
Final Release

Doomsday: Underground
Uprise

Technische Universität München

Winter Semester 2023/2024
Games Laboratory
Matija Jajcinovic Hongbo Chen Haorui Tan





Up-Down Theme
Our idea of having a separated Underground/Bunker Basement (Down
part) Building and a surface combat and RTS part (Up) is quite unique
and we cannot think of a game that did something similar.
In our opinion the limiting theme helped us to come up with a game
idea; otherwise the sheer amount of possibilities that all seemed fun
would have been overwhelming.

Final Result vs Initial Vision

Graphics and Animation

Our vision was to make a game that sticks out in graphics and has
unique assets to avoid looking like an Asset Flip.
There are many subtle details like 4k texture with easter eggs, rotating
fans in the bunker, blinking tower placement beacons etc.

Our Robots are not just animated meshes; they are virtual robots
using classical Robotics and Machine Learning, fully interacting with
the Physics Engine which all in all achieves our desired effect.
This is quite unique because RTS games usually opt for more
performance to utilitate more units; we chose the opposite way: less



performance/less Units for detailed ones.

Most of our meshes are self-made and highly detailed; self designed,
modeled and textured; it requires a high amount of modeling
experience and took us a lot of time.
Compared to the initial game art direction, we drifted from an
isometric, cartoony looking style more into a realistic 3D one with still
some playful accents (custom edge shader, super saturated colors,
unfunctional robot design). The reason for this was that we wanted to
fully benefit from the HDRP’s capabilities for realistic rendering.

Utilizing the new render capabilities of Game Engines is not an easy
task bc PBR materials are needed (and the know-how + programs to
generate them) and needs more finetuning. Also the documentation is
still lacking compared to the standard render pipeline.



RTS-Part
Regarding the RTS part, players can move the robot closer to or away
from the enemy while the robot will automatically lock on targets;
form a defense around their home; and go to the healing tower to
restore health. Greatly increases the playability of the game. After all
the objects are generated, the player will not just watch, but has no
tactically move the robots to increase their effectiveness.



Tower Defense Part
We have added four defense towers (two attack, two auxiliary) and
two farm towers. Each tower has its own function, and players can
choose to build it themselves.

A wave of enemies will be generated every 120s. There are four types
of enemies, with different attributes. Monsters will attack everything
around them. When they attack the base and base’s health reaches
zero, the game ends.



Wave System:

Game starts -> 2min countdown to the first wave:
Quantity on each side: (same quantity on left and right)
Spider: 1 Zombie: 2 Barbarian: 1 Beholder: 2

->After all monsters are killed->Countdown 2 minutes for the second
wave:

Quantity on each side: (same quantity on left and right)
Spider: 2 Zombie: 3 Barbarian: 2 Beholder: 3

->After all monsters are killed->Countdown 2 minutes for the third
wave:

Quantity on each side: (same quantity on left and right)
Spider: 3 Zombie: 4 Barbarian: 3 Beholder: 4

(Infinite loop, the number of each monster is +1 each time)



-Surface construction table

Possible Extensions (not part of
timeline)
There are many things missing that one would expect from a finished
game.

- a save system to save the state of the game for later play
- more “feel”, like camera shake when flying near units that are

shooting, having hit effect on units
- sound effects are mainly missing
- more polished UI design
- more in depth tutorial (non skip-able learn by play one)



Feature added Based on Demo Day and
Play Testing Critics

- more scrap per crate
- added glow to units to see them more distinctively in the dark

(clouds cause darker spots)
- more visual Bunker UI
- more distinct colors

Timeline
We had a very packed timeline. The start was slow because due to
past experiences we decided to make the framework (Mlagents, base
building) stable and then start adding content.
But after that we accelerated and implemented most of the features.

In retrospect, we should have packed it somewhat less with content
(maybe less units, models) to have a bigger buffer for technical
problems (Git rep was full, bugs etc). But we still stress how much
work all this was that we managed to implement.

What we could not finish
- sounds (like explosion sounds, enemies dying)
- several guns (due to illness, but a part was already done)
- several robot units (due to illness, but a bigger chunk was

already done)
- more environment details to make it look more like a post

apocalypse game (time)
- custom models for the people (time)

What did not made it into the game
Due to the illness of one of our team mates, several features did not
get into the final release.



Four-legged Heavy Robot Tiger
The idea was to have a quadruped robot with a tail for counter
balance; to showcase the MLagents capabilities.
It went fine, after several unsuccessful tries (bugs with physics) it
learned to walk (Train Time 50 hours).
The idea was then to make the mounted turret work with the gun
script (not implemented due to git errors and illness).

The walking pattern is very careful and (too) slow to maximize the
long run walking reward (falling thus stopping early brings of course
less points). It resembles a tortoise; For further reference I think a
shorter episode time would motivate it to go faster.

A cool feature is that it learned to use the tale to counter balance as
intended.

Still it looks kinda cool and relatable for a 10 meters tall monster
robot.

It did not get into the final game but makes for some cool game art.
It lacked the whole game logic (health, targeting, controlling etc.).



Sniper Gun
The idea was to shoot a self-guided rocket (again PID controller) to
have an interesting spin on a sniper gun with high range and accuracy,
but low damage per second.
Could not finish it due to illness (but very simple logic, just shoot
every x seconds a rocket in the air if an enemy is in range).



Melee Unit Model
The idea was to use this to train POCA melee 3 vs 3. To be honest I
think this was too ambitious anyway. But I have modeled the
according 3D model.



Underground Game Playa
What I have implemented:

1. Underground citizens' navigation system with elevator logic:

Completeness: layer3: completed all the needed logic and the people in
the underground basement can navigate to different layers correctly.

Collision mesh(blue layers) used for nav mesh:



elevator effects:

2. underground basement building system:

Completeness:Layer 3: The underground basement building system has
been completed, providing the fundamental building functions.

Further works: However, it still requires the implementation of border
constraint and collision detection logic to ensure proper placement and prevent



overlapping of buildings. Furthermore, future iterations of the system will require
an expanded list of building options, which will involve collaboration with the team
responsible for building modeling.

Construction System:

3. People's selection box and deployment logic:

Completeness:Layer 3: The current method of detecting the selection
box, which utilizes a mesh trigger established by the vertices from the camera
position to the vertices hit by the raycast function in Unity. Improved the
robustness when the ground terrain is not a simple plane. The logic for
establishing the trigger mesh has been enhanced to accommodate complex
terrains and ensure accurate selection box detection.

people’s selection box:



4. Gathering animations of people and achieving animation control
logic:

Completeness: Layer 3: The fundamental logic for animations controls of
people has been completed. Further variances have been made which includes
expanding the available animations and refining the animation control logic to
provide a wider range of movements and behaviors for the underground citizens.

animation control logic:

5. People's status bar:

Completeness: Layer 3: The current implementation of the people's
status bar can display all the necessary information regarding an underground
citizen's status.

people’s status bar, red bar denotes health value; blue bar denotes energy value
which has a relation to the work efficiency and green bar denotes hunger value
which measures how much time remains until the people need to eat::



6. Interaction logic between people and buildings:

Completeness: Layer 3: All important logics related to the interaction
between people and buildings have been finished. This includes animation
switching, people finding correct seats within the buildings, effects generated by
people in relation to the buildings, and effects generated by the buildings in
relation to the people. These interactions create a dynamic and immersive
environment for the underground citizens.

People can locate to the right position and do the right movement and buildings
can bring influence to the people’s status value:



7. Electricity voltage system:

Completeness: Layer 3: The important logics for the electricity voltage
system have been completed. This includes handling the effects caused by the
voltage system and integrating them with the surface combat. The electricity
voltage system adds another layer of complexity to the underground
environment, impacting various aspects of the simulation.

Electricity Voltage Logic:

Assume EF denotes efficiency, CE denotes consumed electricity per building, GE
denotes generated electricity per building:

8. Demo display of voltage and character status and construction
menu:

Completeness: Layer 3: The demo display, which showcases the voltage
system, character status, and construction menu.

demo display of voltage and construction menu:



let the player to customize the underground basement that supports
the people survive from the doomsday by using RTS construct system
to building the underground basement and commanding underground
citizens to utilize limited resources to build survive facilities and
defense equipments to win the game

● Left click and drag to select people then right click the buildings
to deploy them

● Right click the factory when no people are selected to select the
equipment to produce at this factory

● Right click the Electricity Generator to release the people who
work in the Electricity Generator



Buildings effects and People’s status

Equipments produce process

Highlights
1. Simulating the authentic physiological state of people living in a

restricted space which means they will feel hungry and feel tired
when keep working and will suffer when don’t get enough supply

2. smart deployment logic for player to make the game easier to
operate



a. Players don’t have to sent the task of the people one by one
by hand rather just select a group of people then right click
the task building, then the selected people will
automatically distribute themselves to all the same kind of
task buildings

b. automatically search the same kind of empty buildings
when the employed building is fully occupied

c. automatically replace the tired people when sent to
workplace

3. automatic self-supply logic of people
a. When there is no work for the people to do, then the people

will automatically follow the self-recover logic by
themselves and don’t need to wait for the player to deploy
them. In this method, the complexity brought by the
people’s physiological simulation will be significantly
relieved

b. achieve this by using looping status to drive the people to
go to the destination



c. using ring queue data structure to store the instructions of
self-resupply



Underground Basement Facilities
Modeling and interaction
Implemented the 3D models of the underground basement facilities
and the relevant animation controller used for interaction between
people and facilities

1. Electricity Generator



2. Mensa

3. Bed



4. Medical Bay

5. Part Factory

6. Assembly Factory



7. Gun Factory

8. Bar



9. Yoga mat

10. Population Generator



Course Evaluation

Expectations
I would have hoped for more tutoring (or explicit content regarding
game dev), like what programming patterns to use, how team projects
are organized in professional firms, etc.
This was: do it by yourself.
Perfectly Fine learning wise, but I will still be pretty much lost when
joining a good company regarding best-practices, git skills etc.
Question is also who would have the experience at the faculty to teach
something like this (maybe get a guest lecturer from e.g. Ubisoft).

Questions
1. What was the biggest technical difficulty during the project?



git storage being full, merge conflicts, bugs regarding navmesh
2. What was your impression of working with the theme?
like every theme it is beneficial to have some scope to make the idea
finding easier, Up and Down as we can see was interpreted very
differently by every team
3. Do you think the theme enhanced your game, or would you have
been happier with
total freedom?
yes it enhanced it
4. What would you do differently in your next game project?
actually being paid for it ;) . Planning less features before the exam
prep time
5. What was your greatest success during the project?
being able to make the individual parts work together
6. Are you happy with the final result of your project?
yes, still some non-game-breaking bugs but playable
7. Do you consider the project a success?
we learned a lot, so yes
8. To what extend did you meet your project plan and milestones (not
at all, partly,
mostly, always)?
mostly
9. What improvements would you suggest for the course organization?



Conclusion

Our game distinguishes itself with notable technical achievements and
broad scope. Our dedicated effort enabled us to realize many of our
ambitious features. We employed advanced programming techniques,
developed visually appealing custom artwork, integrated modern AI for
lifelike animations and movements,and blending game genres in a
novel and engaging way.
Although we initially progressed slowly to lay the groundwork, we
successfully implemented nearly all planned features; we see our
game as a success.


