
Project Notebook

Rebomb

Yaxuan Dai
Mahdis Sabzevarzadeh
Miguel Trasobares

Jialin Yang

Master Practical Course Games Engineering
Chair of Computer Graphics and Visualization

Technical University of Munich
Munich, Germany

January 7, 2025

1

Contents

Milestone 1: Formal Game Proposal 4

1 Game Description 4
1.1 Gameplay . 4
1.2 Game Mechanics . 5

2 Technical Achievement 6
2.1 Game Snapshots Recording . 6
2.2 Multiplayer Functionality . 6
2.3 Procedural Generation . 7
2.4 Explosions via Particle Simulation . 7
2.5 Environment Change . 7

3 ”Big Idea” Bullseye 8

4 Development Schedule 8
4.1 Layered development Description . 8

4.1.1 Functional minimum . 8
4.1.2 Low target . 8
4.1.3 Desirable target . 9
4.1.4 High target . 9
4.1.5 Extras . 9

4.2 Timeline . 10

5 Assessment 11

Milestone 2: Game Prototype 13

6 Description 13

7 Experience 15
7.1 Strategy and Interaction . 15
7.2 Weapons and Items . 15

8 Revisions to Game Idea 15

Milestone 3: Interim Demo 17

9 Task Progression 17

10 Challenges 18
10.1 Input System: Keyboard Splitting . 18
10.2 Time Travel Feature: Snapshots and Current States . 18

10.2.1 Data Structure Definition . 18
10.2.2 Taking Snapshots . 19
10.2.3 Loading Snapshots . 19

10.3 Item Interaction . 19
10.4 Chain Reaction . 19

2

11 Design Revision 20
11.1 Scalability Considerations . 20

12 Progress in Photos 20

Milestone 4: Alpha Release 22

13 Task Progression 22

14 Challenges 23
14.1 Map Generation . 23

14.1.1 Random Walker Generator . 23
14.1.2 Breakable Walls and Items . 23

14.2 Audio and Visual Elements . 25
14.3 Time Travel Preview . 25
14.4 Explosion Visual Effects . 26

15 Design Revision 26
15.1 Cascaded Explosion Refinement . 26
15.2 Other Refactorings . 27

3

Milestone 1: Formal Game Proposal

1 Game Description

We are planning to create a multiplayer turn-based game that contains time travel features, procedurally
generated maps, and explosions via particle simulations. We draw inspiration from popular titles such as
Bomberman for showing blast in maze, Quantom League or Life is Strange for their time travel features
and Candy Crush Saga for the cascaded effects. Rebomb demonstrates the theme ”Chain Reaction” in its
mechanics by explosions of bombs. An active bomb affects nearby passive bombs, causing them to trigger
and explode. Additionally, flammable objects such as oil buckets, haystacks, wooden fences and trees will
be available on the map and players can use these items to their advantage. The game will be designed on
several levels. In each round the player has resources that will be carried in the next rounds. The player
gains progressively more resources for the chain reactions. Later rounds players can unlock powerful and
more costly bombs with their survival bonus.

Figure 1: Chain Reaction.

1.1 Gameplay

Rebomb is a turn-based, maze-based multiplayer game that can be played with 2 or 4 players. The players can
only move horizontally or vertically in a 2.5D map containing obstacles and collectibles. To win the game,
players must eliminate all opponents and remain the last one standing. Players can get killed once they get
caught up in a bomb’s explosion, including their own. The bombs have to be strategically placed to destroy
obstacles or kill other players. They explode in horizontal and vertical directions after some time causing a
cascaded effect. Different types of bombs vary in their impact radius, with each type affecting the explosion
distance to a greater or lesser extent.

4

Figure 2: Passive and Active Bomb differentiation.

1.2 Game Mechanics

The player starts the game with fixed and limited resources. Resources can be measured by the number of
coins a player holds. Placing the bombs costs coins. Various bombs have different costs. In each round, the
player can move only n tiles in horizontal or vertical directions and place their bombs. Resources can be
gathered by items on the map, by killing other players, or by designing an in-game interest system, so that
the player gains more resources in the upcoming rounds, once they survive the round. The map consists of
collectibles, such as hourglasses for time traveling, power-ups for stronger bombs, or extra coins. Once an
hourglass is collected the player may choose to time travel back k rounds. In the context of this game, time
travel means rewinding to a previous state of the map, where the position of the players, the resources, and
all bombs, except for the last placed bombs by each player, will be reverted for all the players. This way
the player with time-traveling ability has a chance to strategically change the course of the game in their
own favour. Figure 3 demonstrates how time travel can be in a 1 versus 1 gameplay. Note that the same
mechanic can also be applied when 4 players are in the game. In this example one bomb costs two coins and
the players can move up to 3 tiles in each round.

5

Figure 3: Time Travel Example.

2 Technical Achievement

2.1 Game Snapshots Recording

Our main technical achievement will be the implementation of a game state recording system to enable time
travel mechanics. The system will save snapshots of key states including all necessary information to replay
the game (movements, actions, objects, environment, etc). This will allow players to interact with previous
game experiences, allowing them to explore alternative strategies and making time travel a functional and
engaging game mechanic.

2.2 Multiplayer Functionality

Our game will support a multiplayer mode, allowing players to compete in the same scenario in real-time.
This feature will require careful management of game states to ensure a minimal latency between devices so

6

Figure 4: Procedural generation in Minecraft. Figure 5: Different particle effects for explosions.

that game states are synchronized in every device. The multiplayer setup will also integrate seamlessly with
the time travel mechanics to offer unique multiplayer interactions and experiences.

2.3 Procedural Generation

Using seed-based procedural generation, we will generate scenarios with unique configurations at each game-
play. This method provides players with new unseen environments each session while ensuring playability
with a set of predesigned rules that control randomness. This simple algorithm also allows for the scalability
of the map generation. The seed value will allow players to replay specific map setups that they consider
interesting and share them with other players, encouraging game replayability.

2.4 Explosions via Particle Simulation

We will pay special attention to visual dynamic effects from explosions. Each explosion will be generated using
particle effects and based on parameters such as brightness, color, shape, or velocity, allowing for distinct
patterns and range effects. The particle properties will be tied to different types of explosives and objects,
allowing the player to associate the effects with the objects used and better visualize the game state.

2.5 Environment Change

To visually enhance the passage of time within a game session, we will incorporate environmental changes,
such as shifting sunlight, moving shadows, or changes in lighting as cues for time progression. This element
will act as a way finder, helping players to orient themselves in the temporal dimension while also improving
immersion to reflect player decisions. These changes will be achieved through dynamic lighting adjustments
based on the game’s internal clock and scene configurations.

Figure 6: Change on shadows due to different solar azimuth.

7

3 ”Big Idea” Bullseye

4 Development Schedule

4.1 Layered development Description

4.1.1 Functional minimum

Our minimum goal is to deliver a playable turn-based Bomberman-style game with simple default maps and
limited interactive elements. The initial focus will be on core mechanics to ensure a functional foundation.

• Player movement and item placement logic.

• Basic environment objects.

• A fundamental weapon system that includes active and passive bombs.

• A basic resource system for initial resources and survival bonus.

• Essential assets.

4.1.2 Low target

At this stage, we aim to enhance gameplay mechanics and introduce additional features to create a richer
experience.

• Time travel mechanics.

• Weapon system: sequentially unlocks more powerful bombs and special items.

• A basic GUI with menus and gameplay options.

• Assets specifically for special items.

8

4.1.3 Desirable target

Building on previous stages, we aim to create a more dynamic and engaging game environment.

• Procedural map generation to increase replayability.

• Local multiplayer for competitive play.

• Enrich interactive elements in environments.

• Assets and GUI for a better user experience.

4.1.4 High target

• Character personalization and animation.

• Multiplayer functionality across multiple machines.

• Additional game mode (e.g. round-based).

• Fine-tune numerical settings to balance gameplay and improve mechanics.

4.1.5 Extras

• Explore more interesting time travel feature possibilities and realtime gameplay.

• Online multiplayer gameplay.

9

4.2 Timeline

According to our layered development description and milestones in this semester, a initial time schedule is
illustrated in Figure 11 and Figure 8.

Figure 7: Time schedule [1/2].

10

Figure 8: Time schedule [2/2].

5 Assessment

The game will combine strategic decision-making with explosive chain reactions, creating a dynamic and
suspenseful experience. The time travel feature will add a unique twist, allowing players to strategically undo
their moves, heightening both strategic depth and unpredictability.
The game is designed for players who enjoy competitive strategy games, especially fans of Bomberman,
turn-based tactics, and games with elements of mind games or puzzle-solving. Players seeking multiplayer
experiences with strategic depth and unique gameplay mechanics are expected to be particularly drawn to
this game.
In this game:

• Players place bombs with an option to activate their fuses. Activated bombs explode after a delay of
a few turns, while unlit bombs remain dormant and can be triggered by chain reactions from other
explosions.

• The time travel feature allows players to revert all players and the environment to their state from some
turns ago. However, the last bomb each player placed before turning back time will remain and explode
according to its original timing.

This gameplay will introduce both offensive and defensive layers, encouraging strategic bomb placement and
reactionary tactics.

1. Engagement and Replayability: Players should feel compelled to play multiple rounds and experi-
ment with new strategies, especially utilizing the time travel mechanic.

11

2. Balanced Mechanics: A successful design should make the time travel and bomb chain reactions feel
fair, with strategy prioritized over luck.

3. Strategic Depth: Players should have opportunities to improve with experience, discovering advanced
tactics and evolving their strategies.

4. Player Retention: The game’s success can be measured by a strong player base with high retention,
indicating enjoyment and multiplayer appeal.

12

Milestone 2: Game Prototype

6 Description

We create a physical prototype in a 2D board that fully reflects the gameplay functionality of our game.
Initially we propose the following rules for playing the game:

1. The board is set arbitrarily to a 8x8 grid of tiles. The tiles will contain an unbreakable walls, breakable
walls or be empty.

2. Every tile can be occupied by a single element at the same time.

3. The game is played via sequential turns as in chess. First a player decides and plays his actions, then
the next player plays his turn until every player has completed their actions.

4. In his turn, a player can move up to 3 tiles horizontally and vertically in any possible trajectory. A
player cannot move into a tile occupied by any other element or player. Additionally, in his turn, a
player can place a single bomb in any of the tiles it has visited. Every bomb is either active or passive
and this is decided by the player at the moment he places on the board.

5. Active bombs have attached a counter that begins at 3 when placed. At the beginning of the player
who originally placed the bomb, the counter is decreased by 1. When the counter reaches 0 the bomb
explodes. The explosion reaches all the horizontal and vertical tiles that are at a distance of 1 tile from
the bomb and the tile the bomb is at. All other bombs that are in tiles affected by the explosion also
explode causing a chain reaction that get resolved at that same moment. The breakable walls that are
affected become empty tiles. The players in affected tiles are eliminated and lose the game.

6. Passive bombs do not have a counter but when affected by an explosion explode as an active bomb.

7. One breakable wall will have hidden an hourglass item. When the tile is affected by an explosion, the
hidden item will appear on that tile. The first player that moves over the item will acquire it and
the item will disappear the board. At the beginning of his turn, a player can use the item, which is
consumed, to perform a time travel of 3 turns in the past to the beginning of that turn. When this
happens the board is reset to the exact state it was 3 turns before with the exception of the bomb both
players might have played in the turn before performing the time travel, which are also carried in the
state they are to the new board.

8. The game ends when a single player is alive and all the other players have been eliminated.

13

Figure 9: Paper Prototype - Round 0

(a) Round 1 (b) Round 1 Calculations (c) Round 2

(d) Round 2 Calculations (e) Round 3 (f) Round 3 Calculations

Figure 10: Gameplay demonstration of prototype

14

7 Experience

7.1 Strategy and Interaction

Throughout our play sessions, we observed that players are motivated to explore and develop various strategies
based on our interaction and mechanics. These mechanics distinguished our game from the traditional action
game Bomberman, leaning more towards a strategy-driven experience. Rather than relying on quick reflexes,
players are encouraged to plan, anticipate, and outmaneuver each other.

• Timing with Bomb Detonations: the combination of explosion range, movement step size, and
bomb countdown encourages players to carefully time their moves. Planning ahead becomes essential,
as players must anticipate both their own and their opponents’ actions to avoid explosions and capitalize
on positioning.

• Early Bomb Triggering: players tend to place bombs early in the game to remove breakable walls
and expand the battlefield. This strategy creates a dynamic environment where players have more
options and tactical opportunities.

• Trap Setting: an integral aspect of gameplay is players attempting to trap each other by strategically
placing bombs. By predicting and limiting opponents’ movement options, players can increase the
likelihood of an opponent getting caught in an explosion, making for tense, engaging moments.

• Chain Reactions: to maximize impact and maintain safe positions, players frequently set up bomb
chains that trigger successive explosions. This strategy allows them to target opponents from a distance,
adding a rewarding level of risk management.

7.2 Weapons and Items

The integration of our core items—the active and passive bombs, as well as the hourglass for time travel—adds
both depth and breadth to the strategic possibilities. Each item introduces new layers of decision-making.

• Impact of Bomb Collision: when bombs are placed with collision volumes, they can act as barriers,
restricting movement options and enhancing the trapping mechanics. Players are motivated to use
bombs as obstacles to manipulate opponent movement.

• Hourglass to Travel Back: the hourglass item brings a unique twist to gameplay. When used, it
rewinds recent turns while keeping the player’s last bomb in place. This mechanism allows for surprise
strategies, such as reversing a near-loss situation or enhancing a bomb trap.

8 Revisions to Game Idea

By creating the prototype, we are able to play the game, spot the advantages and disadvantages of our
proposed design, and make modifications to our design.
The basic winning strategy of classical Bomberman is trapping the enemies in the bombs’ explosion region.
Our game should also take it as the key to winning, in ways of placing the bombs as obstacles, creating
chained explosions, and using time travels or other potential items.

• Map Design: the map design appears to be harder than expected. During our test plays on the pro-
totype, we found adding the number of breakable walls can help increase the suspense of the possession
of the time travel feature but at the same time increase the length of the game. The unbreakable walls
should be of a larger number but not continuous in a large size, to provide enough possibility of trapping
enemies and encourage the use of chain reactions simultaneously.

• Numerical Design: as expected, the numerical design is crucial to tuning the desired player behavior.
For example, a small explosion range encourages more blocking opponents using bombs which is not
what we want from a chain-reaction-centered game, while a large one also kills the value of cascaded

15

explosions because single explosions are already powerful enough. On a current 8x8 prototype map with
max. 3 tiles movement and max. place 1 bomb per player each round, we tested and found the sweet
point explosion range of 2 that can hopefully highlight the potential of chain reactions.

• Game Mode: we proposed the game as a turn-based one available for local multiplayer, which means
one player has to wait for the others’ turns to finish the round. In our tests on the prototype, we found
it possible to allow simultaneous actions for all players within a round. To solve edge conditions, the
bombs placed in one round take effect (block players and being triggered by other bombs) only after
the next explosion calculation (i.e. the start of the next round). At the same time, local multiplayer
will not be possible because the players should act at the same time and should not know the other
player’s action in the round.

• Time Travel Feature: the travel back feature has been proven to successfully deepen strategy depth
and to be a powerful resource to compete for. It can be used as a redo to save the user’s life when
trapped, or as an aggressive item by taking advantage of the remained last bomb. However, players
feel the consequence of using time travel on our paper-based prototype is unclear, which affects user
experience. In our game development, we should provide previews of travel-back to the players.

• Game Concept: we are happy to find that all 4 members of our team feel it’s fun to play with the
prototype. Since we are different types of gamers, we are more confident in having the game attract a
large range of players.

16

Milestone 3: Interim Demo

9 Task Progression

We have successfully completed all tasks within our minimum and low target objectives. We have focused
mainly on the game logic and its functionality until now. For features in our desired target, we have made
significant progress. The local multiplayer functionality is now fully implemented, allowing two players to
share one keyboard (each using either the left or right half). Our game is now fully playable locally in a
two-player mode on a single level, featuring active and passive bomb explosions, chained reaction mechanics,
and time travel functionality.

Figure 11: Time schedule

17

10 Challenges

10.1 Input System: Keyboard Splitting

Implementing local multiplayer using Unity’s modern input manager presented unexpected challenges. While
the system is designed to simplify input handling, configuring two players to share a single keyboard proved
non-trivial. The default player-joining behavior assigns players to separate devices, which conflicted with our
keyboard-splitting setup.
To resolve this issue, we:

• Switched the player join behavior from automatic to manual, and manually join the players in Game-
Manager.

• Assigned the same keyboard device to both players.

• Configured distinct key schemas for each player, ensuring that the shared keyboard functionality oper-
ates as intended.

10.2 Time Travel Feature: Snapshots and Current States

Figure 12: Overview of Time Travel Feature. The red arrows denote the pipeline of Time Travel.

The time travel feature requires taking snapshots of each round and properly rewinding to the related previous
snapshots. So the main task of the time travel feature is separated into three subtasks:

• Definition of the data structure of snapshots.

• Taking the snapshots to save the current state.

• Loading snapshots to rewind to a previous state.

10.2.1 Data Structure Definition

Because the Player, Bomb, and Resource are Monobehavior classes, we need to define information classes as
a record to take a copy of their current states, otherwise the information in snapshots will be changed due
to reference. So we created PlayerData, BombData, and ResourceData classes to store their core data in
the snapshots. The wall data is stored as a list of position, and the map items are in a list of GameObjects
for convenient placing and enabling/disabling. To allow remaining the last bomb placed by each player, we
recorded the last placed bomb in Player class and stored it in PlayerInfo class.

18

10.2.2 Taking Snapshots

At the end of every turn, a snapshot of the whole game state will be taken, by storing data to the defined
data structure.

10.2.3 Loading Snapshots

When a player calls time travel, the current turn will not be taken into account and will rewind back to a
previous state by loading a snapshot.
The Loading of snapshots contains player position placement, player resource management, map wall place-
ment, map item recovery, past bomb and last bomb placement, bomb state (e.g. turns until explosion)
loading, game manager state loading.
There are some edge conditions here that can bring up unexpected conditions, such as:

• Calling a 3-turn time travel in the 2nd turn.

• Time Travel back to a turn when the hourglass hasn’t been picked up.

To deal with the issues, we:

• Revert to initialized state when calling an early time travel.

• Make the hourglass an exception in recovery, i.e. the hourglass is a one-time item.

10.3 Item Interaction

Until now we display the picked-up items in the game world such as hourglass, coins and the weapons in a
UI panel. For the coins we use yellow sphere and for the hourglass we use a blue sphere for now. We have
defined an Item class to demonstrate different existing item types that appear as in-game world items. The
user picks up the items by collision detection with the items. The resource management system that we have
implemented facilitates the storage of them in our inventory and is easily scalable.
We differentiate between stackable and unstack-able items. Items such as coins and various types of weapons
are considered stackable. However, hourglass item is a unique and unstackable item, which the user can hold
a use one time. This way there is a fair chance for all players to be able to pick up at least one hourglass per
game, once it appears.
Items for now are placed manually by us, for further improvement we plan to design a respawn system of the
in-world items. The respawn system has to be randomized but also calibrated with the generated map per
level. Additionally, one further improvement will be creating a visual inventory to display the items as icons
and reduce the amount of text displayed. This will improve the game experience for the players.

10.4 Chain Reaction

We implement the logic for placing active and passive bombs on the current player position. Active bombs
have a counter that is decreased at the end of each turn. Once the counter reaches 0 the bomb explodes and
affects the tiles in all 4 directions (up, let, down, right). We check for collisions with any object tracing a ray
from the bomb position and retrieve the first hit object (if any). If the object lies within the bomb radius,
then it will be affected in the following way: breakable walls will be broken, players will be eliminated and
other bombs will explode. We add a small explosion animation at every affected tile to keep visual coherence
and help the development testing.
To prevent any undesired behaviour we place every object center at round number positions and assume their
position as the tiles for our game with a tile step of 1. This allows us to perform all the distance checks using
the objects’ positions directly and avoids the additional logic for a matrix based tile manager.
In order to maintain the logic proposed in our prototype, we want to perform all explosions at the same time,
and afterwards compute the result on the breakable walls. This prevents some edge cases where the order
of the bomb explosion changes the final result, e.g. propagating an explosion through a breakable wall after
it has been affected by another bomb that same turn. We consider this specially important for obtaining a
deterministic output from the same initial situation in a strategy game.

19

11 Design Revision

11.1 Scalability Considerations

During the implementation we learnt that it is important to focus on the scalability of the code to facilitate
the extension of mechanisms, if needed. We have not made any design revision compared to our presented
prototype up until now. Instead, we focused on not only achieving the current targets but also ensuring
scalability for future versions. Below we focus on some of them:

• Turn Mechanism: instead of managing turns solely within a single game, we implemented a hierarchi-
cal structure that organizes gameplay into games, rounds, and turns. This approach eliminates the need
for major refactoring when introducing a multiple-round setting, enabling seamless winner calculation
and turn management adjustments.

• Resource Management: all user resources (including steps, coins, and time-travel items) are man-
aged cohesively. This structure simplifies the addition of new items and facilitates future numeric or
categorical extensions.

• Input Handling: by adopting Unity’s event-driven input system, we ensured that our local multi-
player requirements are met. This approach also lays a strong foundation for transitioning to remote
multiplayer in the future.

12 Progress in Photos

Figure 13: Initial state of the game Figure 14: Hourglass spawns under breakable wall.

Figure 15: Active and Passive Bomb Explosion Figure 16: Endgame Result

20

Turn 4 Status Before the Usage of Hourglass After the Usage of Hourglass

21

Milestone 4: Alpha Release

13 Task Progression

Despite some pending numerical refinement decisions, we ensured all critical elements for the Alpha release
were delivered, aligning well with the overall project timeline.
Tasks were not fully packed into the last two weeks before the Alpha release, showcasing how the period from
18th–24th December, reserved for bugfixes and delayed tasks, allowed the team to make up for missing assets
and tackle several features beyond the original plan.

Figure 17: Time schedule.

22

14 Challenges

14.1 Map Generation

One important factor that makes our game re-playable and interesting in each level is its map. For the
first level of the game, we are using the same map as our prototype. This level serves as a tutorial level
for new players to get familiar with the in-game mechanics. For other levels we are generating maps by
procedural content generation to make each level unique and special. For the map generation we are using
the Random Walk Algorithm [1]. After thorough research it was concluded that this algorithm with some
minor adjustments can fit best to our needs.

14.1.1 Random Walker Generator

Our map has accessible (tunnels) and inaccessible areas (walls) and the players can navigate through a
connected route. Initially we generate a map with the given dimensions that contains only unbreakable walls.
Then we place the ’Walker’ in a random position on the map and replace the unbreakable wall with a floor and
we ’dig’ tunnels. We dig tunnels by choosing a random length from maximum allowed length and a random
direction (up, down, right,left) and finally drawing a tunnel in that direction and length. The algorithm keeps
digging tunnels, making random turns with random length, updating the walker’s position until the desired
number of tunnels are satisfied.
The generated map until now includes a route for the walker to navigate inside a maze of unbreakable walls.
Therefore we have to adapt it to our needs. Firstly, we wanted to place the players in the corners for the
start of the game. Since the generated map can also include unbreakable walls on the corners, we had to set
a flag for the desired map that we would accepted. We keep generating the map and only accept the one
that has corners free, meaning floors are places on each corner, so we can place players on the corners. Since
this could end in a endless loop if the maximum tunnel is too low, we have also set the maximum attempts
to try. By various trials and adjustments of the numerical values of maximum tunnel and maximum length
we found out the best combinations that provides us a fast and well-suited generated map for our needs and
not making the game crash.

14.1.2 Breakable Walls and Items

Since our game should consist of breakable and unbreakable walls, we had to add extra constraints to the
generated map even further. For placing the breakable wall, we decided to replace the floors with breakable
walls, since technically the players can also walk through the path of the breakable walls after they are broken.
We start with a starting probability for the breakable wall and a random number. If the random number
is more than the starting probability we increase its value. Otherwise we replace the floor with a breakable
wall and reset the starting probability. For placing items (coins and boots) on the map, we also use the same
logic. We don’t differentiate between item types here yet. while instantiating the items we choose a random
number generator to either instantiate a boot or a coin on the map. Therefore, it can happen that the number
of generated coins and boots do not match, or items of one type only will be generated. While this outcome
may not be optimal, the players learn to play strategically with the available resources on the map.
After placing breakable walls and items, we clear the corners so there is enough room for the first movement
of the players, for placing bombs without being affected by it. Finally, we add border to our map for nicer
visual appealing. For placing the borders we create another map with dimension + 2 full of borders, and
copy our generated map into it.
The only missing item is now placing the hourglass under one breakable wall. For this we loop through our
final generated map and create a list of breakable walls and we return the position of a randomly chosen
breakable wall. We then instantiate the hourglass under the chosen breakable wall.

23

Figure 18: Examples of the generated map

The challenges we faced for the map generation was mostly in regard of making the map look as we desired
with an existing algorithm. The random walk algorithm gave us a good basis and by adding some constraints
we adapted the generated map until we finally met our desired goal.

24

14.2 Audio and Visual Elements

For the audio sounds and visual aspects of the game we used materials from the unity asset store, sketchfab,
and pixabay websites. We had envisioned a world where the players are robots and fight between them takes
place in space. With this vision, we tried to find assets that fits our needs. For UI icons we also used generated
AI to create new icons was used for our inventory system for instance.
For the players we used Sci-Fi Ball Robot asset [2]. For the breakable walls we used Cartoon Crate Collection
[3] and for unbreakable walls and floor we used Yughues Free Metal Materials [4]. The boot [5], coin [6] and
border [7] 3D models were found in Sketchfab. The bombs and hourglass 3D models were used from Props
3D [8] and the skybox from Diverse Space Skybox asset [9] in unity assets store.
For the music we chose arcade-vibe style. This not only matches the original nostalgic vibe of the original
Bomberman game, it also adds the originality flavor to the game. All sounds effects for bomb explosion [10],
coin pickup [11], boot pickup [12], hourglass pickup [13], and background music for levels [14] [15], main
menu [16], gameover menu [17] were found from pixabay website. We implemented an audio mixer so that
the player can adjust the volume for effects and background music according to their preference. A full list
of resources used assets and audio tracks can be found in the bibliography section.

14.3 Time Travel Preview

To provide the hourglass holder with an idea about the effect of using time travel in the current turn, we
have introduced time travel preview in Alpha Release, as shown in 19.

Figure 19: Time Travel Preview.

The appearance of the preview panel is half-transparent for a better see-through between current states and
potential time travel results. To avoid blocking, the viewing angle is perpendicular to the floor plane. The
time travel preview allows easier decisions on the usage of time travel, and contributes to deepening decision
depth.
To implement this feature, we first planned to create a duplicated scene of the whole game, perform time
travel on the copied scene, and display the rewind scene in a small window as the preview. But the plan has
been proved to be sub-optimal, due to:

25

• High performance cost. Duplication of all objects and rendering simultaneously takes significantly
higher memory and computation power.

• Difficulties in development. Many scripts define Monobehavior, which requires manual deep copies
to make sure the duplication doesn’t affect the current state. This is not recommended in Unity
development standards.

• Invisible bombs. If one last bomb is planted at a location where a breakable wall is restored after time
travel, the bomb will be invisible to the player as it’s hidden in the wall.

As a solution, we finally implemented time travel preview by combining snapshot images and last bomb
rendering results. Every time a snapshot is saved, an extra screenshot of the state will be taken and saved as
texture in the snapshot. When a time travel preview is requested (by hovering the pointer on the hourglass
button), another screenshot containing only the current last bombs is taken. By combining the last bomb
image and the screenshot in the target snapshot, we can get the preview image with past map states and
current last bombs. This method is flexible to further changes to the the game features and minimizes the
memory and computational costs, but brings up frame rate jitter when calling the review, due to the real-time
rendering of last bombs.

14.4 Explosion Visual Effects

To enhance the explosion effects and enrich the game with new featured bombs, the explosion effects system
was upgraded with various new visual and audio effects. The goal was to improve the player’s experience and
clearly differentiate bomb types. The following new features were introduced:

1. Decay Management: An ExplosionManager was introduced to handle all visual and audio effects
with proper timing, synchronization, and scalability. Using Coroutine, we ensure asynchronous opera-
tions can manage multiple explosions simultaneously following the trigger delay.

2. Visual Effect Refinement: Each bomb’s visual and audio effects are now managed independently
within the explosion MonoBehaviour. Specific tuning of visual effects was achieved programmatically.
For instance, the flame color of the SafeBomb was visually distinguished to reduce user confusion (indi-
cating it only damages walls and not players). Additionally, a decay effect was implemented for flames,
causing the visual intensity to diminish with distance from the explosion center, enhancing realism and
user experience.

15 Design Revision

15.1 Cascaded Explosion Refinement

The explosion system faced significant issues when managing the cascaded effects, especially regarding bomb
triggers and delays. The following key challenges were identified and addressed:

• The order of bomb triggers was not well-defined; adding delays caused deviations from expected behav-
ior.

• Features like the Chainbomb, which powers up bombs it triggers, did not function as intended due to
limitations in the trigger order.

• Adding new bomb features, such as the SafeBomb, was challenging due to the lack of proper layer
management for cascaded triggers.

To address these challenges, we implemented the following refactorings:

1. Decoupling Explosion from Bomb: The trigger decision and cascaded effects on players and walls
are now handled by the bomb. Explosion-specific details, such as delay, range, and visual effects, are
managed independently by the explosion system.

26

2. Refactoring Explosion Calculation: The mechanism for handling triggers within the current turn
and their cascaded effects was restructured from a Depth-First Search (DFS) to a Breadth-First Search
(BFS) approach. A trigger queue was introduced, ensuring triggers are processed from early to late,
and delays are handled in ascending order. This satisfies the functional requirements for features like
Chainbomb.

3. Implementing Triggering with Layers: The cascaded triggering of surrounding objects with ray-
casting was configured using the layer system in Unity. Previously, players could occlude rays, preventing
them from detecting walls behind. By configuring all entities (walls, players, bombs) with appropriate
layers, calculations became manageable, and features like the SafeBomb (which damages walls but not
players) were effectively integrated.

15.2 Other Refactorings

• Bomb Mechanism Adjustment: To simplify the gameplay and highlight decisions, the bombs placed
in the current turn will take effect instantly, instead of earlier planned starting from the next turn.

• Consistent Resource Management: Items picked up by players are now managed as a total resource
count, rather than by maintaining object references in the inventory list. This enhances compacity and
reduces complexity especially for time travel.

• Centralized Bomb Configuration: Each bomb type now has a centralized BombConfig that han-
dles its properties and appearance. This approach makes numerical adjustments easier, facilitates the
addition of new bomb types, and ensures consistent handling of bomb features across the game.

• Map Generation: The initial version of the Random Walker Generator used numerical values in
various functions to distinguish between floors, breakable walls, and unbreakable walls. For instance 0
for the floor, and 1 for unbreakable wall. While this approach was initially straightforward, it became
difficult to follow as map generation constraints grew more complex. To address this, we refactored the
code by defining constants for map generation. These constants are now used to represent floors, walls,
borders, and items, making the code more readable and maintainable. Adding new elements is now as
simple as defining a new constant.

• Item Placement: Our map contains two primary items: coins and boots. Additionally, we have a
special item, the hourglass, which is placed randomly under a single breakable wall. Initially we were
differentiating between primary item types, creating respective functions for placing coins and boots
separately. To ensure scalability, we refactored the code so that adding a new primary item type is as
simple as instantiating it. The refactoring process eliminated the need to differentiate between item
types (e.g., coins and boots). We randomly choose from a pool of defined items and instantiate the
item type in the designated item placement position. This approach allows any newly added item to be
seamlessly integrated and randomly generated on the map.

References

[1] Ahmad Abdolsaheb. How to code your own procedural dungeon map generator using the
random walk algorithm. 2020. [Online]. Available: https://www.freecodecamp.org/news/

how-to-make-your-own-procedural-dungeon-map-generator-using-the-random-walk-algorithm-e0085c8aa9a/

[Accessed December 18th, 2024].

[2] Experience Lab Art. Sci-fi ball robot. 2023. [Online]. Available: https://assetstore.unity.com/

packages/3d/characters/robots/sci-fi-ball-robot-246500 [Accessed December 18th, 2024].

[3] VIS Games. Cartoon crate collection. 2022. [Online]. Available: https://assetstore.unity.com/

packages/3d/props/cartoon-crate-collection-2550 [Accessed December 18th, 2024].

27

https://www.freecodecamp.org/news/how-to-make-your-own-procedural-dungeon-map-generator-using-the-random-walk-algorithm-e0085c8aa9a/
https://www.freecodecamp.org/news/how-to-make-your-own-procedural-dungeon-map-generator-using-the-random-walk-algorithm-e0085c8aa9a/
https://assetstore.unity.com/packages/3d/characters/robots/sci-fi-ball-robot-246500
https://assetstore.unity.com/packages/3d/characters/robots/sci-fi-ball-robot-246500
https://assetstore.unity.com/packages/3d/props/cartoon-crate-collection-2550
https://assetstore.unity.com/packages/3d/props/cartoon-crate-collection-2550

[4] Nobiax / Yughues. Yughues free metal materials. 2021. [Online]. Available: https://assetstore.

unity.com/packages/2d/textures-materials/metals/yughues-free-metal-materials-12949

[Accessed December 18th, 2024].

[5] Safina Irani. Cartoon shoes/boots. 2022. [Online]. Available: https://sketchfab.com/3d-models/

cartoon-shoesboots-645923d461284000a3d0aac033f962dds [Accessed December 18th, 2024].

[6] BarracudaByte. Stylized coin. 2021. [Online]. Available: https://sketchfab.com/3d-models/

stylized-coin-8cd6f95c44994ed5944a42892d0ffc10 [Accessed December 18th, 2024].

[7] ForevereQ. Industrial asset pack (free). 2024. [Online]. Available: https://sketchfab.com/

3d-models/industrial-asset-pack-free-94c5011772a84e8791779b342467f245 [Accessed Decem-
ber 18th, 2024].

[8] Sigmoid Button Assets. Props 3d. 2023. [Online]. Available: https://assetstore.unity.com/

packages/3d/props/props-3d-221035 [Accessed December 18th, 2024].

[9] Sean Duffy. Diverse space skybox. 2021. [Online]. Available: https://assetstore.unity.com/

packages/2d/textures-materials/diverse-space-skybox-11044 [Accessed December 18th, 2024].

[10] JuveriSetila (Freesound). Medium explosion. 2022. [Online]. Available: https://pixabay.com/

sound-effects/medium-explosion-40472/ [Accessed December 18th, 2024].

[11] RibhavAgrawal. Coin recieved. 2024. [Online]. Available: https://pixabay.com/sound-effects/

coin-recieved-230517/ [Accessed December 18th, 2024].

[12] UGILA (Freesound). Item pickup. 2022. [Online]. Available: https://pixabay.com/sound-effects/
item-pickup-37089/ [Accessed December 18th, 2024].

[13] Liecio. Collect points. 2024. [Online]. Available: https://pixabay.com/sound-effects/

collect-points-190037/ [Accessed December 18th, 2024].

[14] Moodmode. Retro game arcade. 2024. [Online]. Available: https://pixabay.com/music/

video-games-retro-game-arcade-236133/ [Accessed December 18th, 2024].

[15] Moodmode. Retro game music. 2024. [Online]. Available: https://pixabay.com/music/

video-games-retro-game-music-245230/ [Accessed December 18th, 2024].

[16] Moodmode. That game arcade short. 2024. [Online]. Available: https://pixabay.com/music/

video-games-that-game-arcade-short-236108/ [Accessed December 18th, 2024].

[17] Moodmode. Level vii short. 2024. [Online]. Available: https://pixabay.com/music/

happy-childrens-tunes-level-vii-short-258782/ [Accessed December 18th, 2024].

28

https://assetstore.unity.com/packages/2d/textures-materials/metals/yughues-free-metal-materials-12949
https://assetstore.unity.com/packages/2d/textures-materials/metals/yughues-free-metal-materials-12949
https://sketchfab.com/3d-models/cartoon-shoesboots-645923d461284000a3d0aac033f962dds
https://sketchfab.com/3d-models/cartoon-shoesboots-645923d461284000a3d0aac033f962dds
https://sketchfab.com/3d-models/stylized-coin-8cd6f95c44994ed5944a42892d0ffc10
https://sketchfab.com/3d-models/stylized-coin-8cd6f95c44994ed5944a42892d0ffc10
https://sketchfab.com/3d-models/industrial-asset-pack-free-94c5011772a84e8791779b342467f245
https://sketchfab.com/3d-models/industrial-asset-pack-free-94c5011772a84e8791779b342467f245
https://assetstore.unity.com/packages/3d/props/props-3d-221035
https://assetstore.unity.com/packages/3d/props/props-3d-221035
https://assetstore.unity.com/packages/2d/textures-materials/diverse-space-skybox-11044
https://assetstore.unity.com/packages/2d/textures-materials/diverse-space-skybox-11044
https://pixabay.com/sound-effects/medium-explosion-40472/
https://pixabay.com/sound-effects/medium-explosion-40472/
https://pixabay.com/sound-effects/coin-recieved-230517/
https://pixabay.com/sound-effects/coin-recieved-230517/
https://pixabay.com/sound-effects/item-pickup-37089/
https://pixabay.com/sound-effects/item-pickup-37089/
https://pixabay.com/sound-effects/collect-points-190037/
https://pixabay.com/sound-effects/collect-points-190037/
https://pixabay.com/music/video-games-retro-game-arcade-236133/
https://pixabay.com/music/video-games-retro-game-arcade-236133/
https://pixabay.com/music/video-games-retro-game-music-245230/
https://pixabay.com/music/video-games-retro-game-music-245230/
https://pixabay.com/music/video-games-that-game-arcade-short-236108/
https://pixabay.com/music/video-games-that-game-arcade-short-236108/
https://pixabay.com/music/happy-childrens-tunes-level-vii-short-258782/
https://pixabay.com/music/happy-childrens-tunes-level-vii-short-258782/

	Milestone 1: Formal Game Proposal
	Game Description
	Gameplay
	Game Mechanics

	Technical Achievement
	Game Snapshots Recording
	Multiplayer Functionality
	Procedural Generation
	Explosions via Particle Simulation
	Environment Change

	"Big Idea" Bullseye
	Development Schedule
	Layered development Description
	Functional minimum
	Low target
	Desirable target
	High target
	Extras

	Timeline

	Assessment

	Milestone 2: Game Prototype
	Description
	Experience
	Strategy and Interaction
	Weapons and Items

	Revisions to Game Idea

	Milestone 3: Interim Demo
	Task Progression
	Challenges
	Input System: Keyboard Splitting
	Time Travel Feature: Snapshots and Current States
	Data Structure Definition
	Taking Snapshots
	Loading Snapshots

	Item Interaction
	Chain Reaction

	Design Revision
	Scalability Considerations

	Progress in Photos

	Milestone 4: Alpha Release
	Task Progression
	Challenges
	Map Generation
	Random Walker Generator
	Breakable Walls and Items

	Audio and Visual Elements
	Time Travel Preview
	Explosion Visual Effects

	Design Revision
	Cascaded Explosion Refinement
	Other Refactorings

