

TRUFFLE HUNTERS
Final report for the master practical course

Intro
Explore the real world like never before with our interactive map, uncovering hidden

treasures of magic truffles in your surroundings

Tatev Tsokolakyan

Natalie Adam
Nuo Xu

1

1. Background Story

We are a truffle trading company, and we have a job for you!

No matter how ridiculous the following words sound, please listen. Our clients are

inhabitants of another dimension of the Earth. Even if you live in it every day, you can't see it

or interfere with it.

This dimension is called the truffle-sphere. Many spore clusters grow in it, but they are

invisible to the human eye, which we call Ether Truffles. Since the truffle-sphere shares the

same spatial and weather conditions as our world, the growth of the Ether Truffle also

relates to those factors that influence the fungus growth in our world.

Our clients, the inhabitants of the truffle-sphere, rely on those Ether Truffles to sustain

their daily lives. However, they cannot collect truffles by themselves. In the past, our clients

designed some collecting robots to help them collect truffles. However, something weird has

been happening recently. Collecting robots stopped moving and collecting. A global famine

is now spreading in the truffle-sphere. If there are no sufficient quantities of Ether Truffles

collected, the population of the truffle-sphere will soon die out.

Our company now plans to hire humans to complete the harvesting operation. The

business is still exploratory and requires only a license to search and pick Ether Truffles with

the relevant equipment. Once the marketplace is created, you can sell them to us on the

marketplace.

Come and join us!

2. Project Overview and Environment Setup

We utilize Node.js to develop our backend server, employing Express.js to manage

HTTP requests and handle CRUD operations efficiently. MongoDB serves as our database,

maintaining two tables: truffle information and user data. To interact with MongoDB, we

employe Mongoose, a powerful object modeling tool designed for Node.js. Our server is

hosted on an AWS T3.micro instance, chosen for its cost-effectiveness and suitability for

applications with low to moderate traffic. To ensure consistent accessibility, we use Elastic

IPs, providing a static IPv4 address for the server.

We choose Unity 2021.3.33f1 or higher version for the game development part. We

utilize Mapbox for the map texture and location-based game development. As for the AR

part, we use Unity ARFoundations and XR Interaction toolkit. Finally, we utilize shader and

ONNX deep-learning effects to transform the player's surroundings with different visual

effects.

2

We finished our truffle design last semester, and this semester, we modeled all our

truffle prefabs in Blender using a low poly art style. Currently, there are four different types of

truffles available. The type of truffle will become more important in the future when we

implement the benchmark for trading truffles. There will be rarer types of truffles, which will

trade at a higher rate. At the moment, one type of truffle is poisonous. Picking it up will

trigger special visual effects as a metaphor for the player's vision being impaired.

Fig 1. Types of truffles in “Truffle Hunters”

3. Backend Development

a. Database Model

We use MongoDB to store data on the server. MongoDB is a document-oriented database

utilizing JSON-like documents with optional schemas. Our data models contain two schemas:

⚫ Truffle model: stores information about truffles such as specific location, category, life-

cycle, etc.

⚫ Player model: stores the player's username, password, current level, and acquiredXP.

The following diagram shows the relationships between the truffle model and the player model.

The connecting line between the boxes shows that Truffle and Player are related. The

numbers close to the truffle model show that a Player can collect zero or more truffles, while

3

the numbers on the other end of the line next to the player show that a truffle can be collected

by zero or one player.

Fig 2. Diagram for our data model

Once we finished the data model design, we generated 1000 random truffle locations

around Munich and moved on to implement CRUD operations via routers.

b. Routes and Controllers

Express.js is one of the most popular Node web frameworks. Express’s router package

helps us to separate routers and their controllers (callback functions for corresponding

routers) into different files and forward requests to correct controllers for further data

manipulation. The following diagrams represent the basic flow of handling HTTP requests

and responses in the server.

Fig 3.Diagram of handling HTTP requests and responses

We implemented "/login", "/register", and "/updateuser" to create a login session,

register a new account and update the user's level and acquired points. Further, we created

4

the corresponding controllers in... the login_controller.js file. The login function will first check

if the username exists in the database, then check if the password is correct, and finally

return codes and messages for login results. The register function will create a new user

entry in the user table with initially 0 acquiredXP and level 1, while the update_user function

will update the acquiredXP and level in the database.

Like manipulating truffle data, we implemented "/api/truffle", which will return a list of all

truffle information, whereas "/api/truffle/:longitude/:latitude" will return truffles close to the

player's current location. The "api/truffle/update" will update the corresponding truffle

information, marking it as picked.

c. Server Client Talking

After finishing the server backend setup, we moved on to implementing network

communication on the client side. UnityWebRequest provides a modular system for

composing HTTP requests and handling HTTP responses. When the player opens the

application, our game will load the login/register page, and the user can choose to log in or

create a new account. The login.cs script will POST a form containing a username and

password to the login or register router. Once the user successfully logs in or creates a new

account, the GameManager object stores their information throughout the whole game

session. Then, the Map scene will be loaded, and the ServerTalker.cs will POST the user's

current location to the server to fetch nearby truffle locations and start spawning pinpoints on

the map. Once the user collects some truffle, their acquired points and level will increase.

The UpdateUser.cs will send another form with the user's updated acquiredXP and level to

the server to update the corresponding data in the database. All these three server-client

talking functions are implemented in coroutine and through UnityWebRequest.

4. Location-Based Games

Our game client contains three scenes: Login, Map, and Capture. The Login scene

contains a UI form, which submits the username and password to the server. Upon

successful validation by the server via the FormSubmitter script, the game transitions to the

Map scene.

The Map scene integrates the Mapbox API to provide map functionality, including

location tracking and event spawning. The player's 3D character is spawned at their GPS

coordinates, enhancing immersion. Using the ServerTalker script, player location data is

sent to the server, triggering the retrieval of truffle locations stored in a JSON file. These

5

locations are seamlessly integrated into the map using the SpawnOnMap script, visually

represented by 3D pins. If the player collides with one of these pins while exploring the map,

the TrufflePlane scene is loaded, facilitated by a box collider added to the 3D pin prefab.

Additionally, a small button in the Map scene allows users to view their accumulated points,

with potential plans for a leaderboard feature.

In the TrufflePlane scene, a random selection of truffles appears for collection. Upon

gathering all truffles, the player's XP points get updated on the server. Subsequently, the

Map scene reloads, enabling the player to explore another truffle location. Users can exit the

TrufflePlane scene at any time by tapping the close button.

Fig 4-6: Left: Log in page; Middle: player’s achievements; Right: Map

5. Truffle Spawning

We narrow down the area truffles can spawn in by fitting a box collider around the GPS

location of the truffle provided by the server. When a player enters the area of the box

collider, they can switch to the camera view on their phone and use their camera to search

for truffles in the real world. To place our truffles in the real environment, Unity provides the

AR Foundation package that offers various AR features to create AR apps. We use AR

Foundation in combination with the Google ARCore XR Plug-in and the Apple ARKit XR

Plug-in (Unity Technologies 2022).

6

a. Trackables

When a player discovers a truffle, we want to spawn the truffle in the real world.

However, we want the truffle to stick to a surface and not float around. Therefore, we need

knowledge about the environment. AR Foundations includes “Trackables” that can detect

and track geometry in the real world by adding the corresponding Trackable Manager to the

AR Session Origin GameObject (Unity Technologies 2022).

We compared three different methods to detect surfaces that seemed promising for our

purposes:

⚫ Meshing: Generates a mesh based on the scanned environment. However, despite

good results, we decided against using meshing since it is currently only supported

on iOS (Unity Technologies 2022).

⚫ Point Clouds: Creates sets of feature points based on notable features in the

environment (Unity Technologies 2022).

⚫ Plane Detection: Creates GameObjects for each tracked flat surface in the

environment. There is an option to detect horizontal surfaces, vertical surfaces, or

both (Unity Technologies 2022).

Fig 7-8. Left: Point Clouds; Right: Plane Detection

7

Now that we’ve determined the surfaces in the real world, we want to spawn truffles

accordingly. We use the AR Raycast Manager to constantly shoot rays from the player’s

camera into the scene. When a ray hits a trackable, we spawn a random truffle at the

location of the intersection (Unity Technologies 2022). For future work, we want to adjust the

type of truffle based on the weather at the player’s location.

Ultimately, we’ve chosen Plane Detection over Point Clouds since the results are more

reliable, probably because hitting a plane with a ray is easier than hitting a single point.

Besides the spawning location of truffles, the server also determines the number of

truffles that should spawn at a given location. To not spawn all truffles at the first intersection

of a ray with a surface, we added the variable “distanceTruffle,” which defines the minimum

distance between all spawned truffles in a scene. This variable also makes sure that truffles

don’t overlap when spawning.

b. Object Occlusion

When an object in the environment moves in front of a spawned truffle, the truffle should

disappear (partially) behind that object. To implement object occlusion, we need to

determine the depth information of the objects in the scene. The AR Occlusion Manager

enables the background rendering pass and renders the truffles according to the information

in the depth buffer of all the objects in the scene (Unity Technologies 2022).

Fig 9-10. Left: No occlusion; Right: AR Occlusion Manager

8

6. Truffle Collection and Visual Effects Implementation

A player can collect a truffle by clicking on it. The truffle disappears from the player’s

view with a particle explosion. To prevent a new truffle from being spawned immediately at

the vacant position again, we add the truffle position to a list of positions where no new

truffle is allowed to spawn, and a cooldown for the truffle starts. Only once the cooldown of

the truffle reaches the defined “spawnCoolDownDuration” does the truffle fully disappear

from the scene, and a new truffle can spawn at that location. The collected truffle’s points

are directly added to the player's profile, updating it on the server.

We implemented two approaches: real-time style transfer model inference and a shader

pipeline of motion-reactive point clouds. However, due to the limitations of graphics

capabilities on older Android devices, the style transfer effect is only available on iOS

platforms.

a. Style Transfer

We utilize Unity Barracuda, a deep-learning inference library, to implement style transfer

to the capture scene. This effect involves applying the visual style of one image (in our case,

a pre-trained mosaic style) to another image (the game scene captured by the camera),

making game more immersive. We encountered several challenges when implementing the

post-processing effect with Unity Barracuda. The most prominent one was to integrate the

style transfer effect with the game environment while maintaining performance and visual

coherence.

First, we created a script named "StyleTransfer" and attached it to the main camera

game object. This script initializes a worker type for the Barracuda inference engine. Within

the script, we utilize the OnRenderImage() method instead of the Update() method to call the

StylizeImage() method. This decision allows access to the RenderTexture for the game

camera as well as the RenderTexture for the target display. We invoke StylizeImage() if the

boolean variable stylizeImage is set to true, ensuring that the effect is applied only when

desired. Before running the style transfer inference, we preprocess the input image. The

style transfer models expect RGB channel values to be in the range [0, 255], whereas color

values in Unity are typically represented in the range [0, 1]. Therefore, we scale the RGB

channel values of the InputImage by 255 to ensure compatibility with the model.

Besides style transfer, we also explored Pix2Pix this semester. Pix2Pix learns a

mapping from input images to output images and achieves a more intriguing and

psychedelic effect. We pre-trained a conditional Generative Adversarial Network (cGAN)

9

using a dataset of space images. This cGAN was trained to transform pre-processed blurry

black-and-white images into space-themed visuals. After training the model using

TensorFlow, we converted it to the ONNX format, compatible with Unity Barracuda.

However, due to constraints on mobile device resources, we opted for a more lightweight

style transfer model with fewer parameters.

b. Particle System

We also employ a simple shader pipeline to dynamically transform the environment into

moving particles based on the surrounding’s motion. To achieve this goal, we first extract the

movement vector by saving it to a texture, utilizing optical flow between consecutive frames

to capture motion information. This texture serves as a crucial input for our subsequent

shader operations. We then utilize a combination of vertex and geometry shaders to render

points in the space and apply movement based on the optical flow texture. The vertex

shader processes each vertex of the image, while the geometry shader enables the

generation of additional geometry, allowing for the creation of point clouds. As a result, we

achieve a visually captivating effect that dynamically reacts to the motion within the game

scene.

The shader approach is computationally cheaper compared to the deep-learning

approach. Therefore, we ensure efficient performance and a seamless gameplay experience

across various devices.

 Fig 11-12. Left: Style Transfer Effect; Right: Particle System Effect

10

c. Make the Hunting More Enjoyable

One unique feature of our game involves a post-processing effect applied to the main

camera after collecting a certain type of truffle (poisonous). The mosaic visual effects will

only be deactivated after the player collects another non-poisonous truffle, while the altered

visual style makes locating non-poisonous truffles more difficult. This little trick design makes

the gameplay more enthralling and challenging to the player.

Another engaging feature is taking a picture. Players can directly save frames of the

gameplay to their device's photo gallery. Taking pictures of rarer truffles or player’s

interaction with truffles will encourage players to share memorable moments on different

social media platforms.

7. Future Work

⚫ Truffle generating system: The initial idea was to maintain a truffle generating system

which can generate truffles with different values based on local weather data, such

as temperature, humidity, sunlight strongness, etc. For example, when it is raining

today, players can infer where more valuable truffles appear tomorrow.

⚫ Audio AR: Another interesting yet unexplored idea is utilizing audio AR for navigation.

We would like to combine the idea of audio beacon (a certain rhythm that will be played

when players head in a certain direction) from Soundscape into our navigation part in

the future.

⚫ Trade system: After players collect truffles, they wound not want to let them stay as

some points or achievements in their personal pages. In the future, players can trade

truffles for coins to buy advanced truffle collection tools.

⚫ Truffle collecting tools: We also would like to model more collecting tools, like hooks,

detectors, robots etc. Players will need more advanced tools for rare truffles and they

need to collect more truffles to trade to get more advanced tools.

References

Unity Technologies. (2022). "Unity AR Foundation Manual." Retrieved 12. March 2024, from

https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/index.html.

MozDevNet. “Express tutorial part 3: Using a database (with mongoose)” Retrieved 25.
March 2024, from

 https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/mongoose

https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/index.html
https://docs.unity3d.com/Packages/com.unity.xr.arfoundation@5.1/manual/index.html

11

MozDevNet. “Express tutorial part 4: Routes and controllers” Retrieved 25. March 2024, from
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes

Unity Technologies. “Unity Documentation version 2022.3 Scripting API: UnityWebRequest”
Retrieved 25. March 2024, from

https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.html

Pix2pix: Image-to-image translation with a conditional Gan : Tensorflow Core. (n.d.).
Retrieved 25. March 2024 from, https://www.tensorflow.org/tutorials/generative/pix2pix

Microsoft. (n.d.). Microsoft/Soundscape: An IOS application/service that AIDS navigation
through spatialized audio. Retrieved 25. March 2024 from
https://github.com/microsoft/soundscape

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/routes
https://docs.unity3d.com/ScriptReference/Networking.UnityWebRequest.html

