Alpha Release
Rebomb

Yaxuan Dai

Mahdis Sabzevarzadeh
Miguel Trasobares
Jialin Yang

Technical University of Munich

TUM School of Computation, Information and Technology
Chair of Computer Graphics and Visualization

Garching 08.01.2025

1 Task Progression

~
Numerical Refine
EXtr‘a Animation Rgfine
Remote Multi-Player
: Further Updates w.r.t Playtesting
High Target)

Desirable Target

Low Target

Functional Minimum

Timeline Update

Time
Date Milestone Week Layer Task Owner State
Expect Actual
time travel mechanism 2/2 8 10 Jialin ~ DONE ¥
cascaded explosion refine 8 5 Yaxuan ~ DONE ¥
specifical assets 8 Miguel ~ Later v
Nov 27-Dec 03 Interim demo 4 map generation 1/3 8 8 Mahdis ~ DONE ¥
i map manager refactoring (new) 3 1 Mahdis ~ DONE ¥
Desirable >
local multiplayer 1/3 8 10 ‘Yaxuan ~ DONE ¥
version integration 4 %2 4*2 Al v DONE v
map generation 2/3 8 8 Mahdis ~ DONE ¥
audio effects (new) 8 8 Mahdis ~ DONE ¥
explosion visual effects 1/2 8 4 Yaxvan ~ DONE ¥~
Dec 04-10 5 explosion refactoring (new) 3 4 Yaxuan ¥ DONE ¥
preview time travel (new) 8 12| Jialin ~ DONE ¥
more weapon and objects 8 6 Jialin @~ DONE ¥
version integration 4%2 4%21 (All v DONE ¥
Desirable map generation 3/3 6 6 Mahdis ~ DONE ¥
explosion visual effects 2/2 6 6 Yaxuan ¥ DONE ¥
Dec 11-17 6 -
numerical refine 6 0 Al v Later ¥
version integration 4*4 4*4 Al v DONE ¥
specifical visual/audio assets 8 12 Mahdis ~ DONE ¥
turn&level logic (refine) 6 6 Yaxuan DONE ¥
Dec 18-24 7 < :
bugfix before integration All v DONE ¥
= 3%4 3%4
version release All v DONE ¥
Dec 25-31 8 y 0
holiday(Dec 24-Jan 06)
Jan 01-07 Alpha release 9 0 v
remote multiplayer 2*8 Yaxuan ¥ e
Jan 08-14 10 assesment & bugfix 253 % >
version integration 4*4 All v v
: remote multiplayer 248 Yaxuan v
High . -
improve mechanics 8 v v
Jan 15-21 Playtesting 11 5 S
refine animation/characters 8 v S
version integration 4*4 All v
Jan 22-28 12 remaining tasks & test 4*10 All v v

Jan 29-Feb 04 = Final release 13 Extra extra tasks & test 4*10 All v v

2 Challenges

Map Generation | Audio Effects | Time Travel Preview | Visual Effects

2.1 Time Travel Preview

e Hourglass holders need to know the result of the time travel before
using the item

i]
cuhBBRRRE

2.1 Time Travel Preview

Initial plan: Duplicating scene Solution: Combining snapshot
_ images with real-time last bomb
e High memory and rendering results

computation power cost
e Deep copies required
e “Hidden bombs” invisible

Turn 1 Turn 2 Turn 3 Turn 4

Explosion Explosion Explosion T Explosion

Player Action . Player Action . Player Action . Player .
Y Calculation Y Calculation Y Calculation Y Calculation
Last Bomb Last Bomb Last Bomb c Last Bomb
Screenshot ﬂ Screencho Screencho Screenshot
Snapshot Snapshot

Snapshot

Time Travel by 2 turns

2.2 Visual and Audio Elements

e Game World Vision:
o Players are robots battling in a space-themed environment.
o Assets were chosen to align with this futuristic, robotic theme.

e Sources of Assets:
o Audio & Visuals: Materials used from Unity Asset Store, Sketchfab and
Pixabay
o Custom Icons: Al-generated icons were used for Ul elements like the
inventory system

Player 1

@xs @xs
&xs &xs'

| :
Kl

Player 2 y

2.3 Map Generation

e Using Random Walk Algorithm for procedurally generating the map
e Map Structure:
o Divided into accessible (tunnels) and inaccessible (walls) areas
e Initial Map Generation:
o A map with unbreakable walls is created based on given dimensions.
o A ‘Walker’ is randomly placed, replacing walls with floors to create
tunnels
e Tunnel Digging Algorithm:
o Random direction (up, down, left, right) and length are chosen.
o The '"Walker' continues digging tunnels and updating its position until the
desired number of tunnels is created.

2.3 Map Generation

e Player Placement:
o Players are placed in corners.
o Maps with unbreakable walls in corners are rejected.

e Optimization:
o Maximum attempts and tunnel length are adjusted to prevent endless
loops.
o Trials identified optimal values for fast, reliable map generation without
crashes

2.4 Breakable Wall and Iltems Placement

e Adding Breakable Walls:
o Floors are replaced with breakable walls, allowing players to walk
through them after breaking.
o Arandom probability determines if a floor is replaced with a breakable
wall.
o Starting probability resets or increases based on the random number.
e Placing Items (Coins, Boots, Hourglass):
o Items (coin and boots) are placed randomly using the same probability
logic.
o Item type (coin or boot) is chosen randomly.
o Uneven distribution of items encourages strategic gameplay.
o Hourglass is placed under a randomly selected breakable wall.
m The position is determined by creating a list of all breakable walls
and selecting one randomly.

Generated Map Examples

raca®
-

Player 1 7= e F: . s

Player 2

@X5 @xs . ./ : @xs

E. ®-

Player 1 | Player 2

: -
s i 8, x 5

Generated Map Examples

Turn 1

Player 2 Player 1 = i s Player 2

®~s

= -

Player 1 (Player 2

2.5 Visual Effect

Delay Control with Coroutine Effect Control with Programmable VE£X
e Flame Decay
e Distinct Visuals

ixplos'mn Mana ger
plog()

Explosiows
exploole_with_delowy()

3 Design Revision

Cascaded Explosion Refinement | Other Refactorings

3.1 Cascaded Explosion Refinement

e Logic decouple:
o Bomb: trigger & cascaded influence
o Explosion: delay, range, visual and audio effects
e Cascaded trigger logic: DFS—BFS (for ChainBomb)

e Trigger raycasting with layer config (for SafeBomb)

3.2 Other Refactoring

e Consistent Resource Management
o reference of objects — total resource number

e Centralized Bomb Configuration
o Appearance: bomb prefab, explosion prefab
o Basic attribute: explosion range, explosion turn, price in coins
o [Extra feature: bomb type

e Map Generation
o Initial Approach: Numerical Values (e.g O for floors, 1 for unbreakable walls etc) wered
to represent map elements in function
o Problem: the straightforward method became soon difficult to manage as constraints

increased
o Solution: Introducing constants FLOOR, UNBREAKABLE_WALL

e Item Placement
o Initial Approach: Separate functions were created for placing primary items like coins
and boots. Differentiation between coins and boots
o Refactored the structure of adding items, for an easy addition of new item types.
Eliminate the need to differentiate between item types. From a pool of items we
randomly generate one, on a designated item placement position.

Thank you for your time!

Looking forward for your feedback!

