
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Standardized AR Marker Integration for
Heterogeneous Mobile Augmented Reality

Systems with Unity3D and C++

Mayer, Felix Marcel

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Standardized AR Marker Integration for
Heterogeneous Mobile Augmented Reality

Systems with Unity3D and C++

Integration standardisierter AR Marker in
heterogene mobile Augmented Reality

Systeme mit Unity3D und C++

Author: Mayer, Felix Marcel
Supervisor: Klinker, Gudrun Johanna; Prof. Dr.
Advisor: Rudolph, Linda; M.Sc.
Submission Date: 15.03.2024

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Munich, 15.03.2024 Mayer, Felix Marcel

Acknowledgments

I thank Janis Reisenauer for helping to create the graphical figures. I thank Paul van
der Koehlen for finding credible sources. I thank Tim Braun for proofreading. I thank
Dr. Peter Mayer for explaining the mathematical concept of projecting in coordinate
systems to me. I thank Elena Domke for her creative input regarding the structure of
the conclusion. I thank Prof. Klinker for explaining camera matrices to me. Lastly, I
want to thank Linda Rudolph for being a fast, reliable, and helpful advisor when I ran
into problems.

Github Copilot was used mainly to answer questions about CMake. The entire chat
can be found in the supplementary material. Additionally, it generated the helper
function "mirrorImageHoroizontally" needed for the image flipping talked about in 3.9

Abstract

With mobile devices becoming more and more powerful, the possibility of using them
for Augmented Reality (AR) becomes more realistic. A significant aspect of AR is
marker detection, and ArUco marker detection represents a robust yet flexible solution.
OpenCV is a commonly used library for image processing. Among other things, it
provides a fast and reliable implementation of the ArUco marker detection. Combining
this with Game Engines allows for easy integration in other applications. This thesis
creates a way of integrating the OpenCV implementation of ArUco into Unity3D.
Specifically, it enables sending images produced by Unity3D to the OpenCV instance.
This instance detects markers and does a pose estimation with ArUco markers.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Fundamentals 3
2.1 Program compiling and Linking . 3

2.1.1 Compiler . 3
2.1.2 Linker . 5

2.2 C++ Libraries Types . 6
2.2.1 Static Library . 6
2.2.2 Dynamic/Shared Library . 6
2.2.3 PIC - Positional Independent Code 7
2.2.4 Name Mangling . 8

2.3 ArUco . 9

3 Procedure 13
3.1 Setup . 13

3.1.1 Scripting Backend . 13
3.2 External Code inside Unity3D: Plug-ins 14
3.3 P/Invoke and DllImport: Calling C++ Code from C# 14

3.3.1 Practical Example . 15
3.3.2 Marshalling . 17

3.4 Flowchart of the Creation Process . 17
3.5 DLL on Android . 19

3.5.1 Managed Code Stripping by the Unity Linker 19
3.5.2 Abandoning Dll on Android . 20

3.6 Unity’s Native Plug-ins for Android . 22
3.6.1 C/C++ source files . 22
3.6.2 Static Libraries . 22
3.6.3 Shared Libraries . 23

v

Contents

3.7 Shared Library Created on Linux . 23
3.7.1 OpenCV as Shared Library on arm64 24
3.7.2 Abandoning the Linux Shared Library Approach 28

3.8 Android Archive Plug-ins and Android Library Projects 29
3.8.1 Creating and Importing Android Archives 29

3.9 Using ArUco in Unity . 29

4 Conclusion 33

5 Further Research 34

6 Tutorials 35
6.0.1 Importing a Native Plug-in . 35
6.0.2 Building to Android with Unity 35
6.0.3 Creating shared libraries on Linux 35
6.0.4 OpenCV Cross Compilation . 35
6.0.5 Displaying the Dependencies of Dynamic Library 35
6.0.6 Creating an Android Archive . 35

7 Supplementary Material 36

List of Figures 37

List of Tables 38

Bibliography 39

vi

1 Introduction

Nowadays, smartphones as mobile devices are common and widespread. These mobile
devices have become increasingly more powerful within the last few years. This enables
them to be used in computational heavy areas, like augmented reality. The freedom
mobile devices offer by having everything augmented reality needs inside a single
portable device is a big advantage.

A big part of augmented reality is determining where the camera and other objects
are in relation to each other. A common solution to this problem is fiducial markers.
Fiducial markers are objects inside an image and function as a point of reference. In
augmented reality, they can be used to determine the position and orientation of the
camera with respect to the markers. They can also be entangled with a virtual object so
that it follows the image’s marker. [MJA14]

The detection of Fiducial markers needs to be fast and reliable. In this case, reliability
means that the marker will still be detected even if it is rotated, covered in shadows,
or obscured in some other way. Additionally, markers need to be identified with the
correct Identification (ID). This becomes important when multiple markers exist. In
this thesis, the ArUco library for the marker generation and detection was chosen. The
ArUco library provides a highly reliable marker detection algorithm under occlusion. A
robust and well-tested implementation of the ArUco library is provided in the OpenCV
library.

The OpenCV library is an open-source computer vision and machine learning software
library. Besides ArUco, this library contains an extensive list of image-processing
algorithms, which include there are algorithms for face detection, object identification,
movement tracking, and image synthesis. Many well-established companies like Google,
Microsoft, Intel, and many more use the OpenCV library. OpenCV also supports
Windows, Linux, MacOS, and Android ([Opea]). The OpenCV library was chosen as
the ArUco implementation because of its versatility and robust implementations.

Besides ArUco, OpenCV also provides algorithms for another important part of
augmented reality: Pose Estimation. Pose Estimation is the process of estimating an
object’s 3D pose from a set of 2D point projections ([Sze22]). In this case, a pose refers
to the position and orientation of the camera with respect to the marker. This allows
the system to set world anchors in the virtual world or anchor a virtual object to a
real-world position.

1

1 Introduction

Many systems are needed to use the full potential of Augmented reality, e.g. a
camera to perceive the environment, virtual objects to interact with, a Renderer to
display objects, a physics system so the virtual objects can interact with each other,
and many more. These systems also need to be inside a single environment and work
together seamlessly to create an immersive experience. Modern Game Engines provide
all these systems inside a single environment, making them a perfect fit. There are
multiple different Game Engines publicly available, the common ones being Unity3D,
Unreal Engine, and Godot. For this thesis, Unity3D was chosen because Unity3D is
already commonly used for augmented reality and works well with Android. The only
problem is that Unity3D works with C# scripting. OpenCV provides interfaces for C++,
Python, Java, and MATLAB ([Opea]). This thesis will therefore use the C++ version
and explore how to make it compatible with Unity’s C# scripting.

This thesis aims to integrate the image-processing features, particularly the ArUco
library, of OpenCV with Unity3D. The structure of the paper is as follows. Chapter 2
explains the fundamentals needed for the thesis: Compiling and Linking, C++ library
types, and ArUco. Chapter 3 explores the procedure. This includes the possible ways
to access C++ code from Unity’s C# scripting and how to use the ArUco Library in
sync with Unity3D. Chapter 5 talks about future work. Chapter 4 is the Conclusion.
Chapter 6 contains practical tutorials on how to do certain setups.

2

2 Fundamentals

2.1 Program compiling and Linking

The "Program Compiling and Linking" section is based on [Świ22] "Chapter 6: Linking
with CMake" and [Ste14] "Chapter 2: Simple Program Lifetime Stages", "Chapter 3:
Program Execution".

There are five stages between writing code and executing said code.

• Writing the source code

• Compiling the source code

• Linking the source code

• Loading the program

• Executing the program

At the end of the linking stage, the program is completed and ready to be run, which
are the last two stages. This section explains the necessary knowledge to understand
the different types of libraries, but a lot of details will be omitted. For further and more
detailed reading, see [Ste14] and [Świ22]. The compiler itself has multiple different
stages. For this thesis, only the input and output of the compiler are relevant.

2.1.1 Compiler

After writing the code, it will be handed over to the compiler. Compiling refers to
converting code written in a higher-level Programming language into a lower-level
programming language. In the C/C++ case, it means transforming the translation
Units (Source Code, .c/.cpp files) into binary code with metadata (object files, .o files).
Object files are structured in sections that store information about the source code, as
seen here 2.1:

• ELF-Header: ELF stands for Executable and Linkable Format. This format is the
standard in Unix-based systems for every file that needs to be linked or executed.

3

2 Fundamentals

Figure 2.1: The structure of an object file; taken from [Świ22], Figure 6.1

• .text: Contains all the code of the program. It can be viewed as a list of instructions.

• .data: Contains all initialized global and static variables.

• .bss: Contains all uninitialized global and static variables.

• .rodata: Contains all constants variables (read-only data).

• Section Headers: Table of contents of the object file. It describes what sections are
inside this object file and where they are.

Symbols Before proceeding, the term Symbol must be defined. Symbols are everything
the programmer creates and gives a name to. This includes variables, functions, classes,
etc. To be more precise, they are references to memory addresses. Every time the code
calls the function f, it needs to know where it can find this function inside the object file.
So, the compiler assigns the name f a symbol containing the address with the memory
location inside the object file of said function.

If the entire program is inside a single object file, finding the symbols is not a big
problem. The caller of the function and the function are inside the same .text section of
the same object file, making the section’s position known. If the caller and the needed
symbol are inside different object files, then this becomes a problem.

The compiler compiles each source file into a separate object file. This creates the
problem of unresolved references, also known as missing symbols. For example, there
are two source files, A.cpp and B.cpp, and A.cpp calls the function g implemented in

4

2 Fundamentals

Figure 2.2: The relocation of the .data section; taken from [Świ22], Figure 6.2

B.cpp. When compiled, the compiler produces the object files A.o and B.o. But because
the files are compiled separately, A.o has no idea where to find the Symbol of the
function g. This is where the linker comes into play.

2.1.2 Linker

Object files are not executable by themselves. Even if the program is compiled from a
single source file, it still lacks the program header. The linker creates this header and
contains information about the program the loader requires. The linker has two tasks:
relocating and resolving references.

Relocating The idea of relocating is to combine all the object files into a single
executable. This drastically increases performance as the system does not have to jump
between many files. Additionally, all the code and data are in the same file.

Relocating, in this case, means taking two object files and concatenating the same
sections, as seen here 2.2.

Resolving references Now, the linker solves the problem of missing symbols from
before. The linker will go over every object file, collect all the missing references to
other binaries, try to find those binaries and then create the required symbols.

5

2 Fundamentals

2.2 C++ Libraries Types

The "C++ Library Types" section is based on [Świ22] "Chapter 6: Linking with CMake"
and [Ste14] "Chapter 4: Impact of Reusing Concept", "Chapter 5: Working with Static
Libraries", "Chapter 6: Designing Dynamic Libraries: Basics".

Libraries are the answer of C++ to the question of how to efficiently reuse code.
Additionally, they provide an easy way of distributing code. Theoretically, copying
all the needed object files to another system is possible. However, this would require
painstakingly copying every object file and keeping track of them. The idea of libraries
is to store code inside a file linked to the main executable. This file can be copied to
another system for distribution. In C++, there are two kinds of libraries: Static and
dynamic. Note that dynamic libraries are often called shared libraries. 1

2.2.1 Static Library

Static libraries store all the object files inside a single file and then copy them into the
executable in the linking stage. Static libraries are just collections of object files. In
Windows and Unix-like systems their names end with .lib (library) and .a (archive),
respectively. The process is relatively simple as the linker views the library as regular
object files. Static libraries are also reversible, meaning you can quickly turn the library
into standard object files. When linking static libraries, the linker selectively links. Here
is an example to explain what this means:

Assuming you have a static library that contains the object files A.o, B.o and C.o. You
want to use code from A.o and C.o inside your program. The linker will only link A.o
and C.o to your executable. B.o will not be linked as it is not needed. Note that the
linker is selective; it links all of A.o and C.o even if not everything from the object files
is needed.

The significant advantage of static libraries is their simplicity. The system running
the executable does not need the static library, as everything it needs is already inside
itself. The drawback is that the binary size of the executable is bigger.

2.2.2 Dynamic/Shared Library

Dynamic Libraries work differently than static libraries because they are not copied
into the executable. While linking a dynamic library, the linker only copies the symbols

1In the earlier days of C/C++ programming, dynamic and shared libraries indicated different things.
Shared libraries were created with the ’PIC’ concept, while Dynamic libraries were not (The ’PIC’
Concept will be explained later in the thesis). As the ’PIC’ concept became more or less the norm, this
naming difference became irrelevant, and the two names merged.

6

2 Fundamentals

into the executable, not the actual binary code of the library. When the executable
is run, the loader loads the program and the dynamic library separately. After that,
the library’s symbols inside the executable will be resolved. The difference to static
libraries is that the dynamic library is now its own instance in the system. That means
it allows multiple executables to use the code of the dynamic library while only one
instance exists in the system. Dynamic libraries are very close to being an executable,
the only difference being that they do not have a starting routine. Note that only the
code (.text section) and other unchangeable library sections are shared. Sections like
.bss and other variables will be copied for every program using the library. Dynamic
libraries on Windows and Unix-like systems end with .dll (Dynamic Link Library) and
.so (Shared Object), respectively.

Using dynamic libraries is favorable if multiple programs use the libraries. Addi-
tionally, dynamic libraries do not drastically increase the binary size of the executable
using the library. The drawback is that it needs to be made sure that the dynamic
library is present on the machine executing the program. Dynamic libraries work best
if they likely exist on the system running the program. The C++ standard library
implementation libc or device drivers are typical examples where dynamic libraries fit
well.

Dynamic Libraries also can be loaded during runtime instead of being loaded before
execution. This is achieved by calling LoadLibrary() on Windows and dlopen()/dlsym()
on Unix-like systems. In this case, they are referred to as Modules.

2.2.3 PIC - Positional Independent Code

PIC stands for Positional Independent Code, and its invention redesigned how the loading
of dynamic libraries works. Before PIC, the loader would alter the .text section of
the dynamic library upon loading, known as load-time relocation, to fit the particular
address mapping of the process. This had the problematic effect that the library was
only accessible within the process that loaded the library. Each process using the library
would need its own instance. This defeated a significant advantage of dynamic libraries.
PIC solved that problem by adding a new section named Global Offset Table. It contains
the offsets of all the needed symbols so that the library does not need to be mapped to
a specific process. Each time at runtime, this table will be updated.

Nowadays, PIC is necessary when building dynamic libraries and is used in other
programming regions. Static libraries do not need to be compiled with PIC but can be.
Note that static libraries must be compiled with PIC when they are supposed to be
linked in dynamic libraries. The PIC option is usually set by default when building
dynamic libraries in most building systems like CMake. When compiling with gcc or
clang, the compiler option is -fpic.

7

2 Fundamentals

2.2.4 Name Mangling

There are some common linking problems like the One Definition Rule and Dynamically
Linked Duplicate Symbols (cf. [Świ22], cp.6). A particular problem important in this
thesis is Name Mangling, also knows as Name Decoration [Leab].

As discussed earlier, symbols are needed to find functions when they are called. If
a programming language prohibits two functions from having the same name, this
becomes easy. The name of the function becomes the symbol. If the programming
language provides features like Function Overloading where two functions can have the
same name, creating the symbols becomes more difficult. Name Mangling is the process
of creating unique symbols for functions [Leab].

In C, it is impossible for two functions to have the same name. Thus Name Mangling
is not required. However, C compilers are still allowed to use Name Mangling. For
example, compilers targeted at the Microsoft Windows platform use Name Mangling to
convey information about the calling convention that was used [Leab]. Assuming we
have two functions using different calling conventions.

(C on Windows)
int _cdecl fOne (char x);
int _stdcall fTwo (char y);

The function fOne will get the symbol _fOne, and fTwo will get _fTwo@1. If no calling
convention was specified, _cdecl will be used. For an overview of how functions will be
mangled based on specific calling conventions, see [Leab].

C++ makes this process a bit more difficult by adding features like Function Over-
loading, Classes, and Namespaces. Now it becomes possible that two functions have
the same name but, for example, be part of two different classes. Due to this, a lot
more information is needed to mangle a function. This itself is not a problem. The big
problem in all of this is that Name Mangling is not standardized, neither in C nor C++
([Leab]). Different compilers, sometimes even different versions of the same compiler,
produce different symbols. An example with Function Overloading follows.

Function Overloading Example Assuming there is a function int countDigits(int a);
that counts the number of digits for a given integer. A similar function counting the
digits for a given floating point number might also be needed. In C, this function
would need a different name. However, in C++, this can be easily realized by Function
Overloading

(C++)
int countDigits(int a);
int countDigits(float a);

8

2 Fundamentals

This creates a problem for the Linker as there are two functions with the same name.
Name Mangling solves this by changing the symbol based on the parameters. The table
2.1 shows a small example.

Compiler void h(int) void h(int, char) void h(void)
GCC 3.x and higher _Z1hi _Z1hic _Z1hv
GCC 2.9.x h__Fi h__Fic h__Fv
Microsoft Visual C++ v6-v10 ?h@@YAXH@Z ?h@@YAXHD@Z ?h@@YAXXZ

Table 2.1: Name Mangling Table [Wik]: shows how different compilers mangle the
names of overloaded functions differently.

This can result in errors like missing symbol or undefined reference when linking code
compiled with different name mangling conventions.

To work around this in C++, it is possible to use C name mangling. By using the
Keyword extern "C" at the beginning of the declaration of a function, it ensures that the
Symbol will be mangled with C linkage.

extern "C" int f(int a, int b);

Further reading can be found here: [Ste14], [Wik], [Leab], [Wik].

2.3 ArUco

The "ArUco" section is based on [Gar+14].
The ArUco library contains a fiducial marker system. This system is specialized for

pose estimation in applications such as augmented reality. There are numerous fiducial
marker systems out there 2.3.

Each one has disadvantages, e.g. a common one is the fixed number of markers.
A lot of systems provide a predefined set of markers that can not be altered. This is
obviously problematic when more markers are desired. But this can also be unfavorable
when drastically fewer are needed. More markers mean that the inter-marker distance2

becomes smaller, and thus the inter-marker confusion rate becomes higher. Another
common problem is fixed parameters and thresholds. These make them sensitive to
changing conditions and not very adaptive. More general problems are high false
positive rates, low robustness, and low inter-marker distance, which makes error
correction difficult. All these problems are addressed by the ArUco library.

This is an ArUco marker 2.4. ArUco markers are squares divided into a grid structure
where each cell is either black or white, representing the numbers 0 or 1. The edges

2The inter-marker distance between two markers describes how similar they are.

9

2 Fundamentals

Figure 2.3: Examples of fiducial markers proposed in previous works; taken from
[Gar+14], Figure 2.

Figure 2.4: Examples of markers of different sizes, n, generated with the proposed
method. From left to right: n=5, n=6 and n=8.; taken from [Gar+14],Figure 3

10

2 Fundamentals

of the marker are always black and seen as a border. The dimensions of the marker
are (n+2)x(n+2), where n > 0, n ∈ N. n*n is the number of bits used to represent
the individual marker. The additional two cells in each dimension are the border of
the marker. Squares were chosen as the shape because the four prominent corners
are favorable for the pose estimation, while the inner region can be used for marker
identification.

One of the big advantages of the ArUco library is the ability to automatically generate
its own dictionary of markers. The number of markers generated, as well as their
dimension, can be customized. The dimensions define the maximum number of
markers inside a dictionary. Additionally, all markers inside a dictionary must have the
same dimensions. This concept of automatic generation solves the problem of having
too many or not enough markers.

Automatic Marker Generation The ArUco marker can be written as a binary nxn
matrix. Before the algorithm starts, a threshold will be chosen. This threshold can be
set freely for every individual generation process. The algorithm starts with an empty
dictionary. Candidates for new markers are created by a stochastic process, where
markers with many transitions between 0 and 1 are selected with higher probability. If
the Hamming distances between a candidate and the already existing markers in the
dictionary (including the rotated versions of the markers) are higher than the threshold,
the candidate is added to the dictionary. Otherwise, it will be discarded. If a predefined
number of candidates fail successively, the distance threshold will be reduced. This
generating process creates a dictionary with a high inter-marker distance, minimizing
the false positive rates.

Marker Detection The ArUco marker detection relies mostly upon already-established
methods. It consists of four steps. The input image is taken as a gray-scale image.

1. Image segmentation: The most prominent contours of the gray-scale image are
extracted.

2. Contour extraction and filtering: A contour extraction is performed to produce a set
of image contours. Afterwards, a polygonal approximation is performed. Because
the markers are rectangular, everything that is not approximated to a 4-vertex
polygon will be discarded.

3. Marker Code extraction: An analysis of the inner region of the contour. This step
tries to see if there is a marker code inside the contours.

11

2 Fundamentals

4. Marker identification and error correction: This last step determines if the marker
code belongs to the dictionary. This step is the only novel contribution to the
marker detection process.

Through these systems, ArUco provides a robust and reliable fiducial marker system3.

3The original paper about ArUco also contributes to the occlusion problem. This is done with marker
boards and color masks. This is not used in this thesis and thus was omitted here

12

3 Procedure

3.1 Setup

The first step of integrating the OpenCV library is determining the setup.

• Computer A Creating the Unity Code: x64-based processor with 64-bit operating
system

• Operating System of Computer A: Windows 11 Pro, Version 23H2, Build 22631.3007

• Computer B Creating the Shared Library Code: Lenovo Yoga 530-14IKB, x86-64 based
processor with 64-bit operating system

• Operating System of Computer B: Ubuntu 22.04.4 LTS

• Unity3D Version: Unity3D 2022.3.14f1

• Android Device: LG G8s ThinQ; Android version 12; Qualcomm Snapdragon 855
processor (64bit processor, arm64 architecture)

• OpenCV Version: OpenCV 4.9.0

"Unity3D" will be abbreviated to "Unity" in this thesis. This thesis uses the C++
interface of OpenCV. Android devices need to be prepared for Unity to build directly
to them. Developer mode and USB Debugging must be enabled. Additionally, the transfer
protocol must be set to Photo Transfer Protocol (PTP). When set to Media/File Transfer
Protocol or other protocols, Unity will not detect the device. When building to an
Android device, the Unity log on the computer will not display anything. Android
Logcat is a Unity package that allows the log output of the Android device to be
displayed inside Unity on the computer. Unity needs to be set to build for Android.

3.1.1 Scripting Backend

Unity provides two scripting backends to compile the project for Android: Mono and
IL2CPP. The big difference between them is that Mono compiles at runtime while
IL2CPP compiles everything into C++ code and then uses this C++ code to create native

13

3 Procedure

binary files. In the player settings, where the scripting backend can be set, it shows that
the Mono compiler is only capable of building to ARMv7 (arm32 bit). The IL2CPP can
compile for ARMv7, ARM64, x86, and x86-64. As the mobile device used for this thesis
runs on ARM64, IL2CPP was chosen to be used. It is possible for ARM64 models to
run ARM32, but this will stop in the near future ([Cun], [Wil], [Ama]). Later in the
thesis, the scripting backend would be changed to Mono because of a problem caused
by IL2CPP (see 3.9)

3.2 External Code inside Unity3D: Plug-ins

This Section is based on [Docb] and [Doca]
Unity3D provides a concept named Plug-ins for using externally created code inside

Unity3D. Plug-ins can generally be separated into two broad categories: Managed and
Native.

Managed Plug-ins are managed .NET assemblies. With some exceptions, this means
that they are written in C#. This implies that they can only access features that the
.NET libraries support. Managed Plug-ins and Unity3D script code are practically the
same, the only difference being that managed Plug-ins were compiled outside Unity3D.
Thus, Unity3D might not have access to the source.

Native Plug-ins are platform-specific code libraries. This allows them to access
features like operating system calls and third-party code libraries that would otherwise
be unavailable to Unity. Native Plug-ins use a C-based call function. This means
functions must be declared with C linkage to avoid Name Mangling (see ch. 3.2.4
Name Mangling). Native Plug-ins have the downside that Unity3D cannot access them
as it can with managed Plug-ins. Unity3D will not be able to recognize inconsistencies.
For Example, Unity3D will not notice missing Plug-ins until the program is run and an
error is thrown.

Native Plug-ins are usually used when using C++ inside Unity; thus, this thesis
focuses on them. There are three stages to them: Creating, Importing and Calling.
Calling will be discussed in the next Section DLLImport and P/Invoke (3.3). Importing
is a very simple process that works mostly the same for every type of native Plug-in.
For this reason, there wont be a specific section on this but a small tutorial 6.0.1. The
creation part will be addressed later in the thesis (3.4).

3.3 P/Invoke and DllImport: Calling C++ Code from C#

Platform Invoke, or P/Invoke, is a technology provided by the .NET framework. It
allows managed code to access unmanaged code. Note that the unmanaged code

14

3 Procedure

must be compiled as a dynamic library and will be loaded at runtime ([Leae]). In the
Unity3D case, native Plug-ins are unmanaged code. The idea behind P/Invoke is to
declare a static function A’ inside the managed code, which corresponds to a function
A inside the unmanaged code. The managed code only has a declaration; the actual
implementation is inside the unmanaged code. The managed code needs some way to
know where to find this implementation. This is the job of the Attribute DllImport.

DllImport DllImport is an attribute indicating that this function is the static entry
point for an unmanaged function. Additionally, it provides the information needed
to call a function from unmanaged code ([Leac]). Note that this attribute can only be
given to functions. The minimal information needed is the name of the file containing
the unmanaged code. For other optional parameters and their default states, see [Leac].

3.3.1 Practical Example

The following example is taken from the code of the thesis and contains small alterations
for demonstration purposes.

C++ Code

1) extern "C" void InitOpenFrame(int width, int height){...}
2) extern "C" int GetArucoDrawing(int** rawImage){...}

C# Code

1) using System;
2) using System.Runtime.InteropServices;
3)
4) public class OpenCVManager2 : MonoBehaviour{
5)
6) private const string LIBRARY_NAME = "ArucoBridgeLibC";
7)
8) [DllImport(LIBRARY_NAME)]
9) private static extern void InitOpenFrame(int width, int height);
10) [DllImport(LIBRARY_NAME, EntryPoint = "GetArucoDrawing")]
11) private static extern int ArucoFunction(ref int[] rawImage);
12)

15

3 Procedure

This example assumes that the C++ code is already compiled into a library, and
the corresponding C# code should be written. Most of what is needed is contained
inside the System and System.Runtime.InteropServices namespaces (C#, lines 1-2). The
first step is to declare a function. This function must have the keywords static and
extern keywords. extern tells the compiler that the function’s implementation is located
elsewhere. The DllImport provides the compiler with the said location, in this case
ArucoBridgeLibC. DllImport also tells the compiler to load the unmanaged library. Note
that loading the Dll will only occur on the first call to the function ([Leaa]).

To start, the first C# function InitOpenFrame (line 9) will be examined. The DllImport
(line 8) only provides the location of the file containing the implementation. To find
the correct C++ function, the only name of the C# function must be identical. This
is because the C++ functions were compiled without name mangling (see 2.2.4). For
example, using the correct name with a different return parameter will not throw an
error but might cause overflows or segmentation faults. To work properly, the whole
signature must be the same. The name, return parameter, number of input parameters,
and type of input parameter define the signature of a function.

If it is desired for the C# function to have a different name than the C++ function, it
is possible to change that. The field EntryPoint of the DllImport attribute (line 10) allows
it to define the name of the C++ function while the C# function name differs.

The next paragraph addresses why the library name has no file extension. This has
to do with the filename itself.

Library File Name First of all, even though the name of the attribute is DllImport
this works also on other platforms like Linux and MacOS, both of which do not have
.dll files but their version of dynamic libraries. For dynamic libraries, Windows and
MacOS both just use the name of the file and append the extension .dll and .mylib,
respectively (aLibraryName -> aLibraryName.dll/aLibraryName.mylib). Linux adds its
extension .so but also adds the word "lib" at the beginning of the name (aLibraryName
-> libaLibrary.so). This thesis uses Linux-based dynamic libraries for reasons explained
in a later section (3.5.2).

The official Microsoft .NET documentation on P/Invoke ([Leae]) uses the whole
name of the file, which includes the extension and the leading "lib". The official
Unity3D documentation on native Plug-ins ([Doca]) uses the name of the file without
the extension or leading "lib". Some unofficial forum posts explicitly state that regarding
Unity3D, it is necessary to only use the name without the extension or leading "lib"
(one example: [oT2]). While testing the code for this thesis, both versions worked while
working in Unity3D. This thesis did not test this for things outside of Unity3D.

16

3 Procedure

3.3.2 Marshalling

Additionally, Marshalling needs to be addressed. Different programming languages
have different data types. For example, C# has the type bool containing either true or
false. By default, C++ does not have a data type for this. In practice, C++ just uses the
numbers 0 and 1 to represent true or false. Another prominent example of this is Strings.
C++ does not have a string data type like C# but has multiple different versions of
how to represent a string. Additionally, it is possible that two programming languages
use the same data type to represent something, but the sizes of the types differ. C++
can represent an integer with 1 byte (int8_t), 2 bytes (int16_t), 4 bytes (int32_t), or 8
bytes (int64_t). This can create a problem when sending parameters between native
and managed code.

Marshalling is the process of transforming types when they need to cross between
managed and native code. The runtime has default rules on how to marshall common
types ([Leag]). These rules will automatically be applied unless specifically disabled.
This is the reason why, in the example above, no marshalling was specified. To indicate
a specific marshalling, the MarshalAs attribute is provided by the .NET framework. This
attribute can be applied to a field, method parameter, and method return value. The
following example was taken from [Leag].

[DllImport("somenativelibrary.dll")]
static extern int MethodA([MarshalAs(UnmanagedType.LPStr)] string parameter);

A complete list of marshall options, including more information, can be found here:
[Leag], [Lead].

3.4 Flowchart of the Creation Process

To reiterate, the goal of this thesis is to be able to use the ArUco part of the OpenCV
library in Unity on an Android build. The problem is that the OpenCV library was not
compiled with C linkage (2.2.4). A native wrapper library is needed. The structure is
that OpenCV will be linked into this native wrapper library, which is compiled with C
linkage. This thesis discussed how to import and call native Plug-ins. The last part is
the creation of them. This thesis will explore three possible paths: DLL on Android,
Unity’s Native Plug-ins for Android, and Android Archive Plug-ins/Android Library
Projects. The following graphic provides an overview of the different paths:

17

3 Procedure

Wrapper with OpenCV

Unity's Native Plug-ins for
Android

3.6

DLL ob Android
3.5

Android Archive Plug-ins
and Android library Projects

3.8

Managed Code Stripping
3.5.1

Abandoning DLL on Android
3.5.2

Creating and importing
Android Archives

3.8.1

C/C++ Source
files
3.6.1

Shared library
3.6.3

Static library
3.6.2

Shared library
Created on Linux

3.7

OpenCV as
Shared library on

arm64
3.7.1

C standard library
3.7.1

Missing
Dependencies

3.7.1

Abandoning the
Linux Shared

library
3.7.2

Placing libc.so.6
in APK
3.7.1

APK sign
3.7.1

Figure 3.1: Flowchart of what led to what

18

3 Procedure

3.5 DLL on Android

This is the naive approach to coping with what works on other platforms like Windows.
This approach creates a .dll file, imports this as a Plug-in in Unity by placing it in the
"Plugins" folder, and calls it with P/Invoke. At the moment, the dynamic library inside
the .dll file will only contain a dummy function returning an integer. After that, the
application can be built to an Android device (see 6.0.2).

When running the application, an error will be thrown:

DllNotFoundException: Unable to load DLL [...] library not found

This error indicates that the .dll file is not inside the application. It is possible to
examine the contents of the application. The application will be stored inside a .apk file
when building to Android. APK (Android package) is a file format containing Android
app information required by the runtime. Android devices use this format to install
apps ([Deva]). This file format is conveniently a ZIP archive ([Devd]). This means that
by renaming the file and changing the extension from .apk to .zip, it is possible to
unzip it and examine the contents. The .apk file has a "lib" folder containing all the
libraries of the application. As foretold by the error message, the library does not exist
inside the .apk file. There are multiple forum entries on the internet that have the same
problem ([pau], [jim], [Ars]). The answers to these suggest that the problem is that the
Unity Linker is stripping the plug-in.

3.5.1 Managed Code Stripping by the Unity Linker

The Unity Linker is a tool used by the Unity Build process for stripping managed code.
The Unity Linker removes unused or unreachable code during the build process. This
can be controlled in three different ways: Managed Stripping Level, Preserve Attribute,
and a link.xml file. Managed Stripping Level is a property in the player setting and sets
the general rules for how the Unity Linker searches. The Preserve Attribute can be given
to individual types to ensure that they will not be stripped. link.xml is a file containing
specific information about which files and what content of the files should be preserved.
([Mann], [Mank]).

In the case of this thesis, the Preserve Attribute is not usable because attributes do
not exist in C++. With no success, the Managed Stripping Level was set to minimal, the
lowest option on the IL2CPP compiler. A link.xml was created and placed next to the
Plug-in. The link.xml contained this:

<linker>
<assembly fullname="ardll.dll" preserve="all"/>

19

3 Procedure

</linker>

3.5.2 Abandoning Dll on Android

Using the name of the assembly without the extension or other variations of the link.xml
was unsuccessful. It is unlikely that Managed Code Stripping is the problem in this
specific case. If the Plug-in was actually stripped, then the minimal option in the
Managed Stripping Level should have solved this problem. This option makes Unity
not remove any user-written code. Another indicator is the name of the concept.
Managed Code Stripping implies that it can only affect managed code. This idea is further
cemented when remembering that Unity is incapable of accessing native Plug-ins in
the same way as with managed Plug-ins (see 3.2). This ability would be needed when
determining which code is unused or unreachable. After this, the focus of the thesis
shifted to the Android architecture to find a solution.

Android Architecture

Android is an open-source operating system often associated with Java. However, this
Java association is only an API framework. Internally, Android runs on a modified
version of the Linux kernel ([Devg], Fig. 3.2) written in C ([Kof89]).

As mentioned in the Fundamentals chapter 2, Linux does not use .dll files as .dll is
a Windows system. On Linux, Dynamic libraries are .so files. A possible explanation
of the missing .dll file might be that the Linux kernel is incapable of using the .dll
file and thus Unity does not copy them into the .apk file. This explanation leaves
something unexplained. When compiling with the Mono compiler, there is a folder
called "Managed" (assets/bin/Data/Managed) inside the .apk file containing .dll files.
This indicates that using .dll files in an Android build is possible.

The following is a hypothesis made by this thesis. The Unity documentation states
that managed Plug-ins are, like native Plug-ins on Windows, also compiled into .dll
files ([Manl]). It could be possible that Unity acts as some kind of container that runs
the .dll files. But for this to work, Unity would need access to the .dll files. Unity
only has this access if the .dll file is a managed Plug-in, meaning it was written in C#.
These .dll files only exist when compiled with the Mono compiler because the IL2CPP
compiler turns everything into C++ code (see 3.1.1).

There are some forum posts that confirm the hypothesis that only .dll files with C#
code can be used on Android ([Cod], [Hul]). The answer on the post by [Hul] explicitly
mentions that the Mono runtime functions as a container, loading and executing the
.dll file. Unfortunately, neither of these posts cites any source or is answered by an
official Unity developer. This means that this hypothesis still needs to be proven.

20

3 Procedure

Figure 3.2: Architecture of the Android Platform, taken from [Devg]

21

3 Procedure

3.6 Unity’s Native Plug-ins for Android

The Unity manual contains a section about Plug-in types for Android ([Mana]). It
mentions native Plug-ins specifically for Android. Native Plug-ins are again separated
into 3 different types: Shared Library, Static Library, and C/C++ source files ([Manh]).

Scripting backend Shared Library Static Library C/C++ source files
IL2CPP Yes Yes Yes
Mono Yes No No

Table 3.1: Table shows which scripting backend supports which Plug-ins type ([Manh]).

As stated previously, Unity has two scripting backends: IL2CPP and Mono. The
scripting backend determines which Android native Plug-ins are compatible with Unity.
The Table 3.1 shows this compatibility. At this point in the thesis, the IL2CPP compiler
was used. This allows a greater variety of Plug-ins options.

Following are the Plug-in options, beginning at C/C++ source files.

3.6.1 C/C++ source files

This includes all C/C++ source files with the extensions .c, .cc, .cpp, and .h ([Manh]).
These files can be directly placed in the Plug-in folder1. These files will be directly
compiled by IL2CPP into a library and regarded as internal library code. When
specifying the name of the library in the DllImport attribute, the name "__Internal"
must be used ([Manc]).

The thesis tested this Plug-in type successfully with simple dummy C++ functions
that return an integer. Unfortunately, it is impractical for this use case. The problem
is that the OpenCV library is a complicated construct with specific toolchains for
compiling. These toolchains would need to be recreated for the IL2CPP compiler. This
task is beyond the scope of this thesis and may even be impossible without rewriting
the OpenCV library.

3.6.2 Static Libraries

The Unity manual ([Manh]) states that static libraries (.a files) are an option. But during
testing, when trying to load the library, the runtime throws an error.

DllNotFoundException: Unable to load dynamic Library

1It probably even works if the files are placed anywhere in the assets folder or in any subfolder. However,
this was not tested by this thesis.

22

3 Procedure

This makes sense when considering what DllImport does and what static libraries
are (see 2.2). Static libraries are linked statically by the linker after compilation, while
DllImport loads dynamically during runtime.

A possibility is that static libraries can only be called by a C/C++ source file. The
idea was that C/C++ source files would be compiled by the IL2CPP compiler and then
linked by IL2CPP. The thesis tested this only briefly but without success. Using static
libraries does not work based on the reasons covered in 2.2. There could be a different
way to use them, but no reason as to why it was found in the Unity Manual.

3.6.3 Shared Libraries

With the former two options deemed as not working or not practical, Shared libraries
were chosen. They need to have the extension .so. The importing and calling of shared
libraries work exactly the same as with .dll libraries on Windows. The different part is
the creation. As Android is Linux-based, a logical idea is to compile the needed library
into a shared library on a Linux system. Before using a big complicated library like
OpenCV, a dummy library was used to test the integration of shared libraries with
Unity on Android.

3.7 Shared Library Created on Linux

This section builds on the shared libraries of the last section (3.6.3) and explores ways
of implementing it. This section tries to create the wrapper library on Linux and tries
to link OpenCV with it. Before trying to use the OpenCV library, a dummy library will
be used. The dummy library contains this code:

(shared.h)
extern "C" int getLibNumber(void);

(shared.cpp)
#include "shared.h"

int getLibNumber(void){
return 8;

}

There are many websites explaining how to compile a shared library on Linux (see
6.0.3). The GCC and Clang compilers are usually used. However, when running the

23

3 Procedure

Unity application, in the case of this setup and most likely in other setups, it still throws
an error.

DllNotFoundException: Unable to load [...]

The reason for this is that the library was compiled for the wrong architecture.

Architecture of processors The architecture of processors describes their functional
specifications. The architecture can be thought of as a contract between hardware and
software. It specifies what functionality the processor has. With this, the software
knows what it can rely on ([Devf]). There are many different architectures, and when
compiling into binaries/machine Code, which C/C++ does, the code needs to be
compiled for the specific architecture.

In this case, the computer compiling the library has the x86-64 architecture, while
the mobile device has the arm64 (see 3.1). The term Cross compilation refers to the act of
compiling for an architecture that differs from the architecture compiling the code. To
cross-compile, specific compilers are needed. In this case, the g++-aarch64-linux-gnu is
needed ([Pac]), which is the compiler for C++. There is also gcc-aarch64-linux-gnu for C.
When using gcc-aarch64-linux-gnu for C++ code, it throws an error.

error trying to exec ’cc1plus’

After compiling the library with g++-aarch64-linux-gnu, the unity application works
and does not throw any error. The next step is compiling the OpenCV library for the
arm64 architecture.

3.7.1 OpenCV as Shared Library on arm64

OpenCV provides multiple versions and programming interfaces for different program-
ming languages and supports a variety of platforms. OpenCV allows building the
C++ library from the source and provides toolchains for different architectures. With
the "aarch64-gnu" toolchain, the library can be compiled for the arm64 architecture
([Opeb], see 6.0.4). The OpenCV functions are not compiled with C linkage, making
them inaccessible to the C# code. To work around this, C++ wrapper functions are
needed. The wrapper functions are compiled with C linkage and get called by the
C# code. Then the wrapper functions call the OpenCV code. The structure looks like
this: The OpenCV static library gets linked into the dynamic library with the wrapper
functions. The wrapper library gets placed in Unity as a Plug-in (3.3).

It is possible to link the OpenCV library dynamically, but because the OpenCV
library is separated into single modules, it would require to always bring all the needed
modules. To avoid this, the library was linked statically.

When trying to run the Unity application, the error will be thrown.

24

3 Procedure

OpenCV

C++

Static library

Wrapper

C++

Unity

C#

linked into loaded at runtime

with P/Invoke

Dynamic library

Figure 3.3: Shows the library structure

DllNotFoundException: Unable to load dynamic library
’libstdc++.so.6’ because of ’Failed to open requested
dynamic library [...]’

This means that the library has a dependency on the dynamic library "libstdc++.so.6"
which is not found. To understand "libstdc++.so.6" in more detail, an explanation
follows.

C Standard Library

The standard library provides definitions for the entities and macros inside the language.
Both C and C++ have their own standard library, but the C++ standard library also
includes their own version of parts of the C standard library. The reason for this is that
C code can still be compiled with C++ compilers ([cpp]). Even though the standard
library defines its content, it does not implement it. There are multiple different
implementations, each with advantages and disadvantages. The important libraries for
this thesis are: libc.so.6, libstdc++, libc++, and libm.so.6.

libc.so.6, often referred to as glibc, is a C standard library implementation created by
GNU. This implementation is commonly found in Unix-based systems, namely Ubuntu
([Pag]). libstdc++ is the same but for the C++ standard library ([gnu]). libc++ is a C++
standard library implementation created by llvm ([llv]). This implementation is the
one used by Android ([Devb]). libm refers to the math library. This library provides
elemental mathematical functions and floating point environment routines. libm.so.6 is
the GNU implementation ([Uni]).

25

3 Procedure

Missing Dependencies

With this knowledge, the missing dependency problem can be addressed. The OpenCV
library, and thus also the wrapper library, uses libstdc++ as the standard C++ library.
Android does not provide this library2, as it uses libc++. The simple solution is to
statically link the library. This has the advantage that there is only one file that needs to
be transferred. The GNU compiler provides the link option "-static-libstdc++" for this
([GNU]). Now the libm.so.6 dependency is missing showing that libstdc++ is not the only
missing dependency, just the first that comes up. It is possible to see a dynamic library’s
dependencies (see T6.0.5). When doing so, five dependencies show up: libstdc++.so.6,
libm.so.6, libgcc_s.so.1, libc.so.6, and ld-linux-aarch64.so.1. All five of these need to be
present in Unity for the application to work.

Statically linking libm.so.6 and libc.so.6 as libm.a and libc.a did not work. The linker
does not throw any error, but when looking at the dependencies, they are both still
linked dynamically. The next idea was to tell the compiler to link the entire project
statically. The GNU compiler provides the link option "-static" to compile the whole
project statically ([GNU]). Linking the wrapper library with this option throws an error.

final link failed: bad value

(see supplementary material 7 for the entire error).
Note that this did not happen with the dummy library 3.7 from the previous section.

The reason for this is that the dummy library does not depend on any external code,
not even the standard library.

It is unclear why manual linking libm.so.6 did not throw any error. However, there
is a possible theory on why both ideas did not work which can be seen as part of the
following error message.

relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol
‘_dl_debug_state’ which may bind externally can not
be used when making a shared object; recompile with -fPIC

As mentioned in Section 2.2.3, static libraries need to be compiled as positional
independent code to be linked into dynamic libraries. The theory is that libm.a and libc.a
have not been compiled with -fpic and thus cannot be linked into dynamic libraries.

A possible solution could be to get the source code and compile it with -fpic. However,
this was never done in this thesis because the error message also hinted at a different
problem:

2Android provides a file called "libstdc++.so", which is not a full C++ standard library implementation.
This file should not be confused with the GNU libstdc++. See [Devb] for more information.

26

3 Procedure

opencl_core.cpp:[...]: warning: Using ’dlopen’ in
statically linked applications requires at runtime
the shared libraries from the glibc version used for
linking.

The opencl_core.cpp is a file from OpenCV. This means that even when linking libc.a,
libc.so.6 would still be needed inside Unity. This made the focus change from statically
linking to bringing the shared library to Unity.

Placing libc.so.6 in the APK

When placing the libc.so.6 file inside the Unity Plug-in folder, Unity does not recognize
it as a shared library. After some testing, it became clear that Unity can only recognize
a shared library with the extension ".so". Because of this, Unity does not copy the file
into the .apk file. The solution is to manually copy the needed files into the .apk file
after Unity is finished building.

Unity provides callbacks that will be called at certain times in the pipeline of creating
the application. OnPostProcessBuild will be executed after building the player ([Manj],
[Manm]). This can be used to edit the .apk file before it is deployed on the Android
device. However, when deploying the .apk file, the error "CommandInvokationFailure:
Unable to install APK to device" will be thrown. The reason for this is that the APK
signature is invalid.

APK Signing An APK needs to be signed to be installed on an Android device.
There are two types of signing: Debug and Custom. Debug signing is a default
signing method that allows the application to be run on Android devices but not to
be published. Custom signing allows the application to also be published ([Deve],
[Manb]). When OnPostProcessBuild will be called, the APK has already been signed by
Unity. Editing the file will result in the signature to be invalid, making it not possible
to deploy on an Android device.

Unity provides another callback: OnPostGenerateGradleAndroidProject. This is called
after the Android Gradle project is generated but before the building and eventual
signing begins ([Mani]). Unity explicitly specifies that this callback can be used to
modify or move files before Gradle builds the application ([Manf]). Using this callback
also ends in another error.

UnauthorizedAccessException: Access to the path
’[...]/OpencvTestWoky/Library/Bee/Android/Prj/IL2CPP/Gradle/unityLibrary’
is denied.

27

3 Procedure

The error suggests that the program does not have the right to access the needed
folders. Moving the entire project to a different, unprotected location does not have
any effect.

The Unity Manual mentions that it is possible to export the Unity project as a Gradle
project and import that into Android Studio. This grants greater control over the build
pipeline or the ability to modify the Android manifest ([Manb], [Mane]). It could be
possible that this allows the addition of the libc.so.6 file without throwing an error.
However, this was never tested in this thesis as this approach was abandoned due to
many reasons.

3.7.2 Abandoning the Linux Shared Library Approach

Following is the list of steps to make the OpenCV library accessible in Unity. Steps 1-3
were researched and tested by this thesis. The other steps are assumptions based on
the insights gained in the previous section.

1. Get the source code of the OpenCV library.

2. Cross-Compile the library with the aarch64 toolchain.

3. Create a dynamic wrapper library that links the OpenCV library.

4. Create the Unity project.

5. Export the project to Android Studios.

6. Add the wrapper library to the project.

7. Build, sign, and deploy the project with Android Studios

It becomes clear that this approach is very convoluted, especially with certain setups.
In the case of the thesis, the Unity part is done on Windows, and the GNU aarch64
compiler needs a Unix system. This was realized by having a second computer with
Ubuntu. Additionally, the eventual library does not consist of one file but multiple:
The wrapper library itself and at least three dependency libraries. Every new dynamic
dependency adds a new file to keep track of. On top of all that, there are unofficial
forum posts that state that Gradle is incapable of packaging a library that does not
match the naming pattern lib*.so ([Dan]). This still needs to be proven, but if it is true, it
would make this whole approach impossible. For these reasons, the approach of using
a shared library created on Linux was abandoned.

28

3 Procedure

3.8 Android Archive Plug-ins and Android Library Projects

Android libraries are Android app modules that compile into Android archives (.aar
files) instead of APKs (.apk files). They include everything they need to build an
app and can be used as a dependency for Android apps ([Devc]). Android archives
are contained in a single file, while Android libraries are directories with a specific
structure. Unity recommends using Android archives if the distribution of the Plug-in
is desired ([Mang]). For this reason, the thesis chose them over Android libraries. The
basic idea of this approach is to have a module containing the wrapper code depending
on another module containing the OpenCV library.

3.8.1 Creating and Importing Android Archives

This section is based on [Devc], [Voib], and [Voia]
Android archives are created as modules in Android Studio. This Android Studio

project is not actually used but is more of a vessel to create the modules needed. First,
the OpenCV library needs to be imported as a module. OpenCV provides a prebuild
version of this module that can be imported ([Opee], click the Android button). After
this, the new wrapper module needs to be created. Android Studio provides the option
to add all the needed C++ files automatically. Now the dependencies need to be set so
that the wrapper library can use the OpenCV library. <All Modules> and app need to
depend on OpenCV. This allows the wrapper library to access the OpenCV library while
coding. To use the OpenCV library while executing, it still needs to be linked inside the
CMake, and the Gradle needs to be given the location of the OpenCV implementation.
The last thing is to include the jni.h header file inside all the source files that use
OpenCV. After building the module, the .aar file can be found at "[Path to the Android
Studio directory]/ModuleName/build/outputs/aar". This file can be placed inside the
Unity "Plugins" folder. The name of the .aar file will probably differ from the name
of the .cpp source file. The name of the Plug-in specified in the DllImport attribute
needs to be exactly the same as the name of the .cpp source file. When running the
application, no error is thrown. The .aar file can also be used on different Architectures:
arm64-v8a, armabi-v7a, x86, and x86_64. This can be seen by unzipping the .aar file.

For a full and detailed tutorial, see 6.0.6.

3.9 Using ArUco in Unity

The code implemented by the thesis is meant as a proof of concept. It shows the basic
capability of detecting ArUco markers, estimating their pose, and drawing coordinate
systems into them.

29

3 Procedure

The idea is that the Unity code fetches the camera image and calls the wrapper
function, giving a reference to the image as the parameter. The wrapper function
uses this image to detect the markers. Additionally, it draws red circles around the
corners of rejected candidates and green ones around the accepted candidates. After
this OpenCVs pose estimation function solvePnP is used to calculate the poses of the
markers. Lastly, the resulting rotation and translation vectors produced by the pose
estimation are used to draw coordinate system frame axes onto the markers.

The combination of ArUco and Unity creates some difficulties.

Marshalling the Image input from Unity to ArUco In Unity, the image gathered
from the camera is an array of pixels, Color32[] to be specific. Color32 is a struct
that represents an RGBA Color and has a size of 32bit. Each part of the RGBA is
stored as a byte ([Mand]). Structs are value types that encapsulate data ([Leaf]). That
means in arrays, their data is simply lined up. An example follows to make this more
understandable.

Color32 ar[] = new Color[2];
ar[0] = new Color32(255, 12, 0, 76);
ar[1] = new Color32(213, 0, 23, 25);

Contents of ar (size of each number = 8bit):
255,12,0,76,213,0,23,25

This becomes helpful as Color32 does not exist in C++3 while integers with 8bits do
exist. The resulting P/Invoke functions look like this.

(C#)
[DllImport(LIBRARY_NAME)]
private static extern int GetArucoDrawing(ref Color32[] rawImage);

(C++)
int GetArucoDrawing(unsigned char** rawImage);

Destroyed Pointer by Scripting Backend Calling the wrapper function with the
image pointer as a parameter destroys the pointer. Before calling, the length of the
array is equal to the number of pixels. After calling, the length of the array is one. This
first index is the same as before, and trying to access beyond the first index reveals

3It is possible to create this struct also in C++ and then fill it with the Input. This was not done because
this data structure is never needed in the C++ code

30

3 Procedure

that the rest is completely changed. As mentioned previously (see 3.1.1), the IL2CPP
compiler was used as the scripting backend. However, this destroyed the pointer. The
research done in this thesis could not find an explanation for this. From this point on
the Mono compiler was used as scripting backend.

CV_8UC4 to CV_8UC3: Changing Colors Unity represents its images always with
RGBA, which has the type CV_8UC4. When trying to use the ArUco functions with
an CV_8UC4 image, ArUco states that it is only capable of using RGB (CV_8UC3) or
gray-scale (CV_8UC1). To use the ArUco function, the image needs to be converted.
OpenCV provides a function for this: CvtColor ([Opec]). The problem is that this
function relocates the image. Thus whatever is done with it inside the C++ code will
have no effect on the image C# has. It is possible to work around this by copying to
the image and performing cvtColor on this copy. This copy can be used by the ArUco
functions to produce the location of the corners of the markers. Because the images
are copies of each other, the marker corner will be in the exact same space. Now the
corners can be drawn into the original video.

Image flipping Unity and OpenCV place the first pixel of the pixel array on different
parts of the screen. OpenCV places the first pixel at the top left corner and then
continues to the right. For the next row, it starts at the left border again. Unity places
the first pixel at the bottom left corner and then continues to the right. For the next
row, it starts at the left border again. This results in the images being flipped, and thus
ArUco will not recognize any markers. To solve this, the image needs to be flipped
horizontally before and after the call for the wrapper function.

The dictionary used for testing was the predefined "DICT_6x6_250". For detection,
the default detector parameters were used ([Oped]). The pose estimation also used the
default parameters ([Oped], [Opef]). In this specific application, marker detection and
pose estimation do not interact with Unity directly. They do not deviate from their
normal use case. For this reason does the thesis not go into detail about them (For
more information: [Oped]).

If all of these things are dealt with, then the application detects and estimates the
pose of the marker accurately (3.4). The big problem here is the performance. On the
device specified in the setup (3.1), the application only reaches about 3 frames per
second. There is a demonstration video in the Supplementary material (7).

31

3 Procedure

Figure 3.4: Demonstration of the ArUco detection and pose estimation

32

4 Conclusion

This thesis researched how to make the ArUco part of the OpenCV library accessible
for Unity on an Android build. Unity uses C# for scripting, while OpenCV is written in
C++. The thesis first explained the fundamentals needed to understand the procedure.
These cover the basics of what the Compiler and Linker do in the C++ language, what
types of C++ libraries exist, and what the ArUco marker detection is.

The procedure explains the possible ways to make external C++ accessible for Unity.
Unity provides the Plug-in concept for this. There are three stages to using a Plug-in:
Creating, Importing, and Calling. Plug-ins can be separated into two types: Native and
Managed. The specifics of the three Plug-in stages depend on the type used. Native
Plug-ins were chosen as the most promising. Native Plug-ins need a particular way to
call them, which is P/Invoke and DllImport. Because different programming languages
have different data types, a way is needed to convert them. This process is called
Marshalling. Importing Native Plug-ins means placing them inside the "Plug-ins"
folder. There are different ways to create a native Plug-in. Creating the native Plug-in
as a .dll file does not work as Android is Linux-based, and DLL is a Windows concept.
Unity has four ways to use C++ code for Android: C++ Source Files, Static libraries (.a
files), Shared libraries (.so files), and Android Archives (.aar files). C++ Source Files
are impractical for the given use case. Static libraries (.a files) do not work. Shared
libraries (.so files) and Android Archives (.aar files) both work. For Shared libraries
it is important that they are compiled for the architecture of the Android device. The
OpenCV library can not be used as a Plug-in directly because the functions are not
compiled with C linkage. To solve this the library is enclosed inside a wrapper library.
Compiling the OpenCV library from the source with the aarch64-gnu toolchain creates
a missing dependencies problem. E.g. the library libc.so.6 can neither be statically
linked nor be brought with. OpenCV provides a precompiled version of the library
that works with Android Archives. This enables Unity to use the OpenCV library.

Unity needs to send the C++ code a pointer containing the image. The pointer will be
destroyed when building the Unity project with the IL2CPP compiler as the scripting
backend. The Mono compiler needs to be used. Unity and OpenCV store images
differently. It must be flipped horizontally before sending the image from Unity to
OpenCV.

This thesis showed that using the ArUco part of the OpenCV library is possible.

33

5 Further Research

This thesis is an exploration of possible concepts and examines their validity. It focuses
on making the ArUco part of the OpenCV library accessible. Regarding functionality,
the thesis code detects markers, estimates their poses, and draws coordinate systems
onto them. The next step for the detected marker would include affecting game objects
in Unity. This would involve using the rotation and translation vectors created by the
code of the thesis to rotate and move objects in Unity. These vectors must be returned
to the C# code for this to work. This creates the next task.

Data generated from C++ needs to be sent back to C#. Data put on the stack will
be deleted after returning from the function. Allocating memory on the heap without
freeing it will create a memory leak. A solution would be to allocate memory inside
C#, which will be filled by C#. This way, the C# garbage collector will deal with it. The
disadvantage is that it limits how many markers can be detected. Another solution
could be to allocate memory in C++, send it to C#, copy it, and then send it back to
C++, where it can be freed. Maybe there is a way of freeing memory in C#, which was
not found during the research of this thesis.

Improving the program’s performance is also crucial for its use in real-life scenarios.
It stands to question whether the poor performance is due to the specific mobile device
used by this thesis or if the methodology creates these performance issues.

Lastly, the ability to use the ArUco marker boards is of interest. OpenCV provides
the functionality of ArUco marker boards. They are a common approach to improving
the robustness of a marker system ([Gar+14]).

34

6 Tutorials

This chapter contains small tutorials and helpful links for specific tasks.

6.0.1 Importing a Native Plug-in

https://docs.unity3d.com/Manual/android-native-plugins-import.html

6.0.2 Building to Android with Unity

https://docs.unity3d.com/Manual/android-BuildProcess.html

6.0.3 Creating shared libraries on Linux

https://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html

6.0.4 OpenCV Cross Compilation

https://docs.opencv.org/4.x/d0/d76/tutorial_arm_crosscompile_with_cmake.html

6.0.5 Displaying the Dependencies of Dynamic Library

Executing the command "readelf –dynamic library.so" in the terminal.

6.0.6 Creating an Android Archive

This consists of two steps: Importing the OpenCV library as a module and creating the
wrapper module. https://www.youtube.com/watch?v=imTTaZTSVQk between 0:00 and
3:30 explains how to import the OpenCV Library. https://www.youtube.com/watch?
v=mrBsn7JDf28 between 0:00 and 3:40 explains how to create the wrapper module.

35

https://docs.unity3d.com/Manual/android-native-plugins-import.html
https://docs.unity3d.com/Manual/android-BuildProcess.html
https://www.cprogramming.com/tutorial/shared-libraries-linux-gcc.html
https://docs.opencv.org/4.x/d0/d76/tutorial_arm_crosscompile_with_cmake.html
https://www.youtube.com/watch?v=imTTaZTSVQk
https://www.youtube.com/watch?v=mrBsn7JDf28
https://www.youtube.com/watch?v=mrBsn7JDf28

7 Supplementary Material

The final working version of the Unity project and Android Studio can be found in this
GitHub repository:

https://github.com/Wookie20/BA.git

36

List of Figures

2.1 The structure of an object file; taken from [Świ22], Figure 6.1 4
2.2 The relocation of the .data section; taken from [Świ22], Figure 6.2 5
2.3 Examples of fiducial markers proposed in previous works; taken from

[Gar+14], Figure 2. 10
2.4 Examples of markers of different sizes, n, generated with the pro-

posed method. From left to right: n=5, n=6 and n=8.; taken from
[Gar+14],Figure 3 . 10

3.1 Flowchart of what led to what . 18
3.2 Architecture of the Android Platform, taken from [Devg] 21
3.3 Shows the library structure . 25
3.4 Demonstration of the ArUco detection and pose estimation 32

37

List of Tables

2.1 Name Mangling Table [Wik]: shows how different compilers mangle the
names of overloaded functions differently. 9

3.1 Table shows which scripting backend supports which Plug-ins type
([Manh]). 22

38

Bibliography

[Ama] R. Amadeo. The Snapdragon 8 Gen 2 brings Wi-Fi 7, sticks with some 32-bit
support. https://arstechnica.com/gadgets/2022/11/the-snapdragon-8-
gen-2-brings-wi-fi-7-sticks-with-some-32-bit-support/. Accessed:
2024-03-14.

[Ars] Arsyl_Games. Unity DLL plugins for android. https://forum.unity.com/
threads/unity-dll-plugins-for-android.892189/. Accessed: 2024-03-7.

[Cod] CodeSmile. DllNotFound for .dll file in Android build. https://forum.unity.
com/threads/dllnotfound-for-dll-file-in-android-build.1489696/.
Accessed: 2024-03-8.

[cpp] cppreference. C++ Standard Library. https://en.cppreference.com/w/cpp/
standard_library. Accessed: 2024-03-11.

[Cun] E. Cunningham. Improving app security and performance on Google Play for
years to come. https://android-developers.googleblog.com/2017/12/
improving-app-security-and-performance.html. Accessed: 2024-03-14.

[Dan] DanAlbert. How to link libraries with non so endings in NDK . e.g.libc.so.6.
https://github.com/android/ndk/issues/1341. Accessed: 2024-03-12.

[Deva] A. Developer. Application fundamentals. https://developer.android.com/
guide/components/fundamentals. Accessed: 2024-03-9.

[Devb] A. Developer. C++ library support. https://developer.android.com/ndk/
guides/cpp-support. Accessed: 2024-03-11.

[Devc] A. Developer. Create an Android Library. https://developer.android.com/
studio/projects/android-library. Accessed: 2024-03-12.

[Devd] A. Developer. Reduce your app size. https://developer.android.com/
topic/performance/reduce-apk-size. Accessed: 2024-03-9.

[Deve] A. Developer. Sign your app. https://developer.android.com/studio/
publish/app-signing. Accessed: 2024-03-12.

[Devf] A. Developer. What do we mean by architecture? https://developer.arm.
com/documentation/102404/0201/What-do-we-mean-by-architecture-.
Accessed: 2024-03-10.

39

https://arstechnica.com/gadgets/2022/11/the-snapdragon-8-gen-2-brings-wi-fi-7-sticks-with-some-32-bit-support/
https://arstechnica.com/gadgets/2022/11/the-snapdragon-8-gen-2-brings-wi-fi-7-sticks-with-some-32-bit-support/
https://forum.unity.com/threads/unity-dll-plugins-for-android.892189/
https://forum.unity.com/threads/unity-dll-plugins-for-android.892189/
https://forum.unity.com/threads/dllnotfound-for-dll-file-in-android-build.1489696/
https://forum.unity.com/threads/dllnotfound-for-dll-file-in-android-build.1489696/
https://en.cppreference.com/w/cpp/standard_library
https://en.cppreference.com/w/cpp/standard_library
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://android-developers.googleblog.com/2017/12/improving-app-security-and-performance.html
https://github.com/android/ndk/issues/1341
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/ndk/guides/cpp-support
https://developer.android.com/ndk/guides/cpp-support
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://developer.android.com/topic/performance/reduce-apk-size
https://developer.android.com/topic/performance/reduce-apk-size
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing
https://developer.arm.com/documentation/102404/0201/What-do-we-mean-by-architecture-
https://developer.arm.com/documentation/102404/0201/What-do-we-mean-by-architecture-

Bibliography

[Devg] A. Developers. Platform architecture. https://developer.android.com/
guide/platform. Accessed: 2024-03-6.

[Doca] U. Doc. Native Plug-ins. https://docs.unity3d.com/Manual/NativePlugins.
html. Accessed: 2024-02-16.

[Docb] U. Doc. Plug-ins. https://docs.unity3d.com/Manual/Plugins.html.
Accessed: 2024-02-16.

[Gar+14] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and M. Marín-
Jiménez. “Automatic generation and detection of highly reliable fiducial
markers under occlusion.” In: Pattern Recognition, 47(6), 2280-2292 (2014).

[GNU] GNU. Options for Linking. https://gcc.gnu.org/onlinedocs/gcc/Link-
Options.html. Accessed: 2024-03-11.

[gnu] gnu. GCC, the GNU Compiler Collection. https://gcc.gnu.org/. Accessed:
2024-03-11.

[Hul] D. Hulme. Why would an APK contain DLL files? https://android.stackexchange.
com/questions/195326/why- would- an- apk- contain- dll- files. Ac-
cessed: 2024-03-8.

[jim] jimmycrazyskills. How do I include added dll’s to a android apk build? https:
//discussions.unity.com/t/how-do-i-include-added-dlls-to-a-
android-apk-build/133343. Accessed: 2024-03-7.

[Kof89] M. Kofler. Linux – Installation, Konfiguration, Anwendung; 3 Auflage. Page 240.
Addison-Wesley, 1989.

[Leaa] M. Learn. Consuming Unmanaged DLL Functions. https://learn.microsoft.
com / en - us / dotnet / framework / interop / consuming - unmanaged - dll -
functions. Accessed: 2024-03-6.

[Leab] M. Learn. Decorated names. https://learn.microsoft.com/en-us/cpp/
build/reference/decorated-names?view=msvc-170. Accessed: 2024-03-9.

[Leac] M. Learn. DllImportAttribute Class. https://learn.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.dllimportattribute?
view=net-8.0. Accessed: 2024-03-4.

[Lead] M. Learn. MarshalAsAttribute Class. https://learn.microsoft.com/en-
us/dotnet/api/system.runtime.interopservices.marshalasattribute?
view=net-8.0. Accessed: 2024-03-4.

[Leae] M. Learn. Platform Invoke (P/Invoke). https://learn.microsoft.com/en-
us/dotnet/standard/native-interop/pinvoke. Accessed: 2024-03-4.

40

https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://docs.unity3d.com/Manual/NativePlugins.html
https://docs.unity3d.com/Manual/NativePlugins.html
https://docs.unity3d.com/Manual/Plugins.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://gcc.gnu.org/
https://android.stackexchange.com/questions/195326/why-would-an-apk-contain-dll-files
https://android.stackexchange.com/questions/195326/why-would-an-apk-contain-dll-files
https://discussions.unity.com/t/how-do-i-include-added-dlls-to-a-android-apk-build/133343
https://discussions.unity.com/t/how-do-i-include-added-dlls-to-a-android-apk-build/133343
https://discussions.unity.com/t/how-do-i-include-added-dlls-to-a-android-apk-build/133343
https://learn.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://learn.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://learn.microsoft.com/en-us/dotnet/framework/interop/consuming-unmanaged-dll-functions
https://learn.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/reference/decorated-names?view=msvc-170
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.dllimportattribute?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshalasattribute?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshalasattribute?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshalasattribute?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

Bibliography

[Leaf] M. Learn. Structure types. https://learn.microsoft.com/en-us/dotnet/
csharp/language-reference/builtin-types/struct. Accessed: 2024-03-
13.

[Leag] M. Learn. Type marshalling. https://learn.microsoft.com/en-us/dotnet/
standard/native-interop/type-marshalling. Accessed: 2024-03-4.

[llv] llvm. libc++” C++ Standard Library. https://libcxx.llvm.org/. Accessed:
2024-03-11.

[Mana] U. Manual. Android Plug-ing types. https://docs.unity3d.com/Manual/
android-plugin-types.html. Accessed: 2024-03-9.

[Manb] U. Manual. Build your application for Android. https://docs.unity3d.com/
Manual/android-BuildProcess.html. Accessed: 2024-03-12.

[Manc] U. Manual. Call native plug-in for Android code. https://docs.unity3d.com/
Manual/android-native-plugins-call.html. Accessed: 2024-03-9.

[Mand] U. Manual. Color32. https : / / docs . unity3d . com / ScriptReference /
Color32.html. Accessed: 2024-03-13.

[Mane] U. Manual. Export an Android project. https://docs.unity3d.com/Manual/
android-export-process.html. Accessed: 2024-03-12.

[Manf] U. Manual. How Unity builds Android applications. https://docs.unity3d.
com/Manual/how-unity-builds-android-applications.html. Accessed:
2024-03-12.

[Mang] U. Manual. Introducing Android Library Projects and Android Archive plug-ins.
https://docs.unity3d.com/Manual/android-library-project-and-aar-
plugins-introducing.html. Accessed: 2024-03-12.

[Manh] U. Manual. Introducing native plug-ins for Android. https://docs.unity3d.
com/Manual/android-native-plugins-introducing.html. Accessed: 2024-
03-9.

[Mani] U. Manual. IPostGenerateGradleAndroidProject.OnPostGenerateGradleAndroidProject.
https://docs.unity3d.com/ScriptReference/Android.IPostGenerateGradleAndroidProject.
OnPostGenerateGradleAndroidProject.html. Accessed: 2024-03-12.

[Manj] U. Manual. IPostprocessBuildWithReport.OnPostprocessBuild. https://docs.
unity3d . com / ScriptReference / Build . IPostprocessBuildWithReport .
OnPostprocessBuild.html. Accessed: 2024-03-12.

[Mank] U. Manual. Managed code stripping. https://docs.unity3d.com/Manual/
ManagedCodeStripping.html. Accessed: 2024-03-7.

41

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/struct
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/struct
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/type-marshalling
https://learn.microsoft.com/en-us/dotnet/standard/native-interop/type-marshalling
https://libcxx.llvm.org/
https://docs.unity3d.com/Manual/android-plugin-types.html
https://docs.unity3d.com/Manual/android-plugin-types.html
https://docs.unity3d.com/Manual/android-BuildProcess.html
https://docs.unity3d.com/Manual/android-BuildProcess.html
https://docs.unity3d.com/Manual/android-native-plugins-call.html
https://docs.unity3d.com/Manual/android-native-plugins-call.html
https://docs.unity3d.com/ScriptReference/Color32.html
https://docs.unity3d.com/ScriptReference/Color32.html
https://docs.unity3d.com/Manual/android-export-process.html
https://docs.unity3d.com/Manual/android-export-process.html
https://docs.unity3d.com/Manual/how-unity-builds-android-applications.html
https://docs.unity3d.com/Manual/how-unity-builds-android-applications.html
https://docs.unity3d.com/Manual/android-library-project-and-aar-plugins-introducing.html
https://docs.unity3d.com/Manual/android-library-project-and-aar-plugins-introducing.html
https://docs.unity3d.com/Manual/android-native-plugins-introducing.html
https://docs.unity3d.com/Manual/android-native-plugins-introducing.html
https://docs.unity3d.com/ScriptReference/Android.IPostGenerateGradleAndroidProject.OnPostGenerateGradleAndroidProject.html
https://docs.unity3d.com/ScriptReference/Android.IPostGenerateGradleAndroidProject.OnPostGenerateGradleAndroidProject.html
https://docs.unity3d.com/ScriptReference/Build.IPostprocessBuildWithReport.OnPostprocessBuild.html
https://docs.unity3d.com/ScriptReference/Build.IPostprocessBuildWithReport.OnPostprocessBuild.html
https://docs.unity3d.com/ScriptReference/Build.IPostprocessBuildWithReport.OnPostprocessBuild.html
https://docs.unity3d.com/Manual/ManagedCodeStripping.html
https://docs.unity3d.com/Manual/ManagedCodeStripping.html

Bibliography

[Manl] U. Manual. Managed plug-ins. https://docs.unity3d.com/Manual/UsingDLL.
html. Accessed: 2024-03-8.

[Manm] U. Manual. PostProcessBuildAttribute. https://docs.unity3d.com/ScriptReference/
Callbacks.PostProcessBuildAttribute.html. Accessed: 2024-03-12.

[Mann] U. Manual. The Unity linker. https://docs.unity3d.com/Manual/unity-
linker.html. Accessed: 2024-03-7.

[MJA14] M. Ma, L. C. Jain, and P. Anderson. Virtual, Augmented Reality and Serious
Games for Healthcare 1. Page 457. Springer Heidelberg New York Dordrecht
London, 2014.

[Opea] OpenCV. About. https://opencv.org/about/. Accessed: 2024-03-8.

[Opeb] OpenCV. Cross compilation for ARM based Linux systems. https://docs.
opencv.org/4.x/d0/d76/tutorial_arm_crosscompile_with_cmake.html.
Accessed: 2024-03-10.

[Opec] OpenCV. cvtColor. https : / / docs . opencv . org / 3 . 4 / d8 / d01 / group _
_imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab.
Accessed: 2024-03-14.

[Oped] OpenCV. Detection of ArUco Markers. https://docs.opencv.org/4.9.0/d5/
dae/tutorial_aruco_detection.html. Accessed: 2024-03-14.

[Opee] OpenCV. Release. https://opencv.org/releases/. Accessed: 2024-03-12.

[Opef] OpenCV. solvePnP. https://docs.opencv.org/4.9.0/d9/d0c/group_
_calib3d.html#ga549c2075fac14829ff4a58bc931c033d. Accessed: 2024-03-
14.

[oT2] oT2. DllNotFoundException on Android. https://stackoverflow.com/questions/
44027714/dllnotfoundexception-on-android. Accessed: 2024-03-6.

[Pac] U. Packages. Package: g++-aarch64-linux-gnu (4:9.3.0-1ubuntu2). https://
packages.ubuntu.com/focal/g++-aarch64-linux-gnu. Accessed: 2024-03-
10.

[Pag] M. Page. libc(7). https://man7.org/linux/man-pages/man7/libc.7.html.
Accessed: 2024-03-11.

[pau] paulpizzi. Using dll-Library in Unity3D for Android Build. https://stackoverflow.
com/questions/59771713/using-dll-library-in-unity3d-for-android-
build. Accessed: 2024-03-7.

[Ste14] M. Stevanovic. Advanced C and C++ Compiling. Apress L. P, 2014.

[Świ22] R. Świdziński. Compiling C++ Sources with CMake. Packt Publishing, 2022.

42

https://docs.unity3d.com/Manual/UsingDLL.html
https://docs.unity3d.com/Manual/UsingDLL.html
https://docs.unity3d.com/ScriptReference/Callbacks.PostProcessBuildAttribute.html
https://docs.unity3d.com/ScriptReference/Callbacks.PostProcessBuildAttribute.html
https://docs.unity3d.com/Manual/unity-linker.html
https://docs.unity3d.com/Manual/unity-linker.html
https://opencv.org/about/
https://docs.opencv.org/4.x/d0/d76/tutorial_arm_crosscompile_with_cmake.html
https://docs.opencv.org/4.x/d0/d76/tutorial_arm_crosscompile_with_cmake.html
https://docs.opencv.org/3.4/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab
https://docs.opencv.org/3.4/d8/d01/group__imgproc__color__conversions.html#ga397ae87e1288a81d2363b61574eb8cab
https://docs.opencv.org/4.9.0/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.9.0/d5/dae/tutorial_aruco_detection.html
https://opencv.org/releases/
https://docs.opencv.org/4.9.0/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
https://docs.opencv.org/4.9.0/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
https://stackoverflow.com/questions/44027714/dllnotfoundexception-on-android
https://stackoverflow.com/questions/44027714/dllnotfoundexception-on-android
https://packages.ubuntu.com/focal/g++-aarch64-linux-gnu
https://packages.ubuntu.com/focal/g++-aarch64-linux-gnu
https://man7.org/linux/man-pages/man7/libc.7.html
https://stackoverflow.com/questions/59771713/using-dll-library-in-unity3d-for-android-build
https://stackoverflow.com/questions/59771713/using-dll-library-in-unity3d-for-android-build
https://stackoverflow.com/questions/59771713/using-dll-library-in-unity3d-for-android-build

Bibliography

[Sze22] R. Szeliski. Computer Vision - Algorithms and Applications, Second Edition.
Springer International Publishing AG, 2022.

[Uni] Unix. libm Man Page. https://www.unix.com/man-page/linux/3lib/libm.
Accessed: 2024-03-11.

[Voia] Voitanium. Open CV for Unity Android - Face Detection. https://www.youtube.
com/watch?v=mrBsn7JDf28. Accessed: 2024-03-13.

[Voib] Voitanium. OpenCV for Android (Java). https://www.youtube.com/watch?v=
imTTaZTSVQk&t=147s. Accessed: 2024-03-13.

[Wik] Wikipedia. Name Mangling. https : / / en . wikipedia . org / wiki / Name _
mangling. Accessed: 2024-01-29.

[Wil] P. Williamson. Pushing the Boundaries of Performance and Security to Unleash the
Power of 64-bit Computing. https://newsroom.arm.com/news/pushing-the-
boundaries-of-performance-and-security-to-unleash-the-power-of-
64-bit-computing. Accessed: 2024-03-14.

43

https://www.unix.com/man-page/linux/3lib/libm
https://www.youtube.com/watch?v=mrBsn7JDf28
https://www.youtube.com/watch?v=mrBsn7JDf28
https://www.youtube.com/watch?v=imTTaZTSVQk&t=147s
https://www.youtube.com/watch?v=imTTaZTSVQk&t=147s
https://en.wikipedia.org/wiki/Name_mangling
https://en.wikipedia.org/wiki/Name_mangling
https://newsroom.arm.com/news/pushing-the-boundaries-of-performance-and-security-to-unleash-the-power-of-64-bit-computing
https://newsroom.arm.com/news/pushing-the-boundaries-of-performance-and-security-to-unleash-the-power-of-64-bit-computing
https://newsroom.arm.com/news/pushing-the-boundaries-of-performance-and-security-to-unleash-the-power-of-64-bit-computing

	Acknowledgments
	Abstract
	Contents
	Introduction
	Fundamentals
	Program compiling and Linking
	Compiler
	Linker

	C++ Libraries Types
	Static Library
	Dynamic/Shared Library
	PIC - Positional Independent Code
	Name Mangling

	ArUco

	Procedure
	Setup
	Scripting Backend

	External Code inside Unity3D: Plug-ins
	P/Invoke and DllImport: Calling C++ Code from C#
	Practical Example
	Marshalling

	Flowchart of the Creation Process
	DLL on Android
	Managed Code Stripping by the Unity Linker
	Abandoning Dll on Android

	Unity's Native Plug-ins for Android
	C/C++ source files
	Static Libraries
	Shared Libraries

	Shared Library Created on Linux
	OpenCV as Shared Library on arm64
	Abandoning the Linux Shared Library Approach

	Android Archive Plug-ins and Android Library Projects
	Creating and Importing Android Archives

	Using ArUco in Unity

	Conclusion
	Further Research
	Tutorials
	Importing a Native Plug-in
	Building to Android with Unity
	Creating shared libraries on Linux
	OpenCV Cross Compilation
	Displaying the Dependencies of Dynamic Library
	Creating an Android Archive

	Supplementary Material
	List of Figures
	List of Tables
	Bibliography

