
Alpha Release
Rebomb

Yaxuan Dai
Mahdis Sabzevarzadeh
Miguel Trasobares
Jialin Yang

Technical University of Munich
TUM School of Computation, Information and Technology
Chair of Computer Graphics and Visualization
Garching 08.01.2025

1 Task Progression
Numerical Refine
Animation Refine
Remote Multi-Player
Further Updates w.r.t Playtesting

Timeline Update

2 Challenges
Map Generation | Audio Effects | Time Travel Preview | Visual Effects

2.1 Time Travel Preview
● Hourglass holders need to know the result of the time travel before

using the item

2.1 Time Travel Preview
Initial plan: Duplicating scene

● High memory and
computation power cost

● Deep copies required
● “Hidden bombs” invisible

Solution: Combining snapshot
images with real-time last bomb
rendering results

2.2 Visual and Audio Elements
● Game World Vision:

○ Players are robots battling in a space-themed environment.
○ Assets were chosen to align with this futuristic, robotic theme.

● Sources of Assets:
○ Audio & Visuals: Materials used from Unity Asset Store, Sketchfab and

Pixabay
○ Custom Icons: AI-generated icons were used for UI elements like the

inventory system

2.3 Map Generation
● Using Random Walk Algorithm for procedurally generating the map
● Map Structure:

○ Divided into accessible (tunnels) and inaccessible (walls) areas
● Initial Map Generation:

○ A map with unbreakable walls is created based on given dimensions.
○ A ‘Walker’ is randomly placed, replacing walls with floors to create

tunnels
● Tunnel Digging Algorithm:

○ Random direction (up, down, left, right) and length are chosen.
○ The 'Walker' continues digging tunnels and updating its position until the

desired number of tunnels is created.

2.3 Map Generation
● Player Placement:

○ Players are placed in corners.
○ Maps with unbreakable walls in corners are rejected.

● Optimization:
○ Maximum attempts and tunnel length are adjusted to prevent endless

loops.
○ Trials identified optimal values for fast, reliable map generation without

crashes

2.4 Breakable Wall and Items Placement
● Adding Breakable Walls:

○ Floors are replaced with breakable walls, allowing players to walk
through them after breaking.

○ A random probability determines if a floor is replaced with a breakable
wall.

○ Starting probability resets or increases based on the random number.
● Placing Items (Coins, Boots, Hourglass):

○ Items (coin and boots) are placed randomly using the same probability
logic.

○ Item type (coin or boot) is chosen randomly.
○ Uneven distribution of items encourages strategic gameplay.
○ Hourglass is placed under a randomly selected breakable wall.

■ The position is determined by creating a list of all breakable walls
and selecting one randomly.

Generated Map Examples

Generated Map Examples

2.5 Visual Effect
Delay Control with Coroutine Effect Control with Programmable VfX

● Flame Decay
● Distinct Visuals

3 Design Revision
Cascaded Explosion Refinement | Other Refactorings

3.1 Cascaded Explosion Refinement

delay

0.0s

0.3s

0.6s

● Logic decouple:
○ Bomb: trigger & cascaded influence
○ Explosion: delay, range, visual and audio effects

● Cascaded trigger logic: DFS→BFS (for ChainBomb)
● Trigger raycasting with layer config (for SafeBomb)

3.2 Other Refactoring
● Consistent Resource Management

○ reference of objects → total resource number
● Centralized Bomb Configuration

○ Appearance: bomb_prefab, explosion_prefab
○ Basic attribute: explosion_range, explosion_turn, price_in_coins
○ Extra feature: bomb_type

● Map Generation
○ Initial Approach: Numerical Values (e.g 0 for floors, 1 for unbreakable walls etc) wered

to represent map elements in function
○ Problem: the straightforward method became soon difficult to manage as constraints

increased
○ Solution: Introducing constants FLOOR, UNBREAKABLE_WALL

● Item Placement
○ Initial Approach: Separate functions were created for placing primary items like coins

and boots. Differentiation between coins and boots
○ Refactored the structure of adding items, for an easy addition of new item types.

Eliminate the need to differentiate between item types. From a pool of items we
randomly generate one, on a designated item placement position.

Thank you for your time!

Looking forward for your feedback!

