applications.” In: Proc. Dritter Workshop Virtuelle und Erweiterte Realität der GI-
Fachgruppe VR/AR. 2006.

[16] D. Pustka, M. Huber, M. Bauer, and G. Klinker. “Spatial relationship patterns:

Elements of reusable tracking and calibration systems.” In: Proceedings of the 5th
IEEE and ACM International Symposium on Mixed and Augmented Reality. IEEE

Computer Society. 2006, pp. 88–97.

[17] E. Rosten and T. Drummond. “Fusing points and lines for high performance

tracking.” In: Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference
on. Vol. 2. IEEE. 2005, pp. 1508–1515.

[18] D. Scharstein and R. Szeliski. “High-accuracy stereo depth maps using structured

light.” In: Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE
Computer Society Conference on. Vol. 1. IEEE. 2003, pp. I–I.

[19] J. L. Schönberger and J.-M. Frahm. “Structure-from-Motion Revisited.” In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 2016.

40

https://github.com/openMVG/openMVG

Bibliography

[20] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm. “Pixelwise View Se-

lection for Unstructured Multi-View Stereo.” In: European Conference on Computer
Vision (ECCV). 2016.

[21] H. Stewenius, C. Engels, and D. Nistér. “Recent developments on direct relative

orientation.” In: ISPRS Journal of Photogrammetry and Remote Sensing 60.4 (2006),

pp. 284–294.

[22] Ubitrack. Ubitrack/integration_unity3d: unity3d integration of ubitrack. url: https:

//github.com/Ubitrack/integration_unity3d (visited on 08/19/2017).

[23] H. Uchiyama, T. Taketomi, S. Ikeda, and J. P. S. do Monte Lima. “[POSTER]

Abecedary Tracking and Mapping: A Toolkit for Tracking Competitions.” In:

Mixed and Augmented Reality (ISMAR), 2015 IEEE International Symposium on. IEEE.

2015, pp. 198–199.

[24] Valve. API Documentation – ValveSoftware/openvr Wiki. url: https://github.com/

ValveSoftware/openvr/wiki/API-Documentation (visited on 08/04/2017).

[25] Valve. Welcome to Steamworks. url: https://partner.steamgames.com/vrtracking

(visited on 08/27/2017).

[26] D. Zeng. willdzeng/cvsba: cvsba: an OpenCV wrapper for sba library. url: https:

//github.com/willdzeng/cvsba (visited on 09/02/2017).

41

https://github.com/Ubitrack/integration_unity3d
https://github.com/Ubitrack/integration_unity3d
https://github.com/ValveSoftware/openvr/wiki/API-Documentation
https://github.com/ValveSoftware/openvr/wiki/API-Documentation
https://partner.steamgames.com/vrtracking
https://github.com/willdzeng/cvsba
https://github.com/willdzeng/cvsba

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem statement
	Contributions
	Overview

	Background
	Camera model
	3D reconstruction
	OpenVR and SteamVR
	Ubitrack

	Related work
	Approach
	OpenVR for Ubitrack
	Initialization
	Polling rate
	Camera calibration
	Image data
	Pose data

	Adaptation of PTAM
	Overview over PTAM
	Integration of the reference pose
	Integration into Ubitrack

	Adaptation of ATAM
	Overview over ATAM
	Integration of the reference pose
	Integration into Ubitrack

	Visualization in virtual reality
	Technical framework
	Interactivity
	Displaying stored point clouds

	Evaluation
	Comparison of camera calibration modes
	Comparison of PTAM and ATAM
	Impact of the reference pose
	General observations

	Future Work
	Conclusion
	List of Figures
	Bibliography

