
Team Rastermotte: Project
“Elevator Pitch”

Milestone 1: Formal Game Proposal

1 Game Description

General Description and Core Mechanics:
Project “Elevator Pitch” is supposed to be a 2D rogue-like (if the time allows it maybe even a
rogue-lite) game in which the player will control a space elevator which is equipped with two
mechanical multi-purpose arms that are its means of defense as well as accomplishing most
tasks during the dangerous climb up into space.
The theme of “UP and DOWN” is at the very core of the whole gameplay loop as the player
will start at ground level (or even in a sort of hangar underground) and try to reach several
goals further up, returning back down with loot / new knowledge/ etc. and in a final run
eventually reach space. During these very vertical missions/climbs the player will face waves
of enemies trying to attack the elevator and will have to control the mechanical arms to grab
and smash enemies into each other or smack them back down to earth. The arms are the
main way to combat enemies, but also a tool used to collect resources from enemy wrecks
and the environment and loading in mission objectives down in the hangar. With the arms as
the main feature we try to make them feel the most polished. They are supposed to work as
a physics-based combat system. Elements like the arms, especially the claws, enemies and
environmental objects will each have their own mass and will thus influence the way the
arms are able to grab, move and fling them. Punching something with the claws while
holding a heavy object will have more impact than with empty claws. The arms are sword
and shield at the same time. On the one hand (hahah) grabbing, flinging and punching
enemies will serve as attacks while on the other side forming a flat surface will allow the
claws to be used as shields for the purpose of pushing back enemies or reflecting
projectiles.
Smaller and faster projectiles can be deflected back at enemies that way and larger, slower
projectiles might need to be caught for example.
The arms will be controlled via mouse input. Only one arm at a time will be under manual
control (later upgrades to the elevator might allow for the inactive arm to be in some sort of
automatic defense mode). The claw of the currently controlled arm follows the movement of
the mouse as closely as its physical limitations will allow and the movement of the arm will
be handled by inverse kinematics. The speed and range of the claw will be limited by its
current weight and the length of the arm, so extremely speedy and erratic mouse
movements won’t have much of an effect as the claw will need to de- and accelerate
accordingly first. Left-clicking will close the claw, right-clicking will make a flat claw to deflect



projectiles. Alternatively, we could make the closing and opening of the claw be controlled by
the mouse wheel, which would leave the left mouse button free for another function e.g.
forming a fist to punch with, playtesting will have to show what feels more satisfying.
Moving the mouse from one side over to the other side of the elevator will lead the currently
active claw back to the elevator-cable and the other claw to become actively controlled.
Since the arm has a limited range, the player will have to use the ‘W’ and ‘S’ keys to move
the elevator up and down a bit to allow for a small amount of additional vertical movement
during combat. To make throwing enemies both easier and more satisfying, the arms each
have a ‘fling mode’. For example by pressing the ‘space’ key, the mouse control scheme will
switch from directly controlling the claw to directly controlling the movement of the upper
arm. In this mode the rest of the arm is simulated by forward kinematics in a ragdoll-like
manner, allowing the player to fling grabbed objects (like enemies) in a horizontal direction
provided properly timed release of the grabbed object.
The other core mechanic will be the managing of the elevator during the non-combat climb
parts. While out of combat the player will control a single character, the pilot, inside the
elevator. The player is then free to move inside it for the purpose of refueling the engine,
making repairs, controlling the climb rate, adjusting settings of the arms (or if development
time allows it even explore the elevators immediate surroundings with e.g. a jetpack). This
aspect is inspired mostly by the game “FAR: lone sails” although adapted to our genre and
setting and it seems like a nice balance to the dexterity-based combat parts of the game.

General Gameplay Loop:
A single gameplay loop will look something like this: The player starts in the hangar and can
browse through several missions (maybe predefined, maybe procedural) and select one or
upgrade the elevator with earned funds. Depending on the mission type the player will then
have to load cargo into the elevator (using the mechanical arms of course) or let passengers
aboard.
Optionally, the hangar might be capable of horizontal underground movement to dock at
different space-cables, so the player might need to select a specific one for a mission or
choose freely for an exploratory climb. In that case, the final goal might be to upgrade the
elevator enough to be able to make a climb at a specific final and particularly dangerous
cable to reach an end-goal. Otherwise the end goal might be to just raise enough funds to
retire or pay off a debt.
In any case, after starting a climb the player will start out inside the elevator managing it until
an enemy-alarm sounds and mechanical arms will have to be manned for defense, thus
starting combat mode.
Now, several waves of enemies attack the elevator and using the very versatile arms, the
player defends themselves.
After all enemies are vanquished, the opportunity to scavenge the battlefield for resources
comes up. The player can collect whatever is in reach, until the cargo is full or the battlefield
is empty. Resources allow for repairs and fuel, but a heavier cargo load will also increase
fuel consumption (or slow down maximum climb speed. thus giving enemies more
opportunities to attack).
These climb, combat and collect phases then repeat until the mission goal is reached or the
player is forced to abort and drop back down.
After falling back to the hangar the whole loop reiterates.



Story and Setting:
We aim for a steam- or dieselpunk aesthetic. Inspiration for the style and world are games
like the “Deponia”-series and maybe in some aspects classic post-apocalyptic settings like
the “Fallout”-series, although with the aforementioned steampunk twist.
The ground of the planet is mostly a wasteland of trash, scrap metal and derelict machines
of a long past and more developed world, but anything but dead. While plant-life is rare,
humanity survives between all the trash in smaller groups and villages, a far cry from the
continent spanning states of the past. Following environmental collapse, the rich and mighty
of the people started building a new society in orbit, creating thousands of (almost)
self-sustained space stations and spanning equally many cables between the earth and orbit
for use with space elevators to efficiently reach those stations. The poor were left on Earth.
While the original upper class fled the furthest out into space, with time some of the more
powerful lords that arose from the trash-folk of the surface started to claim certain
space-cables and building stations around them inside still breathable parts of the
atmosphere, forming a new kind of ‘middle’-class. The new rule of human society thus
became that a person's status was literally determined by how ‘far up’ they are, although
quite a big buffer still exists between the true space stations of the now-called ‘Orbitals’ and
the ‘Scrappers’ who are still bound to breathable parts of the atmosphere.
We have several ideas for the story of the player character themselves all depending on
what the actual long term goal will be.

1. The player could be aspiring to live among the Orbitals in space and in need to raise
enough funds to afford the enormous entrance fee.

2. The player could be a secret revolutionist trying to abolish the class system,
upgrading the elevator until it is capable of rising up to actual space, delivering a
payload of a small revolutionist army to one of the stations.

3. The player could be an explorer with the goal to discover the mysteries of the upper
atmosphere, dreaming of proving the legends of another society in space right (or
disprove them)

Concept Art and Illustrations

Ideas for the design of the Elevator:







2 Technical Achievement

Physics-based Combat
The combat is going to be the focus of the game. We want to make it very physics-based,
not only to make the control of the mechanical arms feel satisfying but also to let the player
make use of it in creative ways.
We want to associate mass with most objects in the game and have it take effect in various
ways like how hard punches hit or how hard/far objects can be thrown. We also have the
idea of a simplified air-drag simulation based on object shape and material also mostly
affecting throwability. This last point goes well together with giving objects (mostly enemies)
different parts with different structural integrity, so that the player is able to rip up (or rip out)
parts that affect air-drag negatively or to rid enemies of their buoyancy. This should also
make combat more interesting because it should allow the player to strategically target
specific parts of enemies.

Inverse/Forward Kinematics
A secondary feature we want to take a look at is the use of Inverse and Forward Kinematics
to make the arms and claws look good. This is something we want to experiment with out of
interest and because we think it would greatly improve the look of the game. How much or
even if it will be a technical challenge at all will reveal itself once we get to that part.



3 Big Idea Bullseye
The core idea of the game is the space elevator with its mechanical arms that are used both
for movement as well as defense.
As a twist, we will implement physics based combat, where the movement and the effect of
the claws is based on physical properties as well as the throwing and interacting behavior of
the enemies.

4 Development Schedule

Goals
1. Functional Minimum

a. Basic sprite for elevator with arms
b. Basic movement of the elevator and arms
c. Basic grabbing and throwing of enemies with arms
d. Enemies that can be grabbed and attack elevator in a simple way
e. Simple movement inside of elevator and press button to keep elevator going
f. Cycle between movement in elevator and fighting
g. Simple health bar

2. Low Target
a. Basic, static environment
b. Loading phase: grabbing of grabbables and counter how much is loaded
c. Basic mission: load either cargo or people, no real impact on gameplay

(always similar enemies)
d. UI to indicate health of elevator and cargo
e. Delivery of cargo



f. Basic sound effects when grabbing enemies
g. Different movement of arm depending on mass
h. Flinging mechanic
i. Final goal: maximum points
j. Music
k. Enemy dismemberment

3. Desirable Target
a. Enhanced sprite for elevator and arms
b. Changing environment (depending on height)
c. Type of mission (cargo or people delivery) determines types of enemies that

attack
d. Cargo types imply story (radioactive material, food, politicians)
e. Satisfying movement of arms
f. Player inside of elevator tasked with fixing and fueling elevator
g. Mounting points for extra stuff (artillery, shields, gadgets…)
h. Shield that has to be timed to reflect incoming enemies
i. Enhanced enemy sprites (space pirates, trash junkers, bodyguards,

depending on height of elevator)
j. Sound effects for space elevator (on hit, fueling, fixing)
k. Collect money for final ticket
l. Switch between different cables (locked by money), to reach final climb
m. Different physical properties on different enemy parts
n. Voluntary Mission Abort
o. Complex enemy behavior (different behavior depending on enemy type,

pirates attack alone, bodyguards more often in formation)
p. Different themed music depending on height and location.
q. Procedural generation of missions
r. Player Character selection. Unlock new characters by winning. Different skin

and special ability.
s. Player can move outside of space elevator to scavenge for resources

4. Extras
a. Online Cooperative Multiplayer
b. People/Cargo smuggling
c. Interactive Story (Mission dependent NPC dialogue etc.)

Tasks
Based on our goals, we have identified the following tasks for each milestone to achieve our
goals:

Interims demo Responsible Time estimate in
h

Actual time
spent in h

1. Elevator sprites Philipp 6 3

2. Elevator and Claw Philipp 5 0.5



code

3. Interior code Natia 6 10

4. Interior
interactables

Natia 6 8

5. Interior sprites Natia 4 8

6. Environment
sprites

Lukas 5 2

7. Enemy sprites Lukas 5 4

8. Enemy code Phil 10 25

9. UI graphics Phil 2

10. UI code Phil 3 4

11. Code/Asset tuning All 8 9

12. Presentation Natia 1 1

Alpha release Responsible Time estimate in
h

Actual time
spent in h

1. Enemy AI Phil 15

2. Enemy
dismemberment

4

3. Claw physics Lukas 10 7

4. Base station
sprites

Lukas 6 6

5. Base station logic Lukas 5 4

6. Loading phase
code

Lukas 3 3

7. Mission generation 10

8. Adaptive
environment

7

9. Mission abort 2

10. Physics fine tuning 8

11. Extra sprites 4

12. Cable switching 4



13. Presentation 1

Playtest release Responsible Time estimate in
h

Actual time
spent in h

1. Equipment
modules code

Lukas 12 4 (scope scaled
back)

2. Eq. Mod. sprites Lukas 4 1

3. Eq. Mod. UI 3

4. Enemy part
physics

9

5. Sound effects 4

6. Extra sprites 5

7. Questionnaire
preparation

2

8. Presentation 1

Final release Responsible Time estimate in
h

Actual time
spent in h

1. Better mission
generation

10

2. Complex enemy AI 10

3. Movement outside
of elevator

20

4. Presentation 1

Timeline
Our timeline looks as follows:





5 Assessment

In summary, the strengths of the game should be a fun way of fighting off enemies, while the
micromanaging of the elevator should be a way to increase the challenge and make the
player feel in control of their vehicle.
The game should be suitable for all ages and the intuitive control schemes should make it
approachable for all levels of skill. That being said, players who are especially fond of the
rogue-like genre and a good mix of dexterity and management based types of games will
have the most fun.
The player will do multiple runs of the main gameloop until they have amassed enough skill
and/or ressources and upgrade to tackle the final goal during which they will either win or fail
and start over again.
The world that the player will get to explore should be in equal amounts fun to look at and
atmospheric, which is why we are going for a light-hearted and novel approach of the
otherwise very overdone post-apocalyptic setting.
The criteria on which we will judge our success are therefore:

1. Is the combat fun?
2. Does the combat benefit from the degree of physically-based systems in the

background?
3. Is the game challenge balanced appropriately?
4. Did we successfully hit the genre target we were aiming for?
5. Does the game world feel unique enough and is fun to look at?

Milestone 2: Physical Prototype

1. Approach
To create the prototype, we first gathered the most important aspects of our proposed game.
These are:

- upward movement of the elevator to deliver cargo
- downward movement of the elevator upon completed mission
- enemy types based on the height of the elevator
- physics based combat
- satisfying movement of the arm to defend against enemies
- flinging mechanic of arm
- loading phase

As the physics based combat as well as the satisfying movement of the arm are strongly
bound to the actual digital implementation of our game, we did not find a good way to
translate and incorporate this aspect into a physical prototype. One considered possibility
was the use of an elastic rubber band based arm, which could translate the flinging



mechanic of the arm. This did not produce a satisfying result, so instead we opted to focus
on our remaining aspects.
We built the prototype to include the three important phases of the later actual game:

1. Loading Phase: Here the player has to load up their cargo space with either cargo
crates that they can deliver at their destination and exchange for money or they
spend their precious cargo space on fuel which is needed for the climb itself.

The first image shows the loading space with a total of 12 slots, while the second
picture shows the items that can be put into these slots. In this phase, only fuel and
cargo can be placed inside the slots, as scrap can only be obtained through enemy
encounters.

2. Climbing Phase: Here the Player can move one field up on the square which requires
one fuel card. When reaching a new field, an event card is drawn which may result in



an enemy attack. Each phase consists of 6 different cards, 4 being enemies and 2
being “Peace” card, in which case no enemy attack occurs.

The following pictures show the cards for each stage in detail:



3. Combat Phase: When enemies attack the player will switch to the combat playboard.
Here another player who acts as the enemies can attack while the elevator player
defends themselves.

2. Prototype Rules of Play
The rules are as follows:



- Since cargo space is limited, during phase 1, the player will have to make a
choice whether or not they fill their cargo slots with enough fuel for the whole
climb or if they take the chances of looting fuel during the climb but can
therefore load more cargo which means more profit. Once the inventory is all
filled up they continue with phase 2.

- Now, the game will alternate between the second and third phase until the
player either loses all cargo or reaches the last field on the map.

- Moving up one field requires spending one fuel card and forces the player to
draw an event card of the associated climbing height they are currently at.
The card can either result in “peace” (nothing happens) or an enemy
encounter.
In the case of an enemy encounter, 1d4 is rolled to determine the number of
attacking enemies. Then, the player switches to the combat scene for the
encounter.

- During combat, one supporting player, from now on referred to as “evil player”
may control the enemies while the other is controlling the arms of the
elevator. Combat is turn-based and alternates between the evil player’s and
the elevator player’s turn. On their turn, the evil player can either move one
enemy up to 2 fields and attack (if within range, marked on the board) or
spend their turn to introduce one new enemy from their pool of enemy tokens.
On the elevator player’s turn, they can move one arm up to 4 fields and if they
reach an enemy token they automatically destroy it by crushing the enemy.
Only one of the two arms can be active at a time. If the player switches
control from one arm to the other, the former has its position reset to hug the
elevator again. When an enemy is crushed, the player must roll 1d6 on the
loot table to determine whether they receive fuel, scrap or nothing. When an
enemy attacks, the evil player rolls 1d20. If they manage to roll equal or
higher than the Elevators Armor Class (AC), then they cause damage, which
manifests itself in the player losing one cargo card. When all enemies are
defeated or the player loses all cargo, combat is concluded and the player
either returns to the Climb Map or has lost the game.

- After making it to the last field at the top of the Climb Map, the player can
exchange all remaining Cargo Cards for one Money card each and then drop
back down to base.

- Once back down the player can spend 5 Scrap Cards to upgrade their AC,
buy Scrap with their earned money (exchange rate 1:1), and start another
climb. When accumulating 20 money cards, the player wins the game.

- The amount of enemies is increased for each encounter by 1 per 5 money
cards the player has. E.g when in possession of 5 Money Cards, on each
encounter 1d4+1 is rolled.

A small overview of the available resources and their function:
- Cargo Cards: These represent the players health points as well as being the goal of

the climb. Bringing these cards to the highest field on the map lets the player
exchange them for money cards and win the run.

- Fuel Cards: One of these each is required to move one field on the Climb Map.
- Scrap Cards: These can be looted from enemies (or possibly bought during the

loading phase for money). 5 of these can be used to increase the Elevators AC by 1.



- Money Cards: Collecting 20 of these represents gathering the entry fee for the final
climb, making the player win the game. They can also be exchanged for 1 scrap
during the loading phase.

3. Verdict
Utilizing dice rolls, similar to the way they are used in Dungeons&Dragons, gave the
game a nice element of randomness and helped a little against it feeling repetitive.
Also rolling dice is fun.
Overall however, it does definitely feel more like an analog simulation of what is
obviously supposed to be a videogame rather than a functional board game with
replay value, especially due to the very asymmetric nature of the two players’ roles.
The second player who we aptly named the “support player” is needed only to
simulate a basic enemy AI, which would have been very hard to do otherwise without
introducing a lot more complicated dice rules.
While we would not play it for fun in our free time, it was still a nice way of looking at
the way our planned ressources and the three different phases of gameplay are
interacting.

4. Lessons learned
- Having either nothing or an enemy encounter happen, makes the climb phase

feel a little bare bones. While the digital game version will include the whole
“repair and manage the elevator” mechanic during these climbing phases as
well, the idea of also introducing small random encounters other than just
attacking enemies came up a lot.

- The choice to make combat turn-based was only due to the limitations of the
analogue pen-and-paper medium, but it still confirmed our suspicion that
turn-based combat definitely is not the way to go for the actual game.

Milestone 3: Interim Report

1. Progress report
Most of the functional minimum and low target has been implemented, alongside select
things of the desirable target, though some parts have been altered for a timely
implementation.



The game starts off with a loading phase, which is now a computer terminal where the player
first selects a mission, and the amount of fuel and cargo they wish to take (limited by a
maximum inventory size). After clicking on a button to start the mission, the main gameplay
loop begins. In this new scene the player can toggle between an interior and exterior view of
the space elevator as it climbs the cable, which also changes the gameplay.

In the interior view, the user can move a small player character with standard side scroller
controls, picking up fuel and scrap from a deposit interface to refuel and repair the elevator
respectively. The player is alerted of incoming enemies with a light and sound effect. In the
middle a control station is situated, interacting with which switches over to the exterior view.
While in the exterior view, the player can control the two mechanical arms of the elevator as
described previously, i.e. moving the mouse moves a target point which the arm closest to it
will move towards. As such only one arm is controlled at a time, with the other returning to a
rest position. Using left-click, enemies can be grabbed and swung around as a blunt
weapon. Alternatively, holding space will lock the arm in its current position and draw a line
from the claw to the cursor. Letting go of space will then unlock the arm and accelerate it



towards the target faster than possible through mouse movement alone, automatically letting
go of the enemy once the maximum speed in the desired direction has been achieved. The
elevator climbs automatically, but stops and sounds an alarm once a wave of enemies
approaches. These waves occur at random intervals, and their size is determined by the
current height of the elevator. Currently, three types of enemies have been implemented:

- Melee: These enemies will move in close to the elevator and attack it with
sawblades. If left to attack, they will extract cargo from the player’s inventory and
make off with it.

- Ranged: These enemies pick a point (within grabbing range) around the elevator and
move towards it. Once reached, they will begin to periodically shoot the elevator with
projectiles.

- Bomb: These enemies move similarly to the melee variant, however they explode on
impact, and grabbing them with an arm will disable that arm, forcing the player to
repair it before it can be operated again. These enemies can be disarmed by either
launching another enemy at them, or by grabbing the anchor hanging from them,
making their engine fly off and the barrel fall down.

Once all the enemies of a wave have been cleared, the player needs to switch to the interior
view and pull a lever to continue the climb. At the very end, the elevator enters a space
station and all remaining cargo can be sold off, increasing the player’s funds, after which the
elevator drops back down and the player can choose another mission to repeat the process.



In terms of assets, the enemies were modeled in 3D and can be rendered in a variety of
perspectives and animations. To maintain a somewhat cohesive aesthetic, enemies are
rendered with a black outline and a custom dithering tool is used to reduce all sprites to the
same palette.

Work has also begun on a model of the elevator, though gameplay implementation takes
priority so whether this will be finished in time for the final product is unclear.



Preliminary sound design exists for all enemy interactions (attacking, getting hit by another
enemy, balloon popping, etc.) and the elevator’s movement, though music is still lacking.
Here is an overview, over what features were implemented, green indicating that the feature
has been implemented, yellow features that are half implemented and red that the feature is
yet to be implemented:

1. Functional Minimum
a. Basic sprite for elevator with arms
b. Basic movement of the elevator and arms
c. Basic grabbing and throwing of enemies with arms
d. Enemies that can be grabbed and attack elevator in a simple way
e. Simple movement inside of elevator and press button to keep elevator going
f. Cycle between movement in elevator and fighting
g. Simple health bar

2. Low Target
a. Basic, static environment
b. Loading phase: grabbing of grabbables and counter how much is loaded
c. Basic mission: load either cargo or people, no real impact on gameplay

(always similar enemies)
d. UI to indicate health of elevator and cargo
e. Delivery of cargo
f. Basic sound effects when grabbing enemies
g. Different movement of arm depending on mass
h. Flinging mechanic
i. Final goal: maximum points
j. Music
k. Enemy dismemberment

3. Desirable Target
a. Enhanced sprite for elevator and arms
b. Changing environment (depending on height)
c. Type of mission (cargo or people delivery) determines types of enemies that

attack
d. Cargo types imply story (radioactive material, food, politicians)
e. Satisfying movement of arms
f. Player inside of elevator tasked with fixing and fueling elevator
g. Mounting points for extra stuff (artillery, shields, gadgets…)
h. Shield that has to be timed to reflect incoming enemies
i. Enhanced enemy sprites (space pirates, trash junkers, bodyguards,

depending on height of elevator)
j. Sound effects for space elevator (on hit, fueling, fixing)
k. Collect money for final ticket
l. Switch between different cables (locked by money), to reach final climb
m. Different physical properties on different enemy parts
n. Voluntary Mission Abort
o. Complex enemy behavior (different behavior depending on enemy type,

pirates attack alone, bodyguards more often in formation)
p. Different themed music depending on height and location.



q. Procedural generation of missions
r. Player Character selection. Unlock new characters by winning. Different skin

and special ability.
s. Player can move outside of space elevator to scavenge for resources

2. Unexpected Hardships
The implementation of the main feature, the robotic clawed arms of the elevator, were more
complex than originally expected. A few design iterations went into them until the current
implementation was settled on (for now).
Currently, the arms work by having hidden skeleton based arms driven by inverse kinematics
to reach a target node that is mostly attached to the mouse pointer but does collide with the
body of the elevator itself to make reaching into it impossible. These hidden arms do not
have any physical properties and are only used by the visible physics-based arms as a
target position. The physical arms do have mass and are part of the physics engine,
therefore able to physically interact with certain game objects like the enemies. They are
also mostly bound to some physical limitations like their acceleration and inertia, although
the latest version is quite snappy already. At first, the arms were able to collide with most
other physics bodies, but that did not work out to benefit the game as we were mostly bug
fixing all the edge cases in which we did not want to have collision interfere with the arms
movement. For example, due to the arm (not the claw) being able to collide with enemies it
was a very common issue that the player would wedge enemies under the elevator’s arm
and thus making it impossible to reach them anymore. In the end we settled on very minimal
collision of the arm or claws, which did make for the best ‘feel’ while also forcing the player
to actually use enemies(and their mass) as weapons against each other, as originally
envisioned, rather than just thrashing about with the claws themselves.
The claws and arms are now relatively stable and soft-locking by jamming the arms into
other static bodies is also not possible anymore.

3. Design revisions
Due to the scale of current enemies, the initial plan to make all of them consist of separate
pieces with different physical attributes, which can all be independently dismembered, was
scaled back a lot. Currently the melee and ranged types have balloons on them which pop
when grabbed, at which point they no longer hover when dropped, and the bombs can be
somewhat dismembered by pulling their anchor, however both of these are a far cry from the
previously planned mechanic. We intend to implement larger boss-like enemies where such
a system would make a lot more sense.
Something else that evolved a lot was the flinging mechanic. The initial idea was to make the
fling-input switch the control scheme such that the upper arm points towards the cursor and
the lower arm acts like a spring of sorts, letting you punt enemies in a satisfying way. Further
contemplation quickly revealed that this would make it extremely hard to actually aim the
flung enemy this way. Once the physically simulated arms were implemented, a quick test
where the input merely locked the target in place until release showed that this was a much
more viable approach.



The loading phase where the player has to grab and insert all the cargo manually was
abstracted as a terminal to meet deadlines. This interface will certainly stay for mission
selection, but the manual loading phase is still planned to be implemented later.

Milestone 4: Alpha Release

1. Progress report
Overview
As we had already completed the functional minimum in the last sprint, it is omitted here,
and only the layers 2 and 3 are shown here:

2. Low Target
a. Basic, static environment
b. Loading phase: grabbing of grabbables and counter how much is loaded
c. Basic mission: load either cargo or people, no real impact on gameplay

(always similar enemies)
d. UI to indicate health of elevator and cargo
e. Delivery of cargo
f. Basic sound effects when grabbing enemies
g. Different movement of arm depending on mass
h. Flinging mechanic
i. Final goal: maximum points
j. Music
k. Enemy dismemberment

3. Desirable Target
a. Enhanced sprite for elevator and arms
b. Changing environment (depending on height)
c. Type of mission (cargo or people delivery) determines types of enemies that

attack
d. Cargo types imply story (radioactive material, food, politicians)
e. Satisfying movement of arms
f. Player inside of elevator tasked with fixing and fueling elevator
g. Mounting points for extra stuff (artillery, shields, gadgets…)
h. Shield that has to be timed to reflect incoming enemies
i. Enhanced enemy sprites (space pirates, trash junkers, bodyguards,

depending on height of elevator)
j. Sound effects for space elevator (on hit, fueling, fixing)
k. Collect money for final ticket
l. Switch between different cables (locked by money), to reach final climb
m. Different physical properties on different enemy parts
n. Voluntary Mission Abort
o. Complex enemy behavior (different behavior depending on enemy type,

pirates attack alone, bodyguards more often in formation)
p. Different themed music depending on height and location.
q. Procedural generation of missions



r. Player Character selection. Unlock new characters by winning. Different skin
and special ability.

s. Player can move outside of space elevator to scavenge for resources
Hangar
After a mission has been selected and the inventory contents chosen, the user is sent to a
hangar scene, where the player character starts out in a little living quarters area
underground.

Once they climb up, enter the elevator, and take control of the arms, they must deploy the
item chutes and use the arms to load in the contracted cargo. After all crates have been
loaded, a button to open the hangar’s hatch unfolds on the side, and the provided car has to
be thrown at it to progress. This was intended as an implicit way to teach users how to throw
things. After the hatch has opened, the player can unlock the brake and take off, leading to
the main level.
In terms of visuals, the hangar has been modeled in 3D and rendered in a series of slices
which are then moved around using a custom parallax script, giving the background more
depth.

Tutorial
In order to keep the implementation simple, tutorials currently consist of simple pop-ups
which appear on a trigger, like the player entering an area or picking up a specific item.



They can be closed by clicking the X and the savefile stores whether a specific tutorial has
been completed yet, such that it doesn’t pop up again on the next run.

Trawl Net
One feature implemented due to feedback received at the last presentation is the trawl net.
It can be used to catch enemy remains in order to salvage them for fuel and scrap or be
used to just store parts of dead enemies to have objects in reserve for throwing at new
enemies later on. It can be unfolded while in control of the arms by pressing Q and
maneuvered left and right with A and D. The net spans between two arms which are
controlled completely by inverse kinematics.
To implement the net, we first needed to implement a stable physically simulated rope. A few
ways of doing that were explored but in the end the simplest one turned out to be the most
practical one: a simple system of chained rigidbodies.
Using a chain of rigidbodies instead of for example a Verlet Integration has the advantage of
all parts already being present in the physics engine of Godot and thus interaction with all
other physics objects in the game works out of the box. The disadvantage of this approach
however was that getting the rope to be stable enough was a little tricky and required a
process of fine-tuning a lot of values like the rope segments mass distribution, joint bias,
angular and linear damping and so on. Finally a general purpose rope was implemented
which could be used in various ways.
For the trawl net we then span a rope between two static bodies and a textured polygon is
drawn between the vertices of the line that draws the rope which results in our trawl net.

Diegetic Health
We wanted to give the player more interactions inside the elevator as well as make the
health of the elevator diegetic and more directly controllable by the player, rather than only
being a health bar. This is why we made 5 of our components destructible: the two arms
have already been destructible in our last milestone by grabbing a bomb enemy. Additionally,
every time the elevator takes damage from enemies, either the engine, the net or the brake



will take the respective damage. The module, to which the damage is delegated is chosen
randomly. We considered also making the arms a part of these randomly destructible
components, however decided against it, as the arms are such an integral part to the
gameplay and should only break in case of misuse by grabbing a bomb.
Each of the modules has a health of 7. A saw enemy deals 1 damage to the elevator per
attack, while a bomb deals damage depending on its distance to the elevator, which
considering damage to the elevator always has to occur in its vicinity and is therefore always
going to be around its maximum value of 150. Gun enemies deal 7 damage to the elevator
on hit.
The damage is propagated to the components. Each of them has three states: functional,
damaged and broken. They can be differentiated with visual cues, as well as functionality. A
component is considered to be damaged when it has less than its maximum health, but
more than 0. Once its health reaches 0, the component is considered to be broken.
Upon becoming damaged, the components can be repaired by interacting with them for 2
seconds while holding “R” and holding scrap. In this state, the functionality is not impaired.
Once the component is broken, the following functionality impairments can be observed:

Net Engine Brake Arm

Broken Drops down, not
movable/ retractable

Continuously leaks
fuel

Cannot switch
in the fastest
mode

Not movable

To repair a broken component, the player has to interact with it for 4 seconds while holding
scrap and pressing “R”.
In the game, a monitor displays the number of operational components. This monitor, as well
as the different visual cues for the damaged/broken states can be seen in the following
image, where both the net and brake a broken while the engine is only damaged:



The color of the font color on the monitor changes depending on how many systems are
operational. In case all 5 components are operational it is green, once 1 component breaks it
changes to orange. Once 3 out of 5 components break, the font color on the monitor
changes to red, a timer of 20 seconds is started, alongside an alarm sound. In this time, the



player has to repair at least one component:

Otherwise the game is over and the process is wiped.
Originally, the game over condition was only triggered when all 5 components were broken,
however this proved to be too easy to beat, as it is relatively simple to not break the arms, so
we decided to lower the number of components that need to be broken.

During our own playtests, we noticed that it could be quite difficult to notice if something
breaks in the middle of an enemy attack, as the display of the number of operational
components is only visible inside of the elevator. This meant that it could sometimes be
relatively surprising when the game over condition was triggered. To counteract this, we
added 5 lamps on the outside of the elevator, which show the amount of functional
components while inside the arm station. Once a lamp is turned off due to a new broken



module, a short sound effect is played to direct the players attention even more to the
changed state of the elevator:

Interior rework
We reworked and extended the interior of the elevator to give the player more interactivity
with the elevator.
The fuelling mechanic was reworked: previously, the player had to drop a fuel canister in a
designated area and then press a button to fuel the engine. This was not very intuitive, so
we changed it to resemble a smaller tank that has to be filled with fuel and is then handed
over to the engine tank automatically. Fueling is done by holding a fuel canister, standing
next to the fuelling station and pressing “E”. This starts a 3 seconds timer. If the player
interrupts the fuelling process due to leaving the vicinity of the fueling station or not pressing
“E”, the fueling process is concluded. The sprite of the fueling station is used to visualize
how long the player has already been interacting with it:

Interaction time < 1s > 1s, < 2s > 2s, <= 3s

Sprite

Refuel amount 10 12.5 15

We also wanted to ensure that players are aware that they are missing some fuel when they
do not interact for the maximum duration. The amount of fuel differs depending on how long
the player interacts with the fueling station, and a splashing animation as well as a splashing
sound play when less than the maximum amount of fuel was refueled.

Another reworked component is the dispenser. Previously, we had two buttons which would
either spawn fuel or scrap. We added a terminal, with which the player can either interact by
pressing “S” which will cycle through the available resources (fuel and scrap) and “E” to



dispense those items. Dispensing only works when the respective item is actually in the
inventory and otherwise an error sound effect is played.

As the health is now diegetic, we also integrated the height meter in a diegetic manner:

The diegetic health system introduced some new breakable modules outside of the elevator.
To repair them, we added a jetpack (see next section), as well as doors to the elevator that
automatically open when the elevator is standing and the player approaches them, so that
the player can leave the inside of the elevator and repair modules on the outside.

The breakable modules introduced with the diegetic health can, in theory, lead to a softlock,
for example when the engine is broken and the player has no access to any new fuel. In this
case, we wanted to give the player the opportunity to abort the run, so we introduced the
“Drop Button”.

To make sure the player does not press the button by accident, it has to be interacted twice
by pressing “E”, once to open the glass box surrounding it and then once more while the box
is open to press the button. Leaving the vicinity of the drop button while it is open will
automatically close the box.

Jetpack
To facilitate repairing things on the outside of the elevator like the net or engine, we’ve given
the player a jetpack which deploys automatically once they step outside of the elevator. The
functionality of this is rather simple, letting go of any direction keys will make the player



simply hover in place. Moving while in jetpack-mode has a lot more drag than otherwise,
giving the whole movement a “spacey” feel, which to be honest makes most sense once the
elevator reaches space. There is currently no limit to the time they can spend flying, though
this will be changed in the future. As long as the player has the jetpack equipped, they also
wield a small firearm which can be used to take down enemies if the arm on that side has
failed, as otherwise the player would have to sit and watch as those enemies slowly drain
the elevator’s health. The gun is also fun to shoot with and to make aiming possible the
camera uses a ‘peek mode’ while the gun is equipped which means that it follows the cursor
a bit.

Arm modules
While we initially planned to have modules for the arms and the elevator itself, we opted to
focus on only arm modules for now. Currently, there is a shield, flamethrower, and arclight
projector module, and they can be activated while controlling the arms with right-click. The
shield is permanently equipped and the player can choose to also equip either of the other
two weapons when selecting a mission, provided they’ve bought that module. In-game you
can switch between the shield and weapon by turning the mouse wheel. To visualize which
one is selected, the weapon extends out of the claw while active.

- Shield: Absorbs small projectiles while active. When activated, briefly emits a charge
which will reflect larger projectiles once we implement those.

- Flamethrower: Flammenwerfer, it werfs Flammen. Flames deal immediate damage to
intersecting enemies, and enemies which have been engulfed in particles for at least
0.5 seconds will continue burning for 3 seconds and take 20 damage per second.
Firing this costs engine fuel.



- Arclight projector: A tesla coil which can be charged up for up to 2 seconds by
holding right-click. On release, a bolt will jump to the nearest enemy within range and
recursively jump to others as long as it has enough charge left, dealing damage to
each enemy along the way. Using this weapon consumes ammo.

Contracts
The game starts with a view of a terminal on which the player can select their contract. The
contracts are randomly generated by combining a scenario, cargo type and risk level, each
coming with their own bits of text and variant which are assembled to form all the parts of a
contract, including the description, the destination, risk of enemy encounter and their size
and of course how well the contract pays. Right now the destination does not have an effect
because all three different destinations will spawn the same test-level we have been using
all this time, but once the other level scenes are ready each destination will start the elevator
ascension on a different cable with different enemy variants, weather conditions and, well,
destinations.



When the terminal is first booted up or after a gameover, a user name has to be entered:

The terminal first shows a list of 5 these contracts and selecting them leads to a detailed
view with the options to go back or accept the contract. Accepting it will then lead to the
equipment menu where the player chooses their elevator loadout. Right now this also
functions as a small shop for the arm modules.





Enemies
While we didn’t get around to adding new enemies, we have done a complete overhaul of
the enemy script, making it more generic and modular, which will allow us to quickly add
more variants with different weapons and behaviors. The enemies are now based on a truly
generic enemy base class from which all specific enemy types inherit. The code grew a bit
convoluted before so this was necessary, although a bit time consuming, but still very much
worth it. We have also added damage indicators to show the player how effective their
attacks are.

Music and options menu
Besides various sound effects, we also added music in the hangar scene as well as an
options menu where the volume of the music, the effects and the master volume can be
changed separately.

Inventory
We wanted to show the player in a diegetic manner what is currently available in the
inventory inside of the elevator. To achieve this, a small matrix representation was
implemented:

Red represents fuel, green is ammo, blue is scrap and orange is loaded cargo. These colors
are also used in the beginning of the game when the player selects what they want to load
into the elevator.



Milestone 5: Playtesting

Setup
We organized two playtesting sessions. The first one took place on 16.01.2024 and had 7
participants on two playtesting stations. The second session took place on the 19th of
January 2024, with 3 players playing in parallel and a total of 12 playtesters. We provided
laptops, mice and headsets.
We focused a lot on the play sessions, and tried keeping the survey to a minimum, as we
hoped that less questions would provide us with more honest and detailed answers. Our
questions were:

- What is your field of study?
- How old are you?
- How much fun was the game compared to other games you play? (scale 1-5, with 1

being no fun at all, and 5 being a lot of fun)
- How easy was the game for you? (scale 1-5, with 1 being way too easy and 5 being

way too hard)
- How well did the tutorial prepare you for the game? (scale 1-5, 1 being not at all and

5 being very well)
- Anything else you would like to say?
- Would you play this game in your freetime? (Yes/No)
- What features/changes would be necessary for you to play the game in your free

time? (This question would only trigger if the previous question was answered with
“No”)

Results

Playtesting session 1
Our first session had 5 aerospace and 2 informatics students, all at the ages 19-24.
As can be seen below, all of our playtesters had fun with our game. We could also observe
this, as some playtesters played a lot longer than needed and would even come back
afterwards and try again.



Most answered the difficulty to be just right with a little bias to the easy side:

The tutorial seemed to be improveable, as nobody felt very well prepared by the tutorial and
seemed to lean towards the “not at all” side. We also observed that players had a lot of
difficulties understanding our tutorial, as the textboxes of our tutorial were only readable
when controlling the player character inside the elevator as from the outside camera view
the text would be too small. We also observed that some of our initial assumptions about
how players would approach the game were wrong. In the hangar, there is a button to open
the hatch. There is a car available, which we assumed the player would fling at the button,
as the button is outside of the direct reach of the arm and we had a text popup explaining the
flinging mechanic. However, no playtester actually used it, and instead threw the car by
pulling the mouse over and releasing manually, which also worked, but was a lot less fun
than our flinging mechanic. So instead we explained how the flinging mechanic is supposed



to work ourselves to still get some playtesting data on the flinging mechanic as well.

We got a lot of responses to the freetext question “Anything else you would like to say?”.
Players noted that the fling mechanic feels satisfactory, although the trajectory lines seemed
to be misaligned with the arm a bit. Players also noted here, that they did not know the
purpose of what they were doing as we did not include the story in the game at this point.
Additionally, there seemed to be some miscommunication between the game and the
players, as players reported not understanding terms like “chute”, which we had internally
been using during development. Players also expressed that they would like some more
enemy types.
Besides that, we got a lot of positive feedback: our core gameplay was regarded as fun, the
sound effects, artstyle and effects were remarked positively on by multiple people.

Continuing on this positive trend, everyone answered “Yes” on our final question:

This means that no playtester in this session actually saw the final question: “What
features/changes would be necessary for you to play the game in your free time?”



Playtesting session 2
During the time between our first and second playtesting session, we tried to integrate as
much feedback as possible to maximize the value of the second playtesting session. The
most critical part of this was a new tutorial system, as our previous one did not prepare the
playtesters too well and meant that we had to step in and explain crucial game mechanics so
that the player could progress. The new tutorial consists of GIFs which showcase a specific
mechanic being used, and which pop up and pause the game when they are relevant. The
response to this was a lot better than the previous approach, though there were still some
hiccups which we have addressed since then. We also added new enemy types, the rocket
enemies. Obviously we didn’t have enough time to implement all the changes we wanted to
make, for instance we wanted to add a series of posters to the start of the game to introduce
players into the game world and their role within it, but we couldn’t create the assets for this
in time. Instead, we began each set of 3 simultaneous tests with a short introductory
monologue as a substitute.
Our second set of testees consisted of 6 informatics students, 2 in physics, 2 in aerospace, 1
in mechanical engineering, and 1 in electrical engineering, within the ages of 19-24.



Most notably is the difference in perceived difficulty which is easily explained by the addition
of the new rocket-firing enemies which do indeed ramp up the difficulty as they require timing
and some amount of reaction time to overcome. Still, as before, 100% of testers reported
that they’d play the game in their free time, and a considerable number pointed out that they
enjoyed the artstyle. We actually even ran out of playtesting time and had to promise all the
others that did not yet get to play to make sure we reach out to them for the next playtest.

Changes to the game

Visual indicators
Aside from the mentioned tutorial changes and new rocket enemies, we changed some
things for the sake of visual clarity between playtests. For instance, interactability or
grabbable objects now have a white outline when the player is near, to separate them from
the background some more. Also, aborting the refueling process too soon now produces a
dripping puddle under the station and flings the now only partially filled canister to the side,
to further emphasize that the player is wasting fuel this way. A broken engine now also has
visible holes in the tank and dripping particles to make it obvious that fuel is being lost.

Rocket enemies
The new rocket enemies are unique in that they stay out of the reach of the elevator’s arms.
They must be defeated by either throwing another enemy at them or by reflecting their
projectiles back at them with a well-timed shield activation.

Contracts
The contract terminal was also updated with a new layout to show item descriptions and we
also color coded the resources as well as put the in-game sprites of the corresponding



intractable items next to them to make the association of this screen and the items in the
elevator perfectly clear.

The “Expected profit” in the middle of the contract screen moves either to the right or left,
depending on whether cargo was added or removed, to grab the attention of the user to help
make the connection between the amount of contracted cargo and potential profit. In our first
playtesting session, we noticed that players would at times start with no cargo at all. To
counteract this, we made the minimum contracted cargo set at 1. In the second session
however, it became apparent that playtesters were hesitant when loading up on fuel or
scrap, out of fear that they might impact the final profit. The “Expected profit” label will
hopefully remove this unclarity as well as labeling only the section underneath as ‘SHOP’
and moving the current account balance down there as well.
Moreover the contract terminal as a whole was redesigned to look a lot cleaner and like
common user interfaces from other games.

Tutorial
Since the second playtesting session, we have started work on further refining the tutorial.
Previously, we had the issue of some tutorial GIFs showing up in quick succession due to
their trigger events happening right after one another, or them showing up at generally
inopportune times. Right now we’re addressing this by making the first mission that players
embark on a partially deterministic tutorial. When they enter the hangar, they must first repair
a broken element of the elevator, forcing them to learn both the item dispenser and repair
mechanic outside of the stress of an enemy encounter. Later in the level, a predetermined
set of enemy waves awaits the player, with an appropriate tutorial at the start of each one
introducing a relevant mechanic at a time.



Level variety
We are also planning on offering more variety to the player. Currently, we are working on
implementing either a night or rain level, with appropriate visual aspects.

Next steps
All of the following steps will be addressed by us in the next two weeks, unless specified
otherwise.

Tutorial
We still need to evaluate whether our new tutorial and the tutorial level approach helps new
players adjust to the level, and make changes where necessary.
We also want to make all the tutorial GIFs available through the pause menu, so players can
cycle through them if they want to check how something works.
Another rather big addition to the tutorial would be the introduction of a “boss” NPC, who
would teach the player in a more diegetic way how to play the game. While we already have
an animation for this character, he is not yet integrated into the game. While this last point
sounds fun, we will not be putting our focus on this in the next two weeks and rather after
release.

Enemy variety
Currently, all of our enemies can spawn independent of the height and mission. We want to
add more variety to the enemies, as well as boss enemies which are harder to fight.

Heat Meter
While we did implement a heat meter, which rises when the elevator is either in normal or
fast mode and explodes the engine once it reaches its maximum, we want to expand on it.
To do so, we would have more enemies spawn in case of a higher heat meter, as well as
integrate it as a bonus objective to our contracts.

Elysium level
Currently, the player wins by paying the amount for the elysium ticket and is presented with a
“You win!” screen. We want to expand on this and offer an especially difficult level for the
final run, to get a more satisfying winning experience.

Anarchy contracts end
While we do have the separate anarchy missions implemented, they so far do not lead to a
separate end screen. We envision a final anarchy mission, which would lead with explosions
on the space stations that the goods are delivered to.



Story
As already mentioned in the playtesting sessions, testers were at times confused about what
the overarching goal of the game is supposed to be. We plan on counteracting this by telling
our story with the help of 3 propaganda posters that show up at the beginning of the game:
The first one titled “Know your place!” depicting the separation of society into different
classes at different heights, the second one being a job offer as a space elevator operator
and the third being a poster titled “Buy your place in heaven” advertising the elysium ticket
as the final goal of the game.


