
Deep Learning for
Sound-to-Light Automation

in Stage Lighting
Applications

Manuel Hils

Chair of Data Processing
Technische Universität München

Master’s thesis

Deep Learning for Sound-to-Light
Automation in Stage Lighting

Applications

Manuel Hils

31. October 2023

Manuel Hils. Deep Learning for Sound-to-Light Automation in Stage Lighting Ap-
plications. Master’s thesis, Technische Universität München, Munich, Germany,
2023.

Supervised by Prof. Dr.-Ing. Klaus Diepold and Stefan Röhrl; submitted on 31.
October 2023 to the Department of Electrical and Computer Engineering of the
Technische Universität München.

© 2023 Manuel Hils

Chair of Data Processing, Technische Universität München, 80290 München, Ger-
many, http://www.ldv.ei.tum.de/.

This work is licensed under the Creative Commons Attribution 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.or
g/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

http://www.ldv.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Abstract

Stage lighting applications usually require an operator who programs the depen-
dency between sound and light. The industry is working on an improved sound-to-
light automation whereas the scientific research in the field is limited. This thesis
analyzed how sound-to-light automation can benefit from deep learning.

Therefore, three different data sets were created: A synthetic data set where
a light is pulsing with the beat, a trace of a basic real-world light show and an
extraction of control signals from a video of a professional light show.

The proposed model consists of a convolutional recurrent neural network
(CRNN) that receives a log-Mel spectrogram together with its positive difference
as input features. The loss function takes the absolute values of hue and bright-
ness into account, as well as their change compared to the previous sample. Four
additional metrics support the evaluation of the performance.

The results showed that learning a direct dependency between low level music
features and the lighting output via a CRNN is a promising approach for sound-to-
light automation. The first two data sets turned out to be more valuable than the
third for this task. While the model learned the general structure of the first data
set, especially the second revealed limitations that require further research. The
relation between sound and light was not sufficient in the third data set.

3

Contents

Abstract 3

1. Introduction 9

2. Related Work 11
2.1. Data Processing . 11

2.1.1. Long Short-Term Memory 11
2.1.2. Convolutional Neural Networks 13
2.1.3. Log-Mel Spectrogram . 13
2.1.4. Color Spaces . 14

2.2. Stage Lighting . 15
2.2.1. Scientific Research . 15
2.2.2. Commercial Products . 17

2.3. Music Information Retrieval . 18
2.3.1. Feature Extraction . 18
2.3.2. Model architecture . 19

3. Methods 21
3.1. Interfaces . 21

3.1.1. Audio Input . 21
3.1.2. Light Output . 21

3.2. Color Space . 22
3.3. Data Sets . 22

3.3.1. Data Set 1 – Synthetic Light Control 23
3.3.2. Data Set 2 – Basic Real-World Example 24
3.3.3. Data Set 3 – Video of Professional Light Show 25

3.4. Model . 27
3.4.1. Feature Extraction . 28
3.4.2. Model Architecture . 29
3.4.3. Parameters . 29

3.5. Performance Metrics . 30
3.5.1. Loss Function . 31
3.5.2. Evaluation of the Result . 31

3.6. Training Process . 35
3.6.1. Sequencing . 35
3.6.2. Split between Training, Validation and Test Data 35

5

Contents

3.6.3. Hyperparameter Grid Search 35
3.6.4. Baseline . 37

4. Results 39
4.1. Training Process . 39

4.1.1. Development over the Epochs 39
4.1.2. Reproducibility . 39
4.1.3. Execution Time . 40

4.2. Hyperparameter Grid Search . 41
4.2.1. Basic Setup . 41
4.2.2. Weighted Loss Function . 45
4.2.3. Test Results . 47

4.3. Evaluation with Data Set 2 . 47
4.3.1. Basic Setup . 48
4.3.2. Weighted Loss Function . 48

4.4. Evaluation with Data Set 3 . 49

5. Discussion 53
5.1. Research Question 1 – Data Sets 53

5.1.1. Data Set 1 . 53
5.1.2. Data Set 2 . 53
5.1.3. Data Set 3 . 54

5.2. Research Question 2 – Model . 54
5.3. Research Question 3 – Loss Function and Metrics 55

A. List of Songs in Data Sets 63
A.1. Data Sets 1 and 2 . 63
A.2. Data Sets 3 . 65

6

Acronyms

CNN convolutional neural network
CRNN convolutional recurrent neural network
DMX512 digital multiplex
FFmpeg fast forward moving picture experts group
HSV hue saturation value
LSTM long short-term memory
RGB red green blue
RNN recurrent neural network
STFT short-time Fourier transformation

7

1. Introduction

While music typically attracts the most attention at concerts, stage lighting also
highly influences the overall experience. It can emphasize the emotions trans-
ported by the music. Although machine learning algorithms conquer one creative
domain after the other these days, the ideas behind today’s stage lighting concepts
still depend on the operator in most cases.

Existing light boards and software solutions usually take music into account
for jumping through a sequence of scenes or adjusting the speed of effects to the
beat. Professional systems also offer a variety of music features that can be used
for controlling further parameters of the light show. However, the general idea
about which colors, movements, intensities and effects fit to the music, usually
comes from the operator in case of diversified shows.

This is a challenge on small events where no dedicated light technician is avail-
able: Mobile DJs who want to concentrate on the music or private party organizers
might need to rely on basic preprogrammed sequences of their light board. The
industry understood this shortcoming and reacted with increased automation in
the last years. More advanced preprogrammed light shows that take further music
features into account enhance the correlation between music and light. They also
limit the impression of repeating light sequences these preprogrammed solutions
are usually prone to. The software SoundSwitch is one of the forerunners that go a
step further. It analyzes a song and creates a light show in alignment to the given
music. However, it is only possible to precalculate the show for a whole song in
advance. Therefore, this feature cannot be used live.

The startups Limbic Media and AI Light Show recently developed products to
overcome this limitation and advertise artificial intelligence based solutions that
create light shows live. Besides the lack of independent tests until now, little is
known about how they work internally.

Sound-to-Light Automation is also subject to scientific research. For example,
Hsiao et al. [15] use machine learning approaches to extract emotions from the
music and choose fitting light parameters afterwards. Nevertheless, the impression
is that the resulting functions cannot compete with the complexity of the commercial
products mentioned before or with human invented shows.

The goal of this thesis is to contribute to reducing the gap between the ca-
pabilities of commercial products and scientific research and to analyze a new
approach for sound-to-light automation. Therefore, the target is to find out whether
deep learning based approaches are able to create a light show directly from the

9

1. Introduction

music input, without the intermediate step of emotion estimation. The program
shall be designed in a way that it can also run in a live scenario. In order to limit
complexity, the output is limited to the color and brightness of one light.

The following research questions are covered within the thesis:

• RQ 1: How is it possible to create training data for the different phases of the
project?

• RQ 2: Which model is suitable for predicting the light output based on the
music input?

• RQ 3: How can the quality of stage lighting be measured?
– What kind of loss function can be used for training a model?
– How can the outcome of different models be compared?

10

2. Related Work

The number of sources that describe sound-to-light automation is rather limited.
Therefore, this chapter also covers related disciplines from the field of music in-
formation retrieval. The target is to find existing approaches that can be ported
to sound-to-light automation. At the beginning, section 2.1 briefly summarizes the
data processing fundamentals the following sections refer to.

2.1. Data Processing

The data processing overview is divided into two deep learning architectures, a
procedure for extracting audio features and two representations for colors.

2.1.1. Long Short-Term Memory

Time series forecasting has a long history with the development of classic meth-
ods like the autoregressive integrated moving average model for example in the
1970s [29].

Several neural network architectures target time series forecasting, too. Recur-
rent neural networks (RNNs) belong to this group and use feedback loops to keep
an internal state. That way, the model memorizes information from previous time
steps and can make predictions depending on the current input and the information
from the past [11]. A popular variant of RNNs is long short-term memory (LSTM).
Hochreiter and Schmidhuber initially proposed this concept for solving the problem
of vanishing or exploding loss signals of previous RNNs in 1997 [14].

Architecture

The architecture of LSTMs described in this section is based on the representation
by Zhang et al. [47].

Similar to a standard recurrent neural network, a feedback loop returns the pre-
vious output of the model back into the model. The previous output is the hidden
state in figure 2.1 of the LSTM unit and it becomes concatenated with the new in-
put values. For simplicity, the result of this concatenation is called "input" in the
following. In addition to the hidden state, the unit contains an internal state which
is also keeping information across time steps.

11

2. Related Work

Figure 2.1: Representation of LSTM architecture by Zhang et al. [47]

One important improvement of an LSTM compared to standard RNNs embodies
the control of the information flow via three different gates. The input gate deter-
mines to which extent the internal state memorizes new information. This means
it evaluates how relevant the current input is for future time steps. The forget gate
defines which portion of the internal state is forgotten and the output gate states
how much the internal state shall influence the output of the LSTM.

All three gates contain fully connected layers that are optimized during the train-
ing process, followed by a sigmoid activation function. Due to the activation func-
tion, the output of the gates ranges from zero to one.

There is one further fully connected layer with trained weights, but this time with
a tanh activation function: The input node depends on the input and contains the
new information the internal state shall memorize (if the input gate allows it). The
new output consists of the tanh function applied on the internal state multiplied with
the output gate.

The hidden size describes the number of features in the hidden state and is a
hyperparameter that influences the model’s complexity.

Training Process

The time-dependent relation between input and outputs of RNNs requires adapted
training processes. One common approach for that purpose is backpropagation
through time. The idea can be imagined as unfolding an RNN: The behavior of
an RNN after two time steps equals the one of a feed-forward neural networks that
contains two instances of this RNN without the feedback loop [38]. This form allows
standard backpropagation again.

12

2.1. Data Processing

However, the computational costs of the unrolling process increase for longer
sequences and the accumulating numerical error can impede the optimization
process [22]. Williams and Peng proposed therefore the truncated backpropaga-
tion through time where the backpropagation is limited to a fixed number of time
steps [44].

The optimal sequence length that is taken into account for the backpropagation
differs between applications. Khodabakhsh et al. [18] showed for example that
modifications like the number of features in a multivariate experiment can also in-
fluence the best choice.

2.1.2. Convolutional Neural Networks

The introduction of convolutional neural networks (CNNs) improved various ap-
plications determinative, such as image classification, object detection or image
segmentation in the field of computer vision [21].

Using standard feed-forward neural networks for image recognition would lead
to a large amount of trainable parameters because they connect every input pixel
of the image via a separate weight with the following layers [1]. From a functional
point of view, a major drawback is the sensitivity regarding shifted objects within
the image. When the model learned to detect a certain object in a picture, the
static connection between each input pixel and the upper layers remembers also
the location of the object and would not recognize the object anymore at a different
position in the image [47].

The target of convolutional layers is to improve this behavior with filters that per-
form a convolution across the image. Typically, a CNN consists of several convo-
lutional layers followed by a dropout layer and one or more fully connected layers
at the end. While the first convolutional layers extract low-level features like edges,
the following layers detect more complex objects based on these low-level fea-
tures [43].

This is just a short overview for a better understanding of the thesis. A more de-
tailed view on CNNs can be found for example in an article from C.-C. Jay Kuo [20].

2.1.3. Log-Mel Spectrogram

A common method for feature extraction in the field of music information retrieval is
the log-Mel spectrogram [28, 45]. It is based on a short-time Fourier transformation
(STFT) that yields the frequency distribution of the audio signal over time. The
output of the STFT is summarized via frequency subbands [2]. The size of each
frequency subband is adopted to the hearing sensation of humans.

In the 1930s, Stevens et al. [39] analyzed how the human ear perceives different
frequencies based on experiments. They discovered that the same distance be-
tween two frequencies feels different depending on the height of the frequencies.

13

2. Related Work

Figure 2.2: Comparison of RGB (A) and HSV color space (B) by Chen et al. [4]

For example, a distance of 100Hz feels larger when the two tones are 400Hz and
500Hz compared to 4 kHz and 4.1 kHz. The target of Stevens et al. was to find a
scale for frequencies so that the distance between two tones on this scale matches
the distance human listeners sense. The result is called the Mel scale and was
originally formulated as a table. O’Shaughnessy [10] proposed the approximation

Mel(𝑓) = 2595 log10

(
1 + 𝑓

700

)
mel (2.1)

for converting a frequency 𝑓 to the Mel scale.
In a log-Mel spectrogram, the frequency subbands have an equal size on the

Mel scale and the obtained amplitudes are displayed in decibel. Figure 3.7 shows
an example of such a spectrogram.

2.1.4. Color Spaces

There is a variety of color spaces proposed in the literature in order to describe the
appearance of light. Relevant for this thesis are the RGB (red, green, blue) and
the HSV (hue, saturation, value) model that are visualized in figure 2.2.

The RGB model follows the biological processing of colors in the human eye
and defines the light as a combination of red, green and blue and many of today’s
applications such as digital cameras or screens employ this color space [23].

Smith proposed the HSV model as a color model designed to be closer to how
humans perceive light [37]: It expresses the light with the dimensions hue, satu-
ration and value. Value is a measure of brightness in this case. In the following

14

2.2. Stage Lighting

chapters this is referred to as "brightness" because "value" can be ambiguous with
other values. A conversion from the RGB color space to the HSV representation is
possible via the definition [34]:

𝑅, 𝐺, 𝐵 ∈ [0, 1]; 𝑀𝐴𝑋 = max(𝑅, 𝐺, 𝐵); 𝑀𝐼𝑁 = min(𝑅, 𝐺, 𝐵)

𝐻 =

60◦ ∗ (0 + 𝐺−𝐵

𝑀𝐴𝑋−𝑀𝐼𝑁
, if 𝑀𝐴𝑋 = 𝑅

60◦ ∗ (2 + 𝐵−𝑅
𝑀𝐴𝑋−𝑀𝐼𝑁

, if 𝑀𝐴𝑋 = 𝐺

60◦ ∗ (4 + 𝑅−𝐺
𝑀𝐴𝑋−𝑀𝐼𝑁

, if 𝑀𝐴𝑋 = 𝐵

0, if 𝑅 = 𝐺 = 𝐵

(2.2)

𝑆 =

{
0, if 𝑅 = 𝐺 = 𝐵

𝑀𝐴𝑋−𝑀𝐼𝑁
𝑀𝐴𝑋

, else
(2.3)

𝑉 = 𝑀𝐴𝑋 (2.4)

2.2. Stage Lighting

Sound-to-light automation is subject to scientific research as well as a development
target for commercial products. However, the number of available publications in
this research area is very limited compared to other machine learning applications.
The following sections provide an overview of the current state.

2.2.1. Scientific Research

Hwangbo et al. [16] created a basic sound-to-light system that shares similarities
with light organs from the 1970s: The colors green, blue, white and red are as-
signed in increasing order to a frequency band of 300Hz each. The brightness
depends on the amount of change in the amplitude of the music.

In contrast, Nouvel et al. calculate the power of the audio signal in the frequency
band below 100Hz in order to distinguish the intensity of the lights [32]. Above
a certain noise threshold, there is a linear relation between the power inside the
frequency band and the brightness. The hue is selected either randomly or via a
remote control in this proposal.

Nguyen et al. [24] developed a model that estimates the emotion of a segment
of the song as an intermediate step. The emotion is described in the Thayer emo-
tion plane which is a two-dimensional representation that expresses arousal and

15

2. Related Work

Figure 2.3: Visualization of the Thayer emotion plane by Yang et al. [46]

valence [40] as displayed in figure 2.3. The model calculates the location inside
the Thayer plane with a fixed formula with five different music features as input.
The second step is to assign fitting lighting effects to each emotion. Therefore,
the Thayer plane is divided into 12 different emotions such as excited, relaxed or
bored. The mapping of the 12 emotions to the light output is static. This leads to a
constant color as long as the emotion is in the same area and the beat of the song
is not considered. In addition, the quality of the emotion recognition with a linear
function of five music features needs to be verified.

Hsiao et al. [15] used support vector machines for the emotion estimation in-
stead. Although the idea of emotions as an intermediate step is the same as in the
work of Nguyen et al., Hsiao et al. extended the program with further components:
Hue and saturation are calculated for a segment by support vector regression with
both the emotion and the genre as input. The genre detection consists of a simi-
larity comparison with songs from a data base. In addition, the brightness is cal-
culated with the average intensity of a song segment and the current onset signal.
The dynamic change of the onset creates a flashing effect in accordance with the
music.

The segment based algorithm requires a segment detection that works with an
energy envelope: When the energy envelope crosses dynamic boundaries, this
is a potential segment boundary. However, there are further steps for selecting a
subset of the potential segment boundaries and for fine-tuning the exact time of
the transition between the segments.

For achieving training data, five professional light technicians labelled example
song extracts with hue values. The relation to the music emotions are difficult
to distinguish in the resulting color maps (see figure 2.4): While some genres as
metal, reggae or country received an almost constant hue, a variety of colors are
assigned to other genres like rock and pop across the Thayler plane.

As a consequence of the segment based approach, the algorithm works only

16

2.2. Stage Lighting

Figure 2.4: Results of Hsiao et al. [15]: Selected hue depending on genre and emotion

precomputed in this form: In a live scenario, the average intensity that is needed
for the brightness would only be known at the end of the segment. The same holds
for the emotion as input for the hue and saturation selection.

2.2.2. Commercial Products

There is a tradition of developing products that align music and light since cen-
turies. In 1877 for example, Bainbridge Bishop constructed a lighting device as an
extension for an organ [35]. Initially driven by sunlight, the device used levers and
shutters in order to visualize the played music on a small screen [35].

Except from the common motivation, today’s commercial products share few sim-
ilarities with the machines from the 19th century. The light control board grandMA3
from MA Lighting stands exemplary for products that are typical in professional
environments. According to its user manual, the board calculates audio features,
such as the beat or the intensity of different frequency bands. Those values can
not only be used for controlling the transitions between lighting scenes, but also
for setting any parameter in the program [9]. Since this mapping between audio
feature and lighting parameter has to be programmed by a technician for a specific
application, this can be categorized as a semiautomatic sound-to-light solution.

Entry level light boards offer less features which reduces the amount of neces-

17

2. Related Work

sary preparation effort on the one hand. On the other hand, it leads to a frequent
repetition of lighting effects and a poorer relationship between sound and light.
The DMX LED EASY Operator Deluxe from Eurolite, an example for this category,
brings 12 preprogrammed sequences where the transition between the steps can
be aligned to the beat [8].

In the last years, companies tried to combine an increased complexity of the
light shows together with automation. The software SoundSwitch for example in-
troduced the function AutoScripting. AutoScripting splits a song into different seg-
ments such as intro or chorus and prepares a lightshow in accordance to the mu-
sic automatically [6]. However, the whole song has to be analyzed beforehand.
A backup solution for a live setup is the function AutoLoop which offers prepro-
grammed sequences that are synchronized with the beat [6]. However, the choice
of the preprogrammed sequence is up to the operator which reduces the level of
automation for this function.

The startups Limbic Media and AI Light Show both announced that they started
shipping of artificial intelligence based light controllers in 2023. Usually, the
vendors of commercial products do not explain details of the functionality, but Lim-
bic Media filed a patent that gives at least insights into the potential structure of the
program [25]. The patent mentions frequency and envelope analysis of the audio
signal as input features and a database of previously processed sound signals in
order to find a base for the current light control. In addition, it states that neural net-
works can be incorporated for the detection of music genres, patterns or speech
styles.

2.3. Music Information Retrieval

Despite the lack of deep learning based papers described in section 2.2.1, there
are related music information retrieval disciplines that employ deep learning and
provide insights for this thesis: The connection between stage lighting and music
emotion recognition / music classification can be seen in the work of Hsiao et
al. [15] which relies on the estimated emotions and genres as an intermediate step
for stage lighting. At the same time, creating light shows has also a strong cor-
relation to beat tracking, since a common strategy of the commercially available
solutions (described in section 2.2.2) is to synchronize light changes with the beat.

Therefore, the design choices of deep learning models out of these two disci-
plines are analyzed as a foundation for the approach presented in section 3.4.

2.3.1. Feature Extraction

A common procedure within the analyzed papers is to rely on log-Mel spectrograms
as input parameters for the model [3, 5, 12, 26, 41]. Hizlisoy et al. [13] include a

18

2.3. Music Information Retrieval

variety of further features (e.g. timbre, tonality, harmonic change detection function,
centroid etc.), but this is an exception within the selection.

However, there is still a variation of how the spectrograms are calculated in detail.
The window length reaches from 23.2ms until 92.9ms while 46.4ms is a typical
choice. Cheng et al. [5] and Böck et al. [3] use the three different window lengths
in combination (23.2, 46.4 and 92.9ms) which increases the input threefold. The
hop length differs from 10ms to 46.4ms. While the frequency range typically covers
the range from 30Hz - 17 kHz, the number of frequency bins varies between 20 and
136 in the considered papers. This amount influences the number of input features
for the model. It has to be noted that the small values of 20 and 36 are only chosen
by papers that rely on three different window lengths which increased the number
of features this way.

After obtaining the log-Mel spectrograms, similar steps were proposed in the lit-
erature in order to create further features. While the network BeatNet, proposed by
Heydari et al. [12], uses the first order difference of the spectrogram as additional
input features, others employ only the positive values of the first order difference [5,
41]. Böck and Schedl [3] compute a median of the spectrogram over some sam-
pling points, before taking the positive values of the first order difference of this
median spectrogram. The results reveal an improved behavior when taking only
the positive values compared to taking both positive and negative values or leaving
out the first order difference completely.

2.3.2. Model architecture

Within the analyzed papers, convolutional recurrent neural networks (CRNN) are
a typical design choice for beat tracking systems as well as music classification
and emotion recognition. A CRNN is a network that combines convolutional and
recurrent layers. Vogl et al. [41] proved that alternative approaches with RNNs or
CNNs can also provide good results depending on the specific task and the data
set.

19

3. Methods

Divided into six sections, this chapter first describes the interfaces to interact with
the model, before it explains the choice of a color space. Section 3.3 gives insights
about the creation of three different data sets while section 3.4 explains the model
itself. Section 3.5 states not only the metrics that are used for the final performance
measurement, but also the loss function that is the base for the training process in
section 3.6.

3.1. Interfaces

3.1.1. Audio Input

There are two different use cases concerning the audio input: During development,
prerecorded audio files are imported via the Python package Librosa [27]. It sup-
ports a variety of audio formats as MP3 or WAVE for example. In a live scenario, a
microphone gathers the input data. The module python-sounddevice retrieves the
input from the computer’s microphone in this case.

3.1.2. Light Output

Displaying the output in form of a video enables the development of the model in-
dependent from lighting hardware. Therefore, a Python wrapper [19] for FFmpeg
creates an MP4 file based on the numpy matrices given out from the model. How-
ever, an alternative output form is necessary to interact with real hardware in a live
scenario.

There are two common protocols for controlling fixtures: DMX512 (digital
multiplex) and Art-Net. DMX512 is a serial protocol developed in the 1980’s and
allows 40 data frames per seconds with each frame containing 512 channels [31].
Every channel can have a value between 0 and 255 and carries the information
for controlling a specific parameter of a light, e.g. the brightness, the intensity of a
certain color or an angle it should turn to.

The development of more sophisticated light shows in the following decades led
to a demand of an increased number of channels. A solution for this is Art-Net
which is a protocol for sending large amount of DMX512 data over Ethernet [31].
However, DMX512 is a sufficient protocol choice for this thesis because the target
is to control only a single light. Therefore, a USB to DMX512 adapter together with

21

3. Methods

the Python program PyDMX [36] facilitates the control of fixtures in a live scenario
as an alternative to the video output.

3.2. Color Space

A broad variety of fixtures which are capable of mixing colors works based on the
standard RGB color model for additive color mixture. Often, four channels control
those lights: The intensities for the colors red, green and blue and a dimmer value.
For the compatibility with those lights, the final output of the program is according
to the RGB color model. The dimmer channel is sent out with a constant value of
255 which corresponds to the highest possible brightness. Reducing the brightness
is nevertheless achieved by reducing the red, green and blue values together. A
trace of the eurolite DMX LED easy operator deluxe, an entry level control board
for lights, shows that it works it in the same way. So, the assumption is that a high
number of commercially available fixtures understands such a control pattern.

Although the model sends out commands according to the RGB color space as
the final output, it works internally based on the HSV model due to its more intuitive
interpretation. However, the saturation equals the maximum value all the time in
order to limit complexity. Although white light or less saturated other colors also play
a role in stage lighting applications, the absence seems to be a minor drawback.
The personal impression is that most of the time colorful lights dominate the light
shows in clubs or at concerts.

Hue and value remain as the outputs the model has to predict. A postprocessing
step converts it to the RGB color model afterwards.

3.3. Data Sets

A variety of data sets is publicly available for many machine learning tasks and can
be used for training new models. In the area of stage lighting, something similar
could not be found yet. So the first step is to create data sets for this particular
task. Three different approaches allow a stepwise verification and improvement of
the model.

1. A synthetic data set where a red light pulses with the beat provides the op-
portunity to setup the model with deterministic training data, just one relevant
output and simplified performance metrics. The majority of the thesis works
with this data set.

2. A trace of a basic real-world light show with a sawtooth profile of the bright-
ness and slightly changing colors displays how well the model architecture
developed with the synthetic data set can also cope with a bit more complex
data sets.

22

3.3. Data Sets

Figure 3.1: Example of Data Set 1 output

3. The third data set is obtained from a video of a professional light show.
The target of this data set is to find out whether also a model with practical
relevance can be trained with the same approach.

3.3.1. Data Set 1 – Synthetic Light Control

The built-in beat detection of Librosa forms the foundation of the synthetic data set.
It estimates beat events based on the onset strength as proposed by Ellis [7]. Each
detected beat event sets the brightness to the maximum value for 200ms before it
returns to zero. The hue is permanently zero which results in a red light flashing
according to the beat.

Figure 3.1 shows an example extract of the brightness signal together with the
corresponding music input. On the top of the figure, the translation of hue and
brightness to the RGB model visualizes the visible light. As in the whole thesis, the
saturation stays 1 for this conversion.

Music Selection

Preliminary tests showed difficulties with the reproducibility of the results. There-
fore, the Spotify playlist Mainstage with 50 songs replaced the initial music selection
of 15 songs from different genres. The playlist Mainstage contains mainly songs
that can be classified as electronic dance music. As a consequence, the results
might not hold for other genres, especially not for those with less strong beats. On
the other hand, this makes the selection a good starting point for the first setup of
the model in simpler conditions.

Nevertheless, the difficulty of detecting the beat varies between the songs. While
the base drum is clearly visible in the amplitude of songs like ’When You’re Lonely’
from VIZE and Emma Steinbakken, this is more difficult for a calm segment of

23

3. Methods

Figure 3.2: Comparison of song extracts with different difficulty for beat detection: ’When
You’re Lonely’ from VIZE and Emma Steinbakken and ’Fly so High’ from Zombic, Rocco
and Steve 80

the song ’Fly so High’ from Zombic, Rocco and Steve 80 as displayed in figure
3.2. Hence, these two extracts will be used as examples when visualizing the
predictions of the model.

The chances of generalization increase by choosing music with varying tempo.
If all songs in the data set had a similar tempo, the model might learn the temporal
sequence of outputs without respect to the music. Within the selected songs, the
tempo varies between 122 and 170 bpm. Figure 3.11 visualizes the distribution of
the tempo while table A.1 in the annex contains the complete list of songs together
with their tempo. All songs are cut after 2:00min in order to obtain the same length.

3.3.2. Data Set 2 – Basic Real-World Example

Source of Control Signals

A trace of a basic real world light control serves as an intermediate step between
the data sets described in the sections 3.3.1 and 3.3.3. The function Autoloop of
SoundSwitch acts as the source of the lighting data. Although a variety of prede-
fined Autoloops with e.g. different color schemes are available and they can also
be customized, the choice here is to use only the option "Pulse Blue". It pulses the
brightness with a saw tooth profile according to the beat while the color is varying
from blue to turquoise and purple. Due to the static choice of just one Autoloop,
the result is still a basic light control without practical relevance. Nevertheless, the
new brightness profile and the added colors add more complexity compared to the
synthetic data set from section 3.3.1.

The audio input consists of the same songs as in Data Set 1 (see table A.1).

24

3.3. Data Sets

Figure 3.3: Example of Data Set 2 output

DMX512 Logger

Since SoundSwitch does not provide an integrated function for exporting traces, a
DMX512 logger was built for that task. An Arduino Leonardo R3 and a CQRobot
DMX Shield MAX485 act as the hardware base for the logger. From software
point of view, the Arduino receives the DMX signals with the library DMXSerial. It
forwards the received data via a serial connection to a PC where a Python script
parses it. The Python package sounddevice records the audio input in parallel so
that the lightshow is obtained in synchronisation with the music input. An example
of the outcome can be seen in figure 3.3.

3.3.3. Data Set 3 – Video of Professional Light Show

Parsing the Video

For parsing a video of a light show in order to obtain more advanced training data,
each frame of the video is split into four segments. Every segment is then con-
densed to a single output light with a hue and a brightness, even though the seg-
ment of the input image might contain a variety of different lights.

The brightness of the condensed light

𝑣𝑐𝑜𝑛 = min

{
10

𝑁𝑝𝑖𝑥𝑒𝑙𝑠 | 𝑣𝑝𝑖𝑥𝑒𝑙 > 𝑣𝑚𝑖𝑛

𝑁𝑝𝑖𝑥𝑒𝑙𝑠

, 1

}
(3.1)

depends on the proportion of pixels who’s brightness 𝑣𝑝𝑖𝑥𝑒𝑙 is above the boundary
𝑣𝑚𝑖𝑛 of 40%. The boundary and the factor 10 inside 3.1 are chosen after trying

25

3. Methods

Figure 3.4: Splitting and filtering of a video frame

Figure 3.5: Hue selection for filtered segment of figure 3.4

different values. The minimum function ensures that the brightness is limited to the
maximum range of the color model.

Before picking a hue ℎ𝑐𝑜𝑛 of the condensed light, a filter reduces the pixels of the
frame segment to those with a brightness and saturation of more than 40%. This
eliminates the influence of dark areas around the lights as well as the impact of
overexposed pixels when a light is shining directly into the camera. The removed
parts are colored red in figure 3.4.

The dominant color of the remaining pixels in the segment is retrieved by a den-
sity estimation with a linear kernel and a bandwidth of 0.1 that is computed over
the color distribution. The maximum turning point of the resulting curve is selected
as hue ℎ𝑐𝑜𝑛 (figure 3.5).

Although this method generates information about four different lights, only the
upper left is employed until now. Figure 3.6 displays an example excerpt.

Video Selection

YouTube provides an almost unlimited access to potential training data. Starting
with specific stage lighting videos, the data set could be extended with records from
live concerts or music videos in theory.

26

3.4. Model

Figure 3.6: Example of Data Set 3 output for an extract of the song ’Good Times Roll’ from
Big Gigantic and GRiZ

The base for this data set is a video1 uploaded by GLP, a manufacturer of lighting
equipment. It is a medley composed of eleven songs listed in table A.2 and has
a length of 8min in total. Since the model predicted too constant output values
during first tests with this data set, another variant that is shortened to a subset
of five songs with higher dynamic was added. The selection of the songs is also
given in table A.2. Contrary to the other two data sets, this set contains songs from
different genres.

3.4. Model

Since the target is to analyze whether deep learning can improve stage lighting
automation, the models for beat detection systems and music emotion recognition
described in section 2.3 are a promising starting point. Although both disciplines
are related to stage lighting, the emphasis within this thesis lies on the affinity to
beat detection because the data sets 1 and 2 do not have a correlation with the
emotions of the underlying music.

In addition, the beat is better visible in diagrams and the quality how well light
and beat fit together is expected to be less subjective than emotions. This simplifies
the description in a thesis without audio or video support. Therefore, the proposed
solution is oriented closer towards the beat detection papers out of section 2.3.

1GLPimpression. "GLP Prolight+Sound 2017 Show". www.youtube.com/watch?v=HAFVJAKpzFk
(visited on 10/30/2023).

27

3. Methods

Figure 3.7: Excerpt of the audio input together with the corresponding log-Mel spectrogram
and its positive difference

3.4.1. Feature Extraction

Following the state of the art for deep learning based beat detection systems, the
initial features consists of a log-Mel spectrogram.

The hop length is aligned to the frame rate of the video stream from section 3.3.3
with 25 frames per second. This corresponds to a distance of 40ms between two
frames. Since 40ms lies inside the range of the selection in previous papers, this
is chosen for this thesis while the window length amounts to 46.4ms. Although this
is a common choice by itself, the combination with a hop length of 40ms leads to
only minimal overlapping between the windows of individual samples which was
not seen in the other papers. However, a short window length promises faster
responsiveness in a live scenario so this approach is pursued.

Due to the smaller sampling frequency of the input data (22.05 kHz instead of
44.1 kHz in the analyzed papers), also the frequency range is reduced to 30Hz -
11 kHz. For the number of frequency subbands a midsize value of 80 is tried.

The addition of the positive first order difference of the spectrograms facilitates
the adjustment of the model to short-term events like a drumbeat and doubles the

28

3.4. Model

number of input features to 160. Figure 3.7 shows an example excerpt of the song
with the audio input, the log-Mel spectrogram and its positive difference.

While the values of the log-Mel spectrogram range from -80 dB to 0 dB, the pos-
itive difference contains values between 0 dB to 76 dB. A basic normalization step
increases the values of the log-Mel spectrogram by 80 dB in order to adjust the
value ranges of the two feature categories.

3.4.2. Model Architecture

Inspired by the common approach of the analyzed beat detection systems, a CRNN
forms the base for the lighting automation (pictured in figure 3.8). The architec-
ture promises an appropriate combination for this task: As stated in section 2.1.2,
convolutional layers are the state of the art for image recognition. Interpreting
spectrograms is a similar task: It is of minor importance whether the location of
a maximum is a frequency subband higher or lower. The convolutional layer can
extract the general structure of the spectrogram instead.

The recurrent layer in comparison is predestined for learning the temporal con-
text. It consists of stacked LSTM layers. Following the BeatNet architecture [12],
a 1D max pooling and a linear layer with a ReLU activation function connect the
convolutional and the recurrent layer.

For the final output, another linear layer and a sigmoid activation function fol-
low the recurrent layer. The sigmoid function intrinsically ensures that the output
remains between zero and one, which is the desired range for hue as well as for
brightness.

Dropout layers inserted after the max pool layer and after each LSTM layer except
the last one are supposed to prevent the model from overfitting.

3.4.3. Parameters

The input size of the convolutional layer is determined by the number of input fea-
tures (160). Whereas BeatNet uses a filter size of 10 for processing 272 features,
this is proportionally downscaled and rounded to a filter size of 6. So, the kernel
in the convolutional layer faces a similar frequency range. Cheng et al. [5] inves-
tigated explicitly the optimal filter size where 7 was a good compromise for 216
features over different data sets. Downscaled to 160 features, it would result in a
theoretical filter size of 5.18. Although it has limited expressiveness due to differ-
ences in the feature extraction process and the use for four convolutional layers, it
indicates at least that 6 is a reasonable choice.

The stride is set to one and since there is no benefit of keeping the original
dimensions in this application, the convolutional layer is employed without padding.
The following max pool layer with kernel size 2 is adopted from BeatNet again. The

29

3. Methods

Figure 3.8: Architecture overview and data dimensionality for an example with two stacked
LSTM layers and a hidden size of 100

linear layer is fully defined by the output dimension of the max pool layer and the
input dimension of the recurrent layer which is set to 160.

Preliminary tests showed that the hidden size of the LSTM, the number of stacked
LSTM layers as well as the dropout rate drastically influence the behavior. There-
fore, all three are chosen as hyperparameters to be optimized.

3.5. Performance Metrics

Performance metrics are a prerequisite for the training process described in section
3.6. Without a loss function, back propagation would be impossible. In regression
problems, the straightforward approach is to measure the difference between ex-
pected output 𝑦 and the prediction 𝑓 (𝑥). According to Wang et al. [42], one of the
most common loss functions for these problems is the square loss

𝐿 (𝑦, 𝑓 (𝑥)) = (𝑦 − 𝑓 (𝑥))2 (3.2)

which is also called the L2 loss.
Additional metrics support the evaluation of the final result: The loss function

might not be able to represent the quality of the output regarding all aspects. The
additional metrics can then be used to compare the results after the learning pro-
cess. Those additional metrics have an increased importance in this application
because the loss function itself contains hyperparameters. So, comparing the loss

30

3.5. Performance Metrics

at the end of the training process of models trained with different hyperparameters
would not unveil which model does the best.

3.5.1. Loss Function

Directly feeding hue and brightness into the L2 loss might lead to undesired be-
havior: For example, there is not a single correct hue at a certain point in time.
Although Hsiao et al. [15] suggest to choose the color depending on the emotion
and the genre of the song, the results of the paper showed that the correlation is
rather limited.

Sometimes, a change of the color from red to yellow in the correct moment
might be almost as good as a change from green to blue in the ground truth. There-
fore, the solution proposed in this thesis is to add the first order difference of hue
and brightness together with their absolute values as input for the loss function.
So the model tries to output the correct color and brightness values, but it is also
rewarded if it predicts a change of hue and brightness correctly. To understand the
effect of the absolute and the relative part of the loss function, they are weighted
and the ratio between them are changed as hyperparameters.

While the first order difference of the brightness is calculated the standard way
by subtracting two consecutive values, the circular nature of hue has to be con-
sidered: The hue values zero and one represent the same color. Therefore, the
distances are calculated clockwise and anticlockwise and the minimum of both is
regarded as the difference between the two hue values.

Another issue observed during preliminary tests is the side effect between hue
and value: According to the definition in 2.1.4, hue is zero when the red, green
and blue components are equal. Figure 3.3 shows such an example. At 0.75 s into
the segment, a blue light is pulsing and as soon the brightness reaches 0, the hue
follows. This would correspond to a red light although the light never shines red
in this example. When displaying the state of the light, this has no effect since the
light is not shining and it does not matter which theoretical hue value is assigned
to it in this moment.

However, when using the hue value in the loss function, this behavior induces
unjustified hue changes. The model shall not learn a transition between blue and
red in the example above. In order to avoid concept changes like a different color
representation, an added mask prevents the model from learning the meaningless
hue values. All colors and color differences where the corresponding brightness is
below 0.2 are masked out before the loss function.

3.5.2. Evaluation of the Result

The weights in the loss function prevent a comparison of the quality of the different
models by having a look solely at the validation loss. In addition, the loss function

31

3. Methods

only compares how close prediction and ground truth are in each point in time indi-
vidually. For measuring how well the different moments fit together as a sequence,
another metric is needed.

The challenge when proposing an additional metric is that light shows can be
seen as a form of art where measuring the quality with an objective formula is
always a constrained goal2. Being aware of the limitations, there are still some
indicators that can be used for comparing the results.

Distribution Metrics

Early tests showed that some models tended to produce high frequency flashing
or to have a constant output. In order to sort out those models, two kind of perfor-
mance indicators evaluate the distribution of the output: The standard deviation
of the output and the average of the output’s first order difference.

Tempo Metric

The previous two metrics are universally applicable to all data sets. Since there
should be a light pulse at each beat, Data Set 1 simplifies measuring how well
music and light correspond. So the comparison of the song’s tempo and the tempo
of the light pulses extend the metrics.

The general idea how for example Hsiao et al. [3] estimate the tempo of a song
based on the periodicity of music features works also for the tempo of light pulses.
The autocorrelation function

𝑅𝑣𝑣 (𝜏) =
1

𝑁

𝑁−1∑︁
𝑘=0

𝑣(𝑘)𝑣(𝑘 + 𝜏) (3.3)

of the brightness signal 𝑣 reveals the periodicity of the signal [17]. As the brightness
should have a maximum point with each beat, the location of the maximum of
the auto-correlation function argmax𝑅𝑣𝑣

can be interpreted as a measure of the
detected tempo. It displays how many samples are typically between two light
pulses.

Interpolating the auto-correlation values with a piecewise cubic polynomial be-
fore evaluating the periodicity improves the accuracy because it allows an odd num-
ber of samples as a result. Figure 3.9 shows an example where the maximum of
the interpolation lies between two samples.

2For example, the club Waldschänke Dornheim in Würzburg carried this issue very far: When vis-
iting the club on 9th of July 2023, there was a party with just a single yellow bulb on the whole
floor. It was slowly blinking and at least I didn’t notice any connection to the music. Was this a
high quality lightshow? Since the club was full and people enjoyed the evening, it seems it was
in this situation.

32

3.5. Performance Metrics

Figure 3.9: Extract of brightness signal and the corresponding auto-correlation curve

In addition to the periodicity, the observed tempo of the prediction

𝑡𝑝 = 𝑓𝑣𝑖𝑑𝑒𝑜
60

argmax𝑅𝑣𝑣

(3.4)

in beats per minute (𝑏𝑝𝑚) depends also on the sampling rate 𝑓𝑣𝑖𝑑𝑒𝑜 of the video.
The tempo is computed for each song in the validation data set and compared to

the ground truth. The number of songs with correctly detected tempo is the metric.
A tolerance of ±3 𝑏𝑝𝑚 allows small deviations.

Correlation Metric

When comparing the brightness output of different models trained with Data Set 1,
it becomes visible that the ability to reproduce the output shape of the ground truth
varies. To objectify this observation, the zero-normalized cross-correlation (ZNCC)

𝑅𝑣𝑝𝑣𝑡 (𝜏) =
1

𝑁

𝑁−1∑︁
𝑘=0

1

𝜎𝑝𝜎𝑡

(𝑣𝑝 (𝑘) − `𝑝) (𝑣𝑡 (𝑘 + 𝜏) − `𝑡) (3.5)

between the brightness signals of the prediction (𝑣𝑝) and of the ground truth (𝑣𝑡) is
calculated where ` is the average of the corresponding signal and 𝜎 the standard
deviation. The output of the ZNCC lies between -1 and 1 in which 1 expresses
the maximum correlation. For every segment of 10 sec, the maximum correlation
is retrieved and the average over all segments in the validation data embodies the
metric.

Examples

The predictions of two example models illustrate how the metrics correlate with the
actual output of the lights and support that way the interpretation of the results in

33

3. Methods

(a) Model with a standard deviation of 0.27 and a tempo metric of 50 %

(b) Model with a standard deviation of 0.46 and a tempo metric of 40 %

Figure 3.10: Example predictions (Pred.) of two models, together with the ground truth
(GT), for visualizing the relation between output and metrics

chapter 4. The behavior is not homogeneous through the whole data set, but the
two song segments from figure 3.2 cover a snippet with a very obvious beat and a
calm passage in order to give a general impression.

While the first model from figure 3.10a achieves a tempo metric of 50 %, which is
10 percent points above the score of the second one from figure 3.10b, it is the other
way round for the standard deviation and the average difference: The output of the
second model has a standard deviation of 0.46 which is 8 % below the ground truth
in Data Set 1 (0.5). The average difference amounts to 0.19 (ground truth: 0.192).
In comparison, the standard deviation (0.27) and the average difference (0.11) of
the first model are reduced by ≈ 40 %. For those two examples, the correlation
metric equals each other (0.5).

34

3.6. Training Process

3.6. Training Process

The implementation of the training process and the model itself use the Python
library PyTorch [33]. As an optimizer, the PyTorch realization of the resilient back-
propagation algorithm Rprop is chosen. Details of the optimiser can be found for
example in the work of Mushgil et al. [30]. The training lasts 150 epochs with a
learning rate of 1 × 10−3.

3.6.1. Sequencing

As pointed out in section 2.1.1, the needed sequence length for the truncated back-
propagation through time differs between applications. For analyzing its influence,
the sequence length is also varied during the hyperparameter grid search. How-
ever, the model receives the whole input as a single sequence during the validation
and test process. This represents the way the module is also employed during in-
ference.

3.6.2. Split between Training, Validation and Test Data

Unlike typical machine learning tasks, the sequences of the data set cannot be di-
vided randomly into training, validation and test data. The sequences which belong
to the same song can share similarities. So assigning one of these sequences to
the training data and one to the validation data would cause information leakage.
As a countermeasure, the selection happens on song level so that all sequences
of one song are assigned to either training, validation or test data.

The songs for the Data Sets 1 and 2 divide up into three splits: Split a) and b)
include 20 songs each and they are assigned to the training or validation data in a
2-fold cross validation process. Ten songs remain for the test data set. Table A.1
lists the allocation of the songs to the different splits while figure 3.11 shows that
each split contains songs with varying tempo.

Data Set 3 is only used for training while the validation is done with the songs
from split b) of the previous data sets. This enables a better comparison across
the data sets.

3.6.3. Hyperparameter Grid Search

Due to the number of hyperparameters and the time constraints in this thesis, not
every combination could be tested. Instead, an initial hyperparameter grid search
varies four of the parameters where an influence on overfitting is assumed before
a separate run varies the weight ratios in the loss function.

35

3. Methods

Figure 3.11: Comparison of the tempo distribution across the different splits

Basic Setup

On the one hand, the parameters hidden size and number of stacked layers deter-
mine the model’s complexity so that a high influence on overfitting is likely. On the
other hand, the dropout rate reduces overfitting and the sequence length affects
the training process in general.

Each parameter is set to three different values while the weight ratio in the loss
function is constantly balanced for this grid search:

Parameter Variations
Hidden Size 50 100 150
Layers 1 2 3
Dropout 0 0.1 0.3
Sequence Length 25 250 750

Table 3.1.: Variations during hyperparameter grid search for basic setup

Figure 3.12 displays the resulting variation in model complexity by reference to
the number of trainable parameters.

36

3.6. Training Process

Figure 3.12: Number of trainable parameters depending on hidden size and number of
stacked LSTM layers

Weighted Loss Function

After consolidating the first four parameters to the values that performed best during
the previous grid search, different weights of the loss function shall reveal whether
another ratio between the absolute and the relative component of the loss function
improves the results. The following weight ratios are tried:

Parameter Variations
Weight Ratio 0/1 1/100 1/10 1/1 10/1 100/1 1/0

Table 3.2.: Weight ratios between absolute and relative component during second hyper-
parameter variation

Thus, the search covers the extreme options of taking only the absolute or the
relative component into account, as well as five combinations with different priori-
ties.

Due to the constant hue in Data Set 1, the model predicts the correct value
quickly so that it does not affect the loss afterwards. With Data Set 2 in contrast,
the model adopts to two different outputs throughout the training process. Hence,
the weight ratio between the brightness and the hue component of the loss function
is altered in the same range as above.

3.6.4. Baseline

One potential flaw regarding the tempo metric is a model that learns the typical
tempo of the training data and flashes the light with a constant frequency, indepen-
dently from the currently played music. A simple comparison helps detecting such
a behavior: The baseline model turns on the light with a constant frequency, either
the mean or the average tempo of the songs from the training data. The number

37

3. Methods

of songs where this behavior is accepted as correct depends on the tempo dis-
tribution in the validation data and the tolerance of the tempo metric described in
section 3.5.2.

38

4. Results

4.1. Training Process

4.1.1. Development over the Epochs

An initial analysis of the training process with one combination of hyperparameters
helps to interpret the further results. Choosing the median option of each parameter
(hidden size=100, layers=2, dropout=0.1, sequence length=250, equal weights in
loss function) for the test increases the chance that the results give an indication
for the whole hyperparameter grid search.

Figure 4.1 shows two examples of repeated training processes with those param-
eters and training on Data Set 1. While the cross validation split a) represents the
base for training, the validation utilizes split b). The first five epochs reduce the loss
for the training and for the validation split in both repetitions equally. In a second
phase of about 10 to 25 epochs, the loss stays constant, before the curves sepa-
rate in the third phase. Here, the training loss decreases in both cases whereas it
is almost stable or even increasing on the two validation splits. Run 1 leads to a
lower training loss and causes the higher validation loss at the same time.

Although this is a sign for overfitting, the correlation metric and the standard
deviation also improve for the validation split in this phase before they reach a
plateau.

4.1.2. Reproducibility

The two exemplary training processes point to limited reproducibility of the metrics.
Extending the analysis to 60 repetitions provides further insights into the expres-
siveness of the metrics. For these 60 runs, the 2-fold cross validation is used to
visualize dependencies on the splits of the data set, too. Figure 4.2 shows the
distribution of the four metrics for the validation data. Compared to the variation
within models trained on split a) or b), the differences between the two groups are
rather small.

However, the number of outliers creates a challenge for further comparisons. A
possible approach for a practical application would be to train several models with
the same parameters and use the one that embodies the best compromise between
the metrics. Since understanding the general influence of design decisions on the
behavior of the model is of higher interest in this thesis, the data is smoothed with

39

4. Results

Figure 4.1: Development of loss, standard deviation and correlation metric for two example
training processes with the same hyperparameters

the median for the following evaluations: After six training processes (three on each
split), the median value of these six runs represents the final metric.

The smoothed metrics still contain a certain variation. This is simulated by group-
ing the 60 runs from before into 10 chunks of six values each. The figure 4.2 also
shows the distribution of the median values of each chunk.

The smoothing process halves the variation approximately: While the relative
standard deviation varies between 4.8% (correlation metric, trained on split a) and
21% (average difference, trained on split b) in the raw data, this range is reduced to
2.3% and 10.8%. A further reduction of the noise in the data by more runs would
be beneficial but increases the execution time. Therefore, the median over six runs
is kept as a compromise and the remaining uncertainty has to be considered when
interpreting the results.

4.1.3. Execution Time

The execution time for a single training process out of the basic hyperparameter
grid search fluctuates between 50 s and 269 s on an Intel Core i7-13700 processor.
Figure 4.3 compares the influence of the hyperparameters on the time needed for
the training process.

The dropout parameter has only minimal impact on the needed time. Concerning
the sequence length, the optimum within this grid search lies at 250 steps. The
hidden size and the number of layers influence the duration in the same way: As

40

4.2. Hyperparameter Grid Search

Figure 4.2: Boxplot diagrams of the four metrics with 60 runs trained either on split a) or
b) in comparison to the distribution of the smoothed data

Figure 4.3: Average execution time for the different hyperparameters

expected, an increased number of trainable parameters also extends the execution
time.

4.2. Hyperparameter Grid Search

4.2.1. Basic Setup

Tempo Metric

Figure 4.4 depicts how the four different hyperparameters impact the tempo metric.
In general, dropout improves this value. A dropout of 0.3 with three layers, a hidden
size of 100 and 25 as sequence length generates the highest score. The model

41

4. Results

Figure 4.4: Influence of the four hyperparameters on the tempo metric

detects the tempo of 14 out of the 20 songs correctly which leads to a tempo metric
of 70%.

The influence of higher model complexity on this metric is limited. For example,
with a dropout of 0.1 and a sequence length of 25 steps, the metric varies only
between 52% and 60% for the different model configurations. Assuming the un-
derlying distribution is the same as during the reproducibility test in section 4.1.2,
the results are within 2.4 standard deviations. There is also no unique picture which
of the model configurations inside each of the subplots in figure 4.4 is the best.

However, a clear influence of the model architecture is visible when training the
model without dropout. In this case, a single LSTM layer (average tempo metric:
51%) performs better than two or three with an average of 39%.

The simple baseline model that outputs light pulses with the frequency of the
median tempo of the training data achieves between 25% when trained on split a)
and validated on split b) and 5% the other way round. If the median is replaced
with the average value, the metric decreases to 10 - 5%.

42

4.2. Hyperparameter Grid Search

Figure 4.5: Influence of the four hyperparameters on the correlation metric

Correlation Metric

In contrast, the correlation metric in figure 4.5 benefits from a higher model com-
plexity. While the score of models with a hidden size of 50 and a single LSTM
layer varies between 0.36 and 0.44, the maximum for a dropout/sequence length
combination is always achieved with two or three layers and a hidden size of at
least 100. With such a higher model complexity, the maximum score ranges from
0.5 to 0.58.

Standard Deviation

The standard deviation predominantly improves with more complex models, too.
For example, the average score is 0.24 when the hidden size is set to 50, whereas
the average of all models with a hidden size of 100 or 150 is 0.3. In addition, the
dropout rate has a high influence on the metric and causes a target conflict with
the tempo metric: Without dropout, the average is 0.38 and the best value 0.47

43

4. Results

Figure 4.6: Influence of the four hyperparameters on the standard deviation

which equals almost the standard deviation of the ground truth (0.5). The average
decreases for the tries with dropout to 0.23 and also the highest value of the group
with dropout (0.31) is only slightly better than the worst result without dropout (0.27).

To put it into perspective: The orange cells in figure 4.6 that contain values less
than 0.25 correspond to models that produce less than half of the standard devia-
tion that is expected.

Correlation between Metrics

A separate figure for the average difference is omitted because this metric cor-
relates strongly with the standard deviation, as visualized in figure 4.7. So this
metric provides no information gain at least for this model architecture trained on
Data Set 1. The figure also shows the correlation between the standard deviation
and the tempo metric. It confirms the trade-off between the two metrics observed
before.

44

4.2. Hyperparameter Grid Search

Figure 4.7: Correlation between the standard deviation and the average difference (left
subplot), respectively the tempo metric (right subplot)

4.2.2. Weighted Loss Function

The goal of varied weights in the loss function is to find out, whether different
weights are capable of solving the target conflict observed in section 4.2.1. There-
fore, it is carried out twice: Once with parameters that led previously to a good score
in the tempo metric and once for an example with a high value for the standard
deviation. The two combinations that embody the starting points for this second
hyperparameter search are listed in table 4.1.

Parameters Combination a):
High Tempo Metric

Combination b): High
Standard Deviation

Hidden Size 150 150
Layers 3 3
Sequence Length 25 250
Dropout 0.3 0

Table 4.1.: Starting points for second hyperparameter search

The results in figures 4.8 reveal little influence of the weight ratio in the loss
function. Only the standard deviation improves with higher weights for the relative
component of the loss function. A loss function that evaluates only the change of
the brightness between the samples achieves the best score in both configurations.
The higher importance of this improvement holds for the configuration in figure 4.8a
which had a low standard deviation in the grid search. However, the effect is limited
in this case, adding only a margin of 0.02 when comparing the balanced weight
function and the one with only relative loss.

Although the tempo metric shows lower values for the loss functions with only

45

4. Results

(a) Starting point: High tempo metric

(b) Starting point: High standard deviation

Figure 4.8: Influence of the weight ratio between the absolute and relative components in
the loss function on the three metrics

46

4.3. Evaluation with Data Set 2

Figure 4.9: Comparison between validation and test results

a relative component compared to the others, there is no clear influence on the
tempo nor on the correlation metric visible.

4.2.3. Test Results

The analysis in section 4.2.2 depicts that a different weight ratio in the loss func-
tion is not able to resolve the target conflict between the metrics observed in basic
hyperparameter grid search in section 4.2.1. Nevertheless, a higher prioritization
of the relative component in the loss function turned out to be slightly beneficial.
Therefore, the decision is to continue with ten times higher weights on the relative
loss component. The combination a) from table 4.1 is selected for the other hy-
perparameters because it is more promising for future developments to add a post
processing step that improves the standard deviation instead of the tempo metric.

For a better comparability with the validation results, the test data set is employed
on all six models trained in section 4.2.2 with these parameters. The metric consists
again of the median value of the six single results.

Figure 4.9 displays that the performance on the test data set does not meet the
results on the validation data for the standard deviation (-13%) and the correlation
metric (-11%). The tempo metric stays almost constant (+4%).

4.3. Evaluation with Data Set 2

Besides a different signal form for the brightness (saw tooth instead of rectangular),
Data Set 2 also brings in color changes.

When trying the model configuration from 4.2.3 with the same parameters on
Data Set 2, the training process fails. The training loss is only reduced by 1.5% and
the output is almost constant. In this data set, the standard deviation of the color

47

4. Results

Figure 4.10: The effect of dropout and the sequence length on the standard deviation of
brightness and hue

is 7.7 times less during validation than in the ground truth and for the brightness,
the factor is 3.7.

4.3.1. Basic Setup

A repetition of parts of the hyperparameter grid search clarifies whether different
parameters solve the issue. Since the models with higher complexity were ben-
eficial in most cases for Data Set 1 and especially for the standard deviation, the
hidden size stays 150 with three LSTM layers throughout this search.

The color scheme of figure 4.10 is adapted to the ground truth of Data Set 2
(0.29 for brightness and 0.09 for hue). The results for the hue distribution are
low for all models during this grid search. For the models trained with dropout,
this also applies to the brightness. Without dropout, the metric improves with a
declining sequence length. The best score is achieved with a sequence length of
25. However, the previous results from Data Set 1 in section 4.2.1 revealed that
the combination of high model complexity, no dropout and a sequence length of 25
tends to detect an incorrect beat. Therefore, the sequence length is set to 250 for
an additional variation of the weights in the loss function.

4.3.2. Weighted Loss Function

Since the model also needs to learn changes of the hue in Data Set 2, the weight
ratio between hue and brightness in the loss function are altered for this data set.
As a result, figure 4.11 exposes a cross effect between brightness and hue: The
standard deviation of the hue is above 0.06 if the hue component in the loss function
is prioritized by the factor 10 or more. At the same time, these conditions lead to a
low standard deviation for the brightness.

48

4.4. Evaluation with Data Set 3

Figure 4.11: Influence of the weight ratio between the hue and brightness components in
the loss function

The approach to overcome this dilemma is to train two models individually: The
first with a loss function that only takes the brightness into account and the second
the other way round. During inference, both variants are combined again.

The example output in figure 4.12 shows how the combined solution behaves.
The brightness curve forms the sawtooth profile and also the hue changes between
blue, turquoise and purple. In case of the segment with the strong beat, the tem-
poral sequence of the different colors is roughly matching the ground truth but the
brightness does not employ the full value range. Moreover, the frequency of the
changes does not fit to the ground truth.

The distribution of the combined model’s output is similar across the data sets:
The standard deviation for brightness and hue varies only by 2% between the
validation and test data sets.

4.4. Evaluation with Data Set 3

The target of the following section is to give a first impression on how the approach
with two independent models for brightness and hue behaves when the training
takes place on Data Set 3.

When using Data Set 3 as it is, the model predicts almost constant values. In
this case, one reason is that there is little variance in the lights for some songs of
the data set. Excluding those songs from the data set enhanced the behavior.

A closer comparison of the two variations of the training data in figure 4.13 ex-
hibits that the distribution of hue and brightness is still similar for both variants.
Therefore, the standard deviation of the brightness is almost equal (0.26 vs. 0.27)

49

4. Results

Figure 4.12: Example output for Data Set 2 with two models that predict either brightness
or hue independently from each other

and the one for the hue is only slightly increased from 0.26 to 0.32. However, the
average difference increases by a factor of 1.8 (brightness), respectively 3 (hue)
when using the shortened list.

Figure 4.14 displays the example output for a model combination that is trained
on the shortened Data Set 3. The relationship to the music is difficult to distinguish
and requires further research. In addition, the brightness equals zero for about
1.5 s at the beginning of the calm segment.

50

4.4. Evaluation with Data Set 3

Figure 4.13: Distribution of brightness and hue in the ground truth of the complete Data
Set 3 and the shortened variant

Figure 4.14: Example output for two models trained on Data Set 3 that predict either bright-
ness or hue independently from each other

51

5. Discussion

The results showed that deep learning proposals intended for beat detection are a
promising approach for sound-to-light automation, too. By learning a direct depen-
dency between low level music features and the lighting output, an intermediate
estimation of emotions is not necessary. This direct prediction offers the potential
of a closer relationship between dynamic changes in the audio input and the lights.

Nevertheless, when only focusing on the current output, a light show with a simi-
lar quality could probably be retrieved using classic algorithms with a fraction of the
effort. The analysis revealed several limitations that need to be addressed before
it can compete with the light shows people are used to on small events these days.

5.1. Research Question 1 – Data Sets

Three different data sets were created during this thesis and all gave new insights
concerning sound-to-light automation in a certain phase of the project. Especially
the stepwise evolution of the model due to the different data sets turned out as an
advantage. However, the experiences varied across data sets.

5.1.1. Data Set 1

The simple structure of Data Set 1 was predestined for debugging purposes at the
beginning of the project. The deterministic behavior allowed clear expectations of
the predictions and facilitated that way the detection of programming errors. Re-
ducing the complexity with the choice of brightness as the only relevant output
turned out as an advantage for that, too. Multiple issues can lead to situations
where solving one problem does not improve the overall performance. Setting up
the infrastructure would have been more demanding with the additional side-effects
between hue and brightness observed with Data Set 2.

So for fundamental changes of the model, the first tests should be carried out
with this data set again.

5.1.2. Data Set 2

Data Set 2 was an appropriate second step after the general setup with Data Set 1
and demonstrated that predicting hue and brightness at the same time, is an addi-
tional challenge. Until now, the work with this data set was limited to increasing the

53

5. Discussion

standard deviation as a first necessary step. For further improvement of the model,
optimizing the other metrics on this data set is expected to be the most important.

5.1.3. Data Set 3

Although still not suitable for practical application, the models trained on Data Set 3
made the impression to be closer to this target than the models trained on the other
data sets. This is mainly due to the variety of colors in Data Set 2 compared to the
other two.

It turned out that only a fraction of light show videos is valuable for the parsing
approach proposed in this thesis. The method of parsing the input does not detect
when two adjacent fixtures within one segment pulse alternating with the same
color. It returns a constant output instead. The same holds for the beam of a moving
head that oscillates with the beat of the music but stays in the same segment. That
way, information necessary for a close correlation between sound and light gets
lost.

Removing songs with a very constant light output improved the behavior, but it is
rather a workaround. A better approach would be to create traces of a professional
light show with the DMX512 logger directly.

5.2. Research Question 2 – Model

The chosen CRNN architecture was capable of producing output with a good result
either for the tempo metric or for the standard deviation, mainly depending on the
dropout rate. Solving this conflict should be the first step for further research. A
potential approach for an increased standard deviation would be a different acti-
vation function or a postprocessing step that amplifies the changes of the output.
Regarding the other hyperparameters, the model showed a certain robustness as
long as the complexity was sufficiently high (two or three layers with a hidden size
of 100 or 150). There is not a specific choice that works while a slight modification
brings the learning process to fail.

Data Set 2 highlighted the difficulties of predicting two separate outputs with the
different temporal behavior: The brightness pattern repeated at each beat, whereas
a complete cycle for hue lasted four beat events. The solution with training two
models individually leads to the disadvantage of models not interacting with each
other: Effects like a change in color for every light pulse will not be synchronized
when hue and brightness are predicted by independent models.

All in all, it was already more complicated than expected to make a CRNN out-
put acceptable distributions. It is worth a try to increase the training data and the
model’s complexity by an order of magnitude for example. Especially the decision
for the structure of the convolutional layer was based on previous research in the

54

5.3. Research Question 3 – Loss Function and Metrics

beat detecting field. Since the hyperparameter grid search of this thesis focused on
the recurrent layer, a potential optimization is to analyze the effect of more filters or
a deeper structure of the convolutional layer in order to improve the interpretation
of the music features.

Depending on the results, other deep learning architectures for time series fore-
casting, such as temporal fusion transformers, should be taken into account as an
alternative to the stacked LSTMs used in this thesis.

5.3. Research Question 3 – Loss Function and Metrics

The loss function made the model learn the general structure of Data Set 1. How-
ever, a loss function where the validation loss increases, although other metrics
display that the quality of the validation predictions is still improving, does not fulfill
a typical expectation within machine learning. One idea for further development
would be to add parts of the performance metrics in the loss function additionally.

Those four performance metrics fulfilled their task: The behavior observed
during example runs matched the messages of the metrics (e.g. figures 3.10a and
3.10b). Therefore, the subjective impression became measurable in an objective
form and allowed the comparison of many hyperparameters combination without
watching and grading hours of light shows. During this thesis, the tempo metric
and the standard deviation provided more insights than the average difference or
the correlation metric.

As soon as the model improves so that the proposed metrics reach a state of
saturation, new metrics would be needed for quantifying changes in the quality.
This could be for example the color distribution during a song segment. If a light
show alternates between two different colors, it would be good if a change to the
next two colors is aligned to the boundary of the song segment. However, such a
metric is only helpful if the predictions step up a level.

55

Bibliography

[1] S. Albawi, T. A. Mohammed, and S. Al-Zawi. “Understanding of a convolu-
tional neural network”. In: 2017 International Conference on Engineering and
Technology (ICET). 2017, pp. 1–6.

[2] F. Alias, J. C. Socoró, and X. Sevillano. “A review of physical and perceptual
feature extraction techniques for speech, music and environmental sounds”.
In: Applied Sciences 6(5) (2016), p. 143.

[3] S. Böck and M. Schedl. “Enhanced Beat Tracking with Context-Aware Neural
Networks”. In: Proceedings of the 14th International Conference on Digital
Audio Effects (DAFx-11). 2011.

[4] R. Chen, M. Wang, and Y. Lai. “Analysis of the role and robustness of artifi-
cial intelligence in commodity image recognition under deep learning neural
network”. In: PLoS ONE 15(7) (2020).

[5] T. Cheng, S. Fukayama, and M. Goto. “Joint Beat and Downbeat Track-
ing Based on CRNN Models and a Comparison of Using Different Context
Ranges in Convolutional Layers”. In: Proceedings of the International Com-
puter Music Conference (ICMC) (2021).

[6] Desktop lighting control software for creating and performing lightshows.
inMusic Brands. 2023. url: https : / / www . soundswitch . com /
software (visited on 10/30/2023).

[7] D. P. Ellis. “Beat Tracking by Dynamic Programming”. In: Journal of New Mu-
sic Research 36(1) (2007), pp. 51–60.

[8] eurolite DMX LED EASY Operator Deluxe - User Manual. Steinigke
Showtechnic. 2018. url: https://www.steinigke.de/download/
70064574-Manual-116621-1.000-eurolite-dmx-led-easy-
operator-deluxe-de_en.pdf (visited on 10/30/2023).

[9] grandMA3 User Manual. MA Lighting International. 2023. url: https://
help2.malighting.com/Page/grandMA3/grandMA3/en/1.9
(visited on 10/30/2023).

[10] D. J. Hermes. The Perceptual Structure of Sound. Springer Nature, 2023.
[11] H. Hewamalage, C. Bergmeir, and K. Bandara. “Recurrent Neural Networks

for Time Series Forecasting: Current status and future directions”. In: Inter-
national Journal of Forecasting 37(1) (2021), pp. 388–427.

57

https://www.soundswitch.com/software
https://www.soundswitch.com/software
https://www.steinigke.de/download/70064574-Manual-116621-1.000-eurolite-dmx-led-easy-operator-deluxe-de_en.pdf
https://www.steinigke.de/download/70064574-Manual-116621-1.000-eurolite-dmx-led-easy-operator-deluxe-de_en.pdf
https://www.steinigke.de/download/70064574-Manual-116621-1.000-eurolite-dmx-led-easy-operator-deluxe-de_en.pdf
https://help2.malighting.com/Page/grandMA3/grandMA3/en/1.9
https://help2.malighting.com/Page/grandMA3/grandMA3/en/1.9

Bibliography

[12] M. Heydari, F. Cwitkowitz, and Z. Duan. “BeatNet: CRNN and Particle Fil-
tering for Online Joint Beat Downbeat and Meter Tracking”. In: International
Society for Music Information Retrieval (2021).

[13] S. Hizlisoy, S. Yildirim, and Z. Tufekci. “Music emotion recognition using con-
volutional long short term memory deep neural networks”. In: Engineering
Science and Technology, an International Journal 24(3) (2021), pp. 760–
767.

[14] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9(8) (1997), pp. 1735–1780.

[15] S.-W. Hsiao, S.-K. Chen, and C.-H. Lee. “Methodology for stage lighting con-
trol based on music emotions”. In: Information Sciences 412-413 (2017),
pp. 14–35.

[16] S. Hwangbo, S.-Y. Chun, S.-Y. Gang, and C.-S. Lee. “Lighting Control using
Frequency Analysis of Music”. In: Journal of Korea Multimedia Society 16
(2013).

[17] R. Isermann and M. Münchhof. Identification of Dynamic Systems. Springer
Berlin, Heidelberg, 2010.

[18] A. Khodabakhsh, I. Ari, M. Bakır, and S. M. Alagoz. “Forecasting multivari-
ate time-series data using LSTM and mini-batches”. In: Data Science: From
Research to Application. Springer. 2020, pp. 121–129.

[19] K. Kroening. ffmpeg-python. url: https://github.com/kkroening/
ffmpeg-python (visited on 10/30/2023).

[20] C.-C. J. Kuo. “Understanding convolutional neural networks with a mathe-
matical model”. In: Journal of Visual Communication and Image Represen-
tation 41 (2016), pp. 406–413.

[21] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou. “A Survey of Convolutional Neu-
ral Networks: Analysis, Applications, and Prospects”. In: IEEE Transactions
on Neural Networks and Learning Systems 33(12) (2022), pp. 6999–7019.

[22] R. Liao, Y. Xiong, E. Fetaya, L. Zhang, K. Yoon, X. Pitkow, R. Urtasun, and R.
Zemel. “Reviving and Improving Recurrent Back-Propagation”. In: Proceed-
ings of the 35th International Conference on Machine Learning. Ed. by J. Dy
and A. Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR,
2018, pp. 3082–3091.

[23] M. Loesdau, S. Chabrier, and A. Gabillon. “Hue and Saturation in the RGB
Color Space”. In: Image and Signal Processing. Springer International Pub-
lishing, 2014, pp. 203–212.

58

https://github.com/kkroening/ffmpeg-python
https://github.com/kkroening/ffmpeg-python

Bibliography

[24] N. Loi, KimDonglim, and LimYounghwan. “Emotion-based music visualiza-
tion using LED lighting control system”. In: Journal of Korea Game Society
17(3) (June 2017), pp. 45–52.

[25] J. T. Love, M. Singh Benning, A. Elliot, J. Leben, and G. Odowichuk. System
and method for predictive generation of visual sequences. LIMBIC MEDIA
CORPORATION, U.S. Patent 10,319,395 B2, 2019.

[26] E. P. MatthewDavies and S. Böck. “Temporal convolutional networks for mu-
sical audio beat tracking”. In: 2019 27th European Signal Processing Con-
ference (EUSIPCO). 2019, pp. 1–5.

[27] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, and O.
Nieto. “librosa: Audio and music signal analysis in python”. In: Proceedings
of the 14th python in science conference. Vol. 8. 2015.

[28] A. Meghanani, A. C. S., and A. G. Ramakrishnan. “An Exploration of Log-
Mel Spectrogram and MFCC Features for Alzheimer’s Dementia Recognition
from Spontaneous Speech”. In: 2021 IEEE Spoken Language Technology
Workshop (SLT). 2021, pp. 670–677.

[29] T. C. Mills. Time series techniques for economists. Cambridge University
Press, 1990.

[30] H. M. Mushgil, H. A. Alani, and L. E. George. “Comparison between resilient
and standard back propagation algorithms efficiency in pattern recognition”.
In: International Journal of Scientific & Engineering Research 6(3) (2015),
pp. 773–778.

[31] S. Newton. “Art-Net and Wireless Routers”. In: Asia-Pacific Conference on
Communications. 2005, pp. 857–861.

[32] F. Nouvel, S. Aing, T. Beyou, T. Chea, P. Cauchois-Guiheneuf, F. Millet, and
T. Thomas. “Wireless music controlled leds: MUSIC COLORZ”. In: 4th Euro-
pean Education and Research Conference (EDERC 2010). 2010, pp. 106–
110.

[33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S.
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32. 2019,
pp. 8024–8035.

[34] N. Patil, R. M. Yadahalli, and J. Pujari. “Comparison between HSV and YCbCr
Color Model Color-Texture based Classification of the Food Grains”. In: In-
ternational Journal of Computers and Applications 34 (2011).

[35] K. J. Peacock. “Instruments to Perform Color-Music: Two Centuries of Tech-
nological Experimentation”. In: Leonardo 21 (2017), pp. 397–406.

59

Bibliography

[36] Y. Ri. PyDMX. url: https://github.com/YoshiRi/PyDMX (visited
on 10/30/2023).

[37] A. R. Smith. “Color Gamut Transform Pairs”. In: SIGGRAPH Comput. Graph.
12(3) (1978), pp. 12–19.

[38] R. C. Staudemeyer and E. R. Morris. “Understanding LSTM – a tutorial
into long short-term memory recurrent neural networks”. In: arXiv preprint
arXiv:1909.09586 (2019).

[39] S. S. Stevens, J. Volkmann, and E. B. Newman. “A scale for the measure-
ment of the psychological magnitude pitch”. In: The journal of the acoustical
society of america 8(3) (1937), pp. 185–190.

[40] R. E. Thayer. The Biopsychology of Mood and Arousal. Oxford University
Press USA, 1989.

[41] R. Vogl, M. Dorfer, G. Widmer, and P. Knees. “Drum Transcription via Joint
Beat and Drum Modeling Using Convolutional Recurrent Neural Networks”.
In: Proceedings of the 18th International Society for Music Information Re-
trieval Conference. Ed. by S. J. Cunningham, Z. Duan, X. Hu, and D. Turnbull.
2017, pp. 150–157.

[42] Q. Wang, Y. Ma, K. Zhao, and Y. Tian. “A comprehensive survey of loss
functions in machine learning”. In: Annals of Data Science (2020), pp. 1–26.

[43] Z. J. Wang, R. Turko, O. Shaikh, H. Park, N. Das, F. Hohman, M. Kahng, and
D. H. Polo Chau. “CNN Explainer: Learning Convolutional Neural Networks
with Interactive Visualization”. In: IEEE Transactions on Visualization and
Computer Graphics 27(2) (2021), pp. 1396–1406.

[44] R. J. Williams and J. Peng. “An Efficient Gradient-Based Algorithm for On-
Line Training of Recurrent Network Trajectories”. In: Neural Computation 2(4)
(1990), pp. 490–501.

[45] Y. Xu, Q. Kong, W. Wang, and M. D. Plumbley. “Large-Scale Weakly Super-
vised Audio Classification Using Gated Convolutional Neural Network”. In:
2018 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP). 2018, pp. 121–125.

[46] h. Yang, Y.-F. Su, Y.-C. Lin, and H. Chen. “Music emotion recognition: The
role of individuality”. In: Proceedings of the ACM International Multimedia
Conference and Exhibition (2007), pp. 13–22.

[47] A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into Deep Learning. Cam-
bridge University Press, 2023.

60

https://github.com/YoshiRi/PyDMX

List of Figures

2.1. Representation of LSTM architecture by Zhang et al. [47] 12
2.2. Comparison of RGB (A) and HSV color space (B) by Chen et al. [4] 14
2.3. Visualization of the Thayer emotion plane by Yang et al. [46] 16
2.4. Results of Hsiao et al. [15]: Selected hue depending on genre and

emotion . 17

3.1. Example of Data Set 1 output . 23
3.2. Comparison of song extracts with different difficulty for beat detec-

tion: ’When You’re Lonely’ from VIZE and Emma Steinbakken and
’Fly so High’ from Zombic, Rocco and Steve 80 24

3.3. Example of Data Set 2 output . 25
3.4. Splitting and filtering of a video frame 26
3.5. Hue selection for filtered segment of figure 3.4 26
3.6. Example of Data Set 3 output for an extract of the song ’Good Times

Roll’ from Big Gigantic and GRiZ 27
3.7. Excerpt of the audio input together with the corresponding log-Mel

spectrogram and its positive difference 28
3.8. Architecture overview and data dimensionality for an example with

two stacked LSTM layers and a hidden size of 100 30
3.9. Extract of brightness signal and the corresponding auto-correlation

curve . 33
3.10.Example predictions (Pred.) of two models, together with the ground

truth (GT), for visualizing the relation between output and metrics . 34
3.11.Comparison of the tempo distribution across the different splits . . . 36
3.12.Number of trainable parameters depending on hidden size and num-

ber of stacked LSTM layers . 37

4.1. Development of loss, standard deviation and correlation metric for
two example training processes with the same hyperparameters . . 40

4.2. Boxplot diagrams of the four metrics with 60 runs trained either on
split a) or b) in comparison to the distribution of the smoothed data . 41

4.3. Average execution time for the different hyperparameters 41
4.4. Influence of the four hyperparameters on the tempo metric 42
4.5. Influence of the four hyperparameters on the correlation metric . . . 43
4.6. Influence of the four hyperparameters on the standard deviation . . 44

61

List of Figures

4.7. Correlation between the standard deviation and the average differ-
ence (left subplot), respectively the tempo metric (right subplot) . . 45

4.8. Influence of the weight ratio between the absolute and relative com-
ponents in the loss function on the three metrics 46

4.9. Comparison between validation and test results 47
4.10.The effect of dropout and the sequence length on the standard de-

viation of brightness and hue . 48
4.11.Influence of the weight ratio between the hue and brightness com-

ponents in the loss function . 49
4.12.Example output for Data Set 2 with two models that predict either

brightness or hue independently from each other 50
4.13.Distribution of brightness and hue in the ground truth of the complete

Data Set 3 and the shortened variant 51
4.14.Example output for two models trained on Data Set 3 that predict

either brightness or hue independently from each other 51

62

A. List of Songs in Data Sets

A.1. Data Sets 1 and 2

Data Sets 1 and 2 consist of the Spotify playlist Mainstage.
The database Tunebat1 provided the information about the tempo. It states a

tempo below 80 bmp for three of the songs. These values are doubled because
the songs do not make the impression that they are significantly slower than the
others and the software Virtual DJ states the doubled tempo, too.

Split Song Interpret Tempo
[bpm]

a)

Vois sur ton chemin - Techno
Mix

BENNETT 138

Boyz In Paris (with VINAI) Marnik, Naeleck, VINAI 1492

Move It POLTERGST 160

Say It Right Macon, Enny-Mae 143

Prada cassö, RAYE, E-Block Europe 142

SKY AVA CROWN, Öwes, Joe Kox 155

Let Me Think About It Again Showtek, Ida Corr 129

Rock My Body (with SASH!)
[W&W x R3HAB VIP Remix]

R3HAB, INNA, W&W, Sash! 130

Fuego Timmy Trumpet, Blasterjaxx, Zafrir 132

About You Now (How I Feel) Niklas Dee, Luca-Dante Spadafora 170

Raveship HBz, Neptunica, MEELA 160

I’ll Be Okay Neptunica 170

Where Do We Go LUNAX 150

Push Up - Main Edit Creeds 1502

Cynical twocolors, Safri Duo, Chris de Sarandy 130

Sunglasses At Night Gabry Ponte, Don Diablo 140

Jungle Alok, The Chainsmokers, Mae Stephens 140

It Burns Alle Farben 126

La La La Nicolas Julian 150

1Tunebat LLC. "Key & BPM Database and Music Finder". 2023. https://tunebat.com (visited on
10/30/2023).

63

A. List of Songs in Data Sets

Past Life Felix Jaehn, Jonas Blue 140

b)

Ray Of Solar Swedish House Mafia 135

Not Fair Niklas Dee, Old Jim, Enny-Mae 145

Love All Night Marten Hørger 126

Easy On My Heart Gabry Ponte 128

S&M (With Chacel) - HYPER-
TECHNO Edit

Macon, Chacel 142

Esta Vida Marshmello, Farruko 124

The Magic Key Trinix, One-T 122

Fable Klaas 142

Drinkin Mike Candys 130

Past Lives OBS 150

When You’re Lonely VIZE, Emma Steinbakken 145

On My Love Zara Larsson, David Guetta 123

Fly so High Zombic, Rocco, Steve 80 1502

Sweet Dreams La Bouche, Paolo Pellegrino 130

Weak - Nicolas Julian Remix AJR, Nicolas Julian 140

Typa Girl southstar 150

One with the Wolves Robin Schulz 128

On & On Armin van Buuren, Punctual, Alika 128

Sleepless (feat. GoldFord) Restricted, Topic, GoldFord 150

Sinner Nu Aspect 136

Test

Wake Me Up - Radio Edit MOLOW, Nito-Onna 132

Cold as Ice LUNAX, KYANU 160

Good Life FAST BOY 126

Eternity Timmy Trumpet, KSHMR, Bassjackers 140

High On Life le Shuuk, MERYLL 165

Living On Video (feat. DTale) Mike Williams, DTale 126

On The Move LIZOT, PRISKA 136

Desire (with Sam Smith) Calvin Harris, Sam Smith 140

Lose This Feeling Armin van Buuren 75

One in a Million Bebe Rexha, David Guetta 138

Table A.1.: Music selection for Data Sets 1 and 2

2Doubled tempo compared to original Tunebat information

64

A.2. Data Sets 3

A.2. Data Sets 3

Variant Song Interpret Tempo
[bpm]

Shortened
+ Complete

Eat The Rich Aerosmith 123

Move SAINT Motel 101

m.A.A.d city Kendrick Lamar, MC Eiht 91

GDFR Flo Rida, Sage The Gemini,
Lookas

146

Good Times Roll Big Gigantic, GRiZ 100

Complete

Something Just Like This The Chainsmokers, Coldplay 103

Heavy Is the Head Zac Brown Band, Chris Cornell 171

Life In Color OneRepublic 127

It Ain’t Me Kygo, Selena Gomez 100

All Time Low Jon Bellion 90

Can’t Stop Red Hot Chili Peppers 91

Table A.2.: Songs in Data Set 3

65

	Abstract
	Introduction
	Related Work
	Data Processing
	Long Short-Term Memory
	Convolutional Neural Networks
	Log-Mel Spectrogram
	Color Spaces

	Stage Lighting
	Scientific Research
	Commercial Products

	Music Information Retrieval
	Feature Extraction
	Model architecture

	Methods
	Interfaces
	Audio Input
	Light Output

	Color Space
	Data Sets
	Data Set 1 – Synthetic Light Control
	Data Set 2 – Basic Real-World Example
	Data Set 3 – Video of Professional Light Show

	Model
	Feature Extraction
	Model Architecture
	Parameters

	Performance Metrics
	Loss Function
	Evaluation of the Result

	Training Process
	Sequencing
	Split between Training, Validation and Test Data
	Hyperparameter Grid Search
	Baseline

	Results
	Training Process
	Development over the Epochs
	Reproducibility
	Execution Time

	Hyperparameter Grid Search
	Basic Setup
	Weighted Loss Function
	Test Results

	Evaluation with Data Set 2
	Basic Setup
	Weighted Loss Function

	Evaluation with Data Set 3

	Discussion
	Research Question 1 – Data Sets
	Data Set 1
	Data Set 2
	Data Set 3

	Research Question 2 – Model
	Research Question 3 – Loss Function and Metrics

	List of Songs in Data Sets
	Data Sets 1 and 2
	Data Sets 3

