
Contents lists available at ScienceDirect 

Bone 

journal homepage: www.elsevier.com/locate/bone 

Deep learning of lumbar spine X-ray for osteopenia and osteoporosis 
screening: A multicenter retrospective cohort study 
Bin Zhanga,b,1, Keyan Yuc,1, Zhenyuan Ningd,1, Ke Wangd,1, Yuhao Donge, Xian Liuf, Shuxue Liug,  
Jian Wangc, Cuiling Zhuc, Qinqin Yuc, Yuwen Duanc, Siying Lvc, Xintao Zhangc, Yanjun Chenc,  
Xiaojia Wangh, Jie Sheni, Jia Pengj, Qiuying Chena,b, Yu Zhangd,⁎, Xiaodong Zhangc,⁎⁎,  
Shuixing Zhanga,⁎⁎⁎ 

a Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China 
b Jinan University, Guangzhou, Guangdong, PR China 
c Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, PR China 
d School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, PR China 
e Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong 
Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China 
f Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, PR China 
g The Affiliated Zhongshan Hospital of Traditional Chinese Medicine University of Guangzhou, Guangdong, PR China 
h Bone mineral density test room, Health Management Centre, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), 
Guangzhou, PR China 
i Department of endocrinology, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics Guangdong Province), Guangzhou, PR China 
j Department of computed tomography, The Affiliated Zhongshan City Hospital of Sun Yat-sen University, PR China   

A R T I C L E  I N F O   

Keywords: 
Osteoporosis 
Postmenopausal women 
Bone mineral density 
Dual-energy X-ray absorptiometry 
Deep learning 
Lumbar spine X-rays 

A B S T R A C T   

Osteoporosis is a prevalent but underdiagnosed condition. As compared to dual-energy X-ray absorptiometry 
(DXA) measures, we aimed to develop a deep convolutional neural network (DCNN) model to classify osteopenia 
and osteoporosis with the use of lumbar spine X-ray images. Herein, we developed the DCNN models based on 
the training dataset, which comprising 1616 lumbar spine X-ray images from 808 postmenopausal women (aged 
50 to 92 years). DXA-derived bone mineral density (BMD) measures were used as the reference standard. We 
categorized patients into three groups according to DXA BMD T-score: normal (T ≥ −1.0), osteopenia 
(−2.5  <  T  <  −1.0), and osteoporosis (T ≤ −2.5). T-scores were calculated by using the BMD dataset of 
young Chinese female aged 20–40 years as a reference. A 3-class DCNN model was trained to classify normal 
BMD, osteoporosis, and osteopenia. Model performance was tested in a validation dataset (204 images from 102 
patients) and two test datasets (396 images from 198 patients and 348 images from 147 patients respectively). 
Model performance was assessed by the receiver operating characteristic (ROC) curve analysis. The results 
showed that in the test dataset 1, the model diagnosing osteoporosis achieved an AUC of 0.767 (95% confidence 
interval [CI]: 0.701–0.824) with sensitivity of 73.7% (95% CI: 62.3–83.1), the model diagnosing osteopenia 
achieved an AUC of 0.787 (95% CI: 0.723–0.842) with sensitivity of 81.8% (95% CI: 67.3–91.8); In the test 
dataset 2, the model diagnosing osteoporosis yielded an AUC of 0.726 (95% CI: 0.646–0.796) with sensitivity of 
68.4% (95% CI: 54.8–80.1), the model diagnosing osteopenia yielded an AUC of 0.810 (95% CI, 0.737–0.870) 
with sensitivity of 85.3% (95% CI, 68.9–95.0). Accordingly, a deep learning diagnostic network may have the 
potential in screening osteoporosis and osteopenia based on lumbar spine radiographs. However, further studies 
are necessary to verify and improve the diagnostic performance of DCNN models.   
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1. Introduction 

Osteoporosis and osteoporotic fractures have become global health 
issues of major concern with the growth in the aging population [1]. By 
2020, approximately 12.3 million individuals in the United States older 
than 50 years are expected to have osteoporosis [2]. One in three 
women aged over 50 years will have an osteoporosis-related fracture 
[3]. As a precursor of osteoporosis, osteopenia also deserves attention 
because most fractures in postmenopausal women occurred in those 
with osteopenia [4,5]. Hence, screening of osteoporosis and osteopenia 
is clinically desirable for fracture prevention. The US Preventive Ser
vices Task Force (USPSTF) recommends that women aged ≥65 years 
should be routinely screened [6]. 

Central dual-energy X-ray absorptiometry (DXA) is globally ac
cepted as the reference standard for diagnosing osteoporosis and os
teopenia [7]. However, the application of DXA is limited by its low 
availability, which typically requires patients to travel to a referral 
centre [8]. Other barriers to DXA screening include knowledge deficits 
and declining financial incentives for screening. As a result, nearly half 
of female Medicare beneficiaries in the United States do not undergo 
DXA testing [9], and certain high-risk populations have screening rates 
of < 10% [10]; while in China, only 4.3% women aged ≥50 years have 
undergone testing, particularly in rural areas, the rate is only 1.9% 
[11]. The measurement of DXA assumes the presence of only bones and 
muscles, which would be inevitably influenced by fat [12]. In addition, 
as a two-dimensional projection technique, it cannot fully consider 
bone geometry, size and microstructure [12]. Accordingly, DXA is un
derutilized, and osteoporosis remains underdiagnosed. Safe and cost- 
effective alternatives to improve these conditions are needed. Con
ventional X-ray devices are widely available in almost any hospital 
worldwide, which carry potentially useful information about BMD. 
Retrieval of BMD data available on lumbar spine X-ray scans ordered 
for other indications requires no additional cost, patient time, or ra
diation exposure, and these data can be retrospectively acquired. It 
could, therefore, expand population screening effort for osteoporosis. 
However, it is a challenging task to assess BMD on lumbar spine X-ray 
images by inspection. 

Recently, a deep learning technique, known as the deep convolu
tional neural network (DCNN), has gained significant ground in the 
field of computer vision. Deep learning takes raw image pixels and 
corresponding class labels from medical imaging data as inputs and 
automatically learns feature representation with multiple levels of ab
straction [13]. Continuous improvements of DCNN architectures cou
pled with a rapid increase in hardware computational power have en
abled DCNN to achieve human-level performance in layer tasks, such as 
facial recognition, game playing, and natural language processing [14]. 
Numerous early studies have also shown the promising results of DCNN 
used in a variety of medical imaging, including radiology [15–18], 
pathology [19,20], dermatology [21,22], and ophthalmology [23,24]. 

In this study, we aimed to determine the feasibility and performance 
of DCNN models based on lumbar spine X-ray imaging data obtained for 
other clinical indications on diagnosing osteoporosis and osteopenia in 
postmenopausal women, as compared to DXA-defined BMD measure
ments. The practicable and low-cost deep learning approach could be 
used as an adjunct to DXA screening, especially in community hospitals 
in which DXA machines are inadequate. 

2. Materials and methods 

2.1. Dataset and study population 

We performed a retrospective, multicohort, diagnostic study using 
lumbar spine X-ray images sets from three large tertiary centres in 
China. This multicentre study was approved by the institutional review 
board of the principal investigator's hospital. Informed consent from 
patients was exempted due to the retrospective nature of this study. The 

inclusion criteria were as follows: (1) postmenopausal women aged 
≥50 years, the age of menopause was confirmed by medical records or 
patients' self-report; (2) women that had undergone both lumbar spine 
X-ray and DXA examinations within a 3-month period, and during this 
interval, patients had not received any treatments that would affect 
BMD; and (3) lumbar spine X-ray images including anteroposterior and 
lateral images, comprising at least the first through the fourth lumbar 
vertebrae (L1-L4). The exclusion criteria were as follows: (1) patients 
had undergone lumbar spine (L1-L4) operation, such as internal fixa
tion and bone cement filling; (2) lumbar spine (L1-L4) presenting le
sions, including tumours (e.g., multiple myeloma and metastatic 
tumor), inflammatory diseases (e.g., ankylosing spondylitis, tubercu
losis), serious scoliosis or deformity; (3) region of interests (ROIs) could 
not map to the raw images; and (4) images with low signal to noise 
ratio. As a result, we obtained lumbar spine X-ray Digital Imaging and 
Communications in Medicine (X-ray-DICOM) images from the picture 
archiving and communication systems repositories: for the primary 
dataset, 1820 images from 910 patients with imaging performed be
tween January 1, 2014 and December 31, 2017 were collected. The 
primary dataset was randomly divided into training and internal vali
dation datasets at a ratio of 8:1; for the test dataset 1, 396 images from 
198 patients with imaging performed between October 1 and December 
31, 2018 were collected; and for the test dataset 2, 294 images from 
147 patients with imaging performed between June 1, 2018 and August 
1, 2019 were collected. Fig. 1 demonstrates the flowchart of patient 
inclusion from the different participating centres. 

2.2. Design and overview 

As shown in Fig. 2, by using cloud database of lumbar spine X-ray 
images and DXA-derived BMD as a reference standard, we developed 
artificial intelligence (AI) models to classify patients into three cate
gories according to the World Health Organization criteria: normal (T- 
score ≥ −1.0), osteopenia (−2.5  <  T-score  <  −1.0), and osteo
porosis (T-score ≤ −2.5) [25]. T-scores were calculated by using the 
BMD dataset of young Chinese female aged 20–40 years as reference. 
The AI model based on DCNN contained two channels: anteroposterior 
channel and lateral channel (Fig. 3). The final decision was based on a 
combination of the two channels. 

2.3. Lumbar X-ray examinations 

In the primary dataset, the lumbar X-ray scan was performed by the 
DMC GmbH Digital Radiographic (DR) machine (Philips Medical 
Systems, Germany), with parameters set at 75 kVp, 32 mAs for ante
roposterior imaging, and 85 kVp, 32 mAs for lateral imaging. In the test 
dataset 1, the lumbar X-ray scan was conducted by the AXIOM Aristos 
VX DR machine (Siemens, Germany), and 70 kVp, 20-mAs was set for 
anteroposterior and lateral imaging. In the test dataset 2, the lumbar X- 
ray scan was also performed by the AXIM Aristos DR machine (Siemens, 
Germany), with settings of 66 kVp, 35 mAs for anteroposterior imaging 
and 70 kVp, 80 mAs for lateral imaging. 

2.4. Image preprocessing 

For each patient, the ROIs were delineated on the trabecular bone of 
lumbar vertebrae (L1–L4) from anteroposterior and lateral view by four 
radiologists with 10–20 years' experience. Cortical bone was excluded 
from the ROIs. Considering the differences in X-ray scan parameters, a 
series of greyscale normalization was performed, including window 
width, window level, and window pixel normalization. 
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Fig. 1. Study flowchart illustrating multicentre patient inclusion. A total of 1255 postmenopausal females aged 50 years and older from three Chinese hospitals were 
included, and were allocated to the training, validation and test datasets, respectively. BMD, bone mineral density; DXA, dual energy X-ray absorptiometry; DCNN, 
deep convolutional neural network; AUC, area under the receiver operating characteristic curve. 
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denotes original CT value, and pixel denotes value after adjusting for 
window width and window level. 

A patch-based data augmentation strategy was essential to ensure 
sufficient images to train the DCNN model [26]. The patch-based vote 

strategy refers to that the final predictive probability of a subject is 
obtained by voting on the output of patches from the same subject. 
Specifically, each ROI was resized to 128 × 128 square and averagely 
divided into four patches with at least 50% effective area. The four 

Fig. 2. Cloud-based multihospital AI platform. Whencoming to hospital, patients will be informed to firstly undergo lumbar spine X-ray examination and then DXA- 
derived BMD test if are suspected with osteoporosis. In this study, we used DCNN to train our AI models based on lumbar spine radiographs, as compared to DXA- 
derived BMD measures. As a result, we could provide additional assessment of BMD (normal, osteopenia, and osteoporosis) besides basic imaging findings reported 
by radiologists. 

Fig. 3. Illustration of the measurements of anteroposterior and lateral X-rays and deep learning model flowchart. The left part represents the anteroposterior and 
lateral images and ROIs, while the right part represents the input layer, convolutional layers, pooling layer, and output layer of anteroposterior and lateral channels, 
respectively. The input of the framework includes the image patch from anteroposterior and lateral X-ray images. The image patches are first computed at the 
individual channel, and then integrated for the combined diagnosis. ROIs, region of interests. 
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patches were randomly cropped from the ROI without overlap. The 
effective area refers to the non-zero pixels in each patch. 

2.5. DCNN architecture 

The proposed DCNN classification model consisted of two channels 
to perform automatic analysis of the anteroposterior and lateral lumbar 
spine (L1–L4) images. The network parameters were determined by the 
leave-out method in the training process for all the networks (classi
fiers). Specifically, one-ninth of the primary dataset were stratified and 
sampled out to verify the parameters of the network and the con
vergence, so as to select the optimal model finally. The hyperpara
meters are shown in the Supplementary Table. 

Both channels presented with the same structure and mainly in
cluded the convolutional layer, pooling layer, and dense layer. The 
input of each channel was 64 × 64 patches from the ROI. To capture 
highly relevant textures and edge information and improve model 
discriminability for the patches within the receptive field, five con
volutional layers (kernel size of 4 × 4) and one pooling layer (4th layer 
with a kernel size of 1 × 1) were placed to extract features from the 
input patches or feature maps by a convolution operation. To ensure 
low-level representation and high-level understanding of images, the 
number of kernels in the five convolutional layers was increased with 
depth, namely, 32, 64, 64, 128 and 256, respectively. For each con
volutional layer, a non-linear ‘ReLU’ operator was employed as an ac
tivation function and batch normalization was performed to avoid 
gradient vanishing and accelerate convergence. In addition, a max- 
pooling layer was utilized after the 3rd convolutional layer to preserve 
discriminable features and decrease the number of parameters and re
dundant information obtained. Finally, the feature maps were flattened 
and a dense layer with three neurons was used to perform prediction. 

Considering this was a three-category task (normal, osteopenia, and 
osteoporosis), we trained a 3-class DCNN model to perform classifica
tion from anteroposterior, lateral, and anteroposterior + lateral views. 
The DCNN models generated by using the training dataset of this study 
are available at: https://github.com/zhang-de-lab/zhang-lab?from= 
singlemessage. Before training the models, all the neuron biases were 
set to zero, and all the weights were initialized as random uniform 
distribution ranging from −0.5 to 0.5. The stochastic gradient descent 
optimizer with a learning rate of 0.0005 was used to minimize cate
gorical cross-entropy loss of function. After training, the patch-based 
vote strategy was applied to perform classification. The result of the 
combined anteroposterior and lateral channels was calculated by 
weighting and summing the results of a separate anteroposterior and 
lateral channels. If a patient had an only anteroposterior or lateral 
image, the result was output from a single channel. 

2.6. Assessing the overall classification performance of the DCNN models 

All the patients from the primary dataset were randomly and 
equiprobably allocated to training (1616 images from 808 patients) and 
validation sets (204 images from 102 patients) at a ratio of approxi
mately 8:1. Data from the other two participating centres (396 images 
from 198 patients and 294 images from 147 patients respectively) were 
used as test datasets. The training set was used for training, the vali
dation dataset was used for choosing hyperparameters and identifying a 
stopping condition, and the test datasets were used to report actual 
predictive results. The extracted patches were fed into the model to 
distill low level and high level features automatically. The model was 
finally structured for classifying cases of normal, osteopenia, and os
teoporosis. 

2.7. Bone mineral density measurement 

For all patients, we measured the body weight (kg) and height (m) 
by a sensitive digital scale (Electronic Body Scale, TCS-200-RT, China) 

and a stadiometer respectively, and the body mass index (BMI) was 
expressed as weight/height2 (kg/m2). Patients' age, weight, height, and 
BMI were collected from BMD testing reports. In the training and va
lidation datasets, lumbar spine BMD was measured by the DXA total- 
body densitometer (Lunar Prodigy, GE Healthcare, Madison, WI); in the 
test dataset 2, lumbar spine BMD was measured by the same DXA total- 
body densitometer; however, in the test dataset 1, lumbar spine BMD 
was measured by a total-body DXA densitometer (Discovery A, 
HOLOGIC, USA). 

2.8. Statistical analysis 

Descriptive statistics and continuous variables were expressed as 
numbers (percentages) and mean (standard deviation, SD), respec
tively. For diagnosis purposes, we used the receiver operating char
acteristic (ROC) curve to indicate the performance of the models in 
classifying BMD in postmenopausal women. The ROC curve was created 
by plotting the true positive rate (sensitivity) against the false positive 
rate (1-sensitivity). By varying the predicted probability threshold, we 
calculated the area under the curve (AUC) values. We calculated 95% 
confidence intervals (CIs) for sensitivity and specificity with the boot
strap (1000 iterations) method. Sensitivity/specificity values were 
taken from a 0.5 threshold on our model outputs. DeLong's test was 
performed to statistically evaluate the difference in AUC between the 
deep learning models. 

We also calculated the positive predictive value (PPV), negative 
predictive value (NPV), positive likelihood ratio (PLR), and negative 
likelihood ratio (NLR). PPV was the probability that the disease was 
present when the test was positive (expressed as a percentage). NPV 
was the probability that the disease was not present when the test was 
negative (expressed as a percentage). PLR was the ratio between the 
probability of a positive test result given the presence of the disease and 
the probability of a positive test result given the absence of the disease 
(i.e., the true positive rate/false positive rate = sensitivity/[1-specifi
city]). The NLR was the ratio between the probability of a negative test 
result given the presence of the disease and the probability of a negative 
test result given the absence of the disease (i.e. false negative rate/true 
negative rate = [1-Sensitivity]/Specificity). The confusion matrix in 
our study was given as a 2 × 2 contingency table that reported the 
number of true positives, false positives, false negatives, and true ne
gatives. 

All the deep convolutional models were complemented by PYTHON 
(3.6.7, Guido van Rossum, Netherlands). All statistical analyses were 
carried out by R software (3.0.2, R Core Team, 2013) and MedCalc 
software (15.6.1, Microsoft Partner, 2015). All experiments were per
formed under Windows on a machine with Central Processing Unit 
(CPU) of Intel (R) Core (TM) Processor i5-4590 @ 3.30 GHz, Graphics 
Processing Unit (GPU) of NVIDIA Pascal Titan X, and RAM of 128 GB. 
All statistical tests were two-tailed, and P values < 0.05 indicated a 
significant difference. We reported our findings in accordance with the 
Guidelines for Standards for Reporting Diagnostic accuracy studies, 
Developing and Reporting Machine Learning Predictive Models in 
Biomedical Research [27], and Transparent Reporting of a Multi
variable Prediction Model for Individual Prognosis or Diagnosis [28]. 

3. Results 

3.1. Patient characteristics 

A total of 1255 postmenopausal women (mean age, 
65.8  ±  9.1 years; range, 50–92 years) with 2510 lumbar spine X-ray 
images (anteroposterior: n = 1255; lateral: n = 1255) were included in 
this retrospective and multicentre cohort study. The baseline char
acteristics of the training, validation, and two test datasets are shown in  
Table 1. Age and body mass index in the training, validation and test 
datasets were comparable. The DXA-defined BMD screening reference 
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standard categorized 30.4%, 32.4%, 39.9%, and 38.8% patients as os
teoporotic, and 28.2%, 25.5%, 26.3%, and 25.2% patients as osteopenic 
in the training dataset, validation dataset, and two test datasets, re
spectively. 

3.2. Overall diagnostic performance of the DCNN models 

Fig. 4, Tables 2 and 3 show the performance of DCNN model in 
classifying osteoporosis and osteopenia based on lumbar spine X-ray 

images. Based on the anteroposterior + lateral channels, the model 
diagnosed osteoporosis with an AUC of 0.990 (95% CI: 0.982–0.996), 
sensitivity of 98.0% (95% CI: 95.7–99.3), and specificity of 92.4% (95% 
CI: 90.0–94.4) (Table 2); while the model diagnosed osteopenia with an 
AUC of 0.995 (95% CI: 0.988–0.998), sensitivity of 96.2% (95% CI: 
93.0–98.1), and specificity of 98.6% (95% CI: 97.3–99.3) (Table 3).  
Fig. 5 illustrates the training process and how accuracy increases with 
iteration, which suggests that the DCNN models are gradually con
vergent. 

In the validation dataset, based on the anteroposterior + lateral 
channels, the model diagnosing osteoporosis achieved the highest AUC 
of 0.786 (95% CI: 0.693–0.861), sensitivity of 60.6% (95% CI: 
42.1–77.1), and specificity of 85.5% (95% CI: 75.0–92.8) (Table 2); 
while the model diagnosing osteopenia achieved the highest AUC of 
0.743 (95% CI: 0.647–0.824), sensitivity of 46.7% (95% CI: 28.3–65.7), 
and specificity of 88.9% (95% CI: 79.3–95.1) (Table 3). 

In the test dataset 1, based on the anteroposterior channel, the 
model diagnosing osteoporosis yielded the highest AUC of 0.767 (95% 
CI: 0.701–0.824), with sensitivity of 73.7% (95% CI: 62.3–83.1) 
(Table 2). Based on the anteroposterior + lateral channels, the model 
diagnosing osteopenia yielded the highest AUC of 0.787 (95% CI: 
0.723–0.842), with sensitivity of 81.8% (95% CI: 67.3–91.8) (Table 3). 

In the test dataset 2, based on the anteroposterior + lateral chan
nels, the model diagnosing osteoporosis yielded the highest AUC of 
0.726 (95% CI: 0.646–0.796), with sensitivity of 68.4% (95% CI: 
54.8–80.1) (Table 2). Based on the anteroposterior channel, the model 
diagnosing osteopenia yielded the highest AUC of 0.810 (95% CI: 
0.737–0.870), with sensitivity of 85.3% (95% CI: 68.9–95.0) (Table 3). 

4. Discussion 

This is the first multicentre cohort study that aimed to classify os
teoporosis and osteopenia in postmenopausal women (n = 1255) aged 
≥50 years using developed DCNN models based on conventional X-rays 
performed for other clinical indications, with DXA measures. The re
sults demonstrated that deep-learning approach might have potential in 
automated BMD classification in a real-world setting. 

Table 1 
Demographic characteristics of 1255 postmenopausal women.       

Characteristics Training 
dataset 

Validation 
dataset 

Test 
dataset 1 

Test 
dataset 2  

Patients 808 102 198 147 
Age, yr., mean (SD) 65.3 (8.9) 65.4 (8.6) 65.9 (9.1) 68.9 (9.8) 
Height, cm, mean 

(SD) 
154.7 (6.0) 154.2 (6.6) 155.0 

(5.8) 
153.9 (6.6) 

Weight, kg, mean 
(SD) 

58.1 (11.2) 58.8 (14.4) 59.4 (9.9) 56.1 (9.0) 

BMI, kg/m2, mean 
(SD) 

24.0 (4.1) 24.0 (4.4) 24.7 (3.9) 23.6 (3.3)  

Lumbar spine images 
Anteroposterior 808 102 198 147 
Lateral 808 102 198 147  

T-score, mean 
L1-L4 −1.64 −1.68 −2.00 −1.91  

BMD, mean (SD) 
L1-L4 0.91 (0.20) 0.91 (0.19) 0.82 

(0.15) 
0.88 (0.18)  

BMD categories, n (%) 
Normal 246 (30.4) 30 (29.4) 44 (22.2) 34 (23.1) 
Osteopenia 316 (39.1) 39 (38.2) 77 (38.9) 56 (38.1) 
Osteoporosis 246 (30.4) 33 (32.4) 77 (38.9) 57 (38.8) 

Note: categorical and continuous data were expressed as n (%) and mean 
(standard deviation, SD), respectively. BMI, body mass index; BMD, bone mi
neral density.  

Fig. 4. Comparison of ROC curves between the DCNN model based on single and combined image projects. (a) model diagnosed osteoporosis in the training dataset; 
(b) model diagnosed osteopenia in the training dataset; (c) model diagnosed osteoporosis in the validation dataset; (d) model diagnosed osteopenia in the validation 
dataset; (e) model diagnosed osteoporosis in the test dataset 1; (f) model diagnosed osteopenia in the test dataset 1; (g) model diagnosed osteoporosis in the test 
dataset 2; and (h) model diagnosed osteopenia in the test 2. ROC, receiver operating characteristic; DCNN, deep convolutional neural network; BMD, bone mineral 
density. 
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Currently, the only reference standard accepted by the WHO to 
measure BMD is central DXA of the hips and lumbar spine, other 
available screening strategies include calcaneal quantitative ultra
sonography (QUS), quantitative computed tomography (QCT), and 
magnetic resonance imaging (MRI) [29]. QCT measures trabecular 
BMD in milligrams per cubic centimetre by indirectly quantifying hy
droxyapatite in comparison to a reference phantom [30]. However, an 
obvious limitation of QCT is the significantly higher radiation dose 
associated with scanning central body sites as compared to DXA 
(0.02 mSv) [31,32]. Radiation exposure doses are in the order of 
1.5 mSv for the spine and 2.5–3.0 mSv for the hips [33]. In addition, 

QCT requires sophisticated calibration and positioning techniques and 
careful technical monitoring. Although QUS is a low-cost technique for 
assessing fracture risk, it examines calcaneus in different skeletal sites, 
measures and reports instable bone parameters in various ways, and has 
differing levels of validation data for association with DXA-derived 
BMD, all of these reasons limit the application of QUS in clinical 
practice [34]. Dozens of early studies evaluated the use of routine CT 
examinations for assessing BMD [35,36], but the opinions were divided 
by the effects of the use of contrast media, region of interest selection, 
and threshold Hounsfield units. In addition, most studies were done in a 
single centre and lacked external validation. Machine-to-machine 

Table 2 
Performance metrics for the ensemble DCNN model screening osteoporosis, assessed on the validation and test datasets.           

Dataset Image projection AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%) PLR NLR  

Training dataset Anteroposterior 0.990 
(0.981–0.996) 

98.0 
(95.7–99.3) 

92.3 
(89.8–94.3) 

86.4 
(82.8–89.4) 

98.9 
(97.6–99.5) 

12.68 
(9.6–16.7) 

0.02 
(0.01–0.05) 

Lateral 0.990 
(0.982–0.996) 

99.0 
(97.1–99.8) 

90.4 
(87.8–92.7) 

83.9 
(80.2–86.9) 

99.4 
(98.3–99.8) 

10.33 
(8.1–13.2) 

0.01 
(0.004–0.03) 

Anteroposterior and lateral 0.990 
(0.982–0.996) 

98.0 
(95.7–99.3) 

92.4 
(90.0–94.4) 

86.7 
(83.1–89.6) 

98.9 
(97.6–99.5) 

12.96 
(9.8–17.2) 

0.02 
(0.01–0.05) 

Validation dataset Anteroposterior 0.777 
(0.684–0.854) 

59.4 
(40.6–76.3) 

90.0 
(80.5–95.9) 

73.1 
(56.0–85.3) 

82.9 
(76.0–88.1) 

5.94 
(2.8–12.7) 

0.45 
(0.3–0.7) 

Lateral 0.668 
(0.568–0.759) 

63.6 
(45.1–79.6) 

63.8 
(51.3–75.0) 

45.7 
(35.9–55.8) 

78.6 
(69.3–85.6) 

1.8 
(1.2–2.6) 

0.6 
(0.4–0.9) 

Anteroposterior and lateral 0.786 
(0.693–0.861) 

60.6 
(42.1–77.1) 

85.5 
(75.0–92.8) 

66.7 
(51.4–79.1) 

81.9 
(74.6–87.5) 

4.2 
(2.2–7.9) 

0.5 
(0.3–0.7) 

Test dataset 1 Anteroposterior 0.767 
(0.701–0.824) 

73.7 
(62.3–83.1) 

69.7 
60.7–77.7) 

60.2 
(52.8–67.2) 

81.0 
(74.1–86.3) 

2.43 
(1.8–3.3) 

0.38 
(0.3–0.6) 

Lateral 0.575 
(0.502–0.644) 

57.9 
(46.0–69.1) 

54.9 
(45.7–63.9) 

44.4 
(37.8–51.3) 

67.7 
(60.6–74.0) 

1.3 
(1.0–1.7) 

0.77 
(0.6–1.0) 

Anteroposterior and lateral 0.747 
(0.681–0.806) 

89.5 
(80.3–95.3) 

58.2 
(48.9–67.1) 

57.1 
(51.6–62.5) 

89.9 
(81.9–94.6) 

2.14 
(1.7–2.7) 

0.18 
(0.09–0.4) 

Test dataset 2 Anteroposterior 0.704 
(0.623–0.777) 

89.3 
(78.1–96.0) 

49.5 
(38.8–60.1) 

52.1 
(46.5–57.6) 

88.2 
(77.4–94.3) 

1.77 
(1.4–2.2) 

0.22 
(0.10–0.5) 

Lateral 0.586 
(0.501–0.666) 

62.5 
(48.5–75.1) 

63.7 
(53.0–73.6) 

51.5 
(43.0–59.8) 

73.4 
(65.6–80.0) 

1.72 
(1.2–2.4) 

0.59 
(0.4–0.9) 

Anteroposterior and lateral 0.726 
(0.646–0.796) 

68.4 
(54.8–80.1) 

67.8 
(57.1–77.2) 

57.4 
(48.7–65.6) 

77.2 
(69.3–83.6) 

2.12 
(1.5–3.0) 

0.47 
(0.3–0.7) 

Note: Statistical quantifications were demonstrated with 95% CI, when applicable. AUC, area under the receiver operating characteristic curve; DCCN, deep con
volutional neural network; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio.  

Table 3 
Performance metrics for the ensemble DCNN model screening osteopenia, assessed on the validation and test datasets.           

Dataset Image projection AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%) PLR NLR  

Training dataset Anteroposterior 0.994 
(0.986–0.998) 

95.0 
(91.6–97.3) 

99.1 
(98.0–99.7) 

97.6 
(94.9–98.9) 

98.0 
(96.6–98.8) 

100.38 
(45.2–222.7) 

0.05 
(0.03–0.09) 

Lateral 0.995 
(0.987–0.998) 

97.3 
(94.5–98.9) 

90.1 
(87.5–92.3) 

80.1 
(76.0–83.6) 

98.8 
(97.5–99.4) 

9.8 
(7.7–12.4) 

0.03 
(0.01–0.06) 

Anteroposterior and lateral 0.995 
(0.988–0.998) 

96.2 
(93.0–98.1) 

98.6 
(97.3–99.3) 

96.5 
(93.6–98.2) 

98.4 
(97.1–99.1) 

67.74 
(35.4–129.6) 

0.039 
(0.02–0.07) 

Validation dataset Anteroposterior 0.663 
(0.562–0.753) 

43.3 
(25.5–62.6) 

87.5 
(77.6–94.1) 

59.1 
(40.9–75.1) 

78.7 
(72.8–83.7) 

3.5 
(1.7–7.2) 

0.65 
(0.5–0.9) 

Lateral 0.733 
(0.637–0.816) 

60.0 
(40.6–77.3) 

80.6 
(69.5–88.9) 

56.2 
(42.5–69.1) 

82.9 
(75.5–88.4) 

3.1 
(1.8–5.4) 

0.5 
(0.3–0.8) 

Anteroposterior and lateral 0.743 
(0.647–0.824) 

46.7 
(28.3–65.7) 

88.9 
(79.3–95.1) 

63.6 
(45.1–78.9) 

80.0 
(73.9–85.0) 

4.2 
(2.0–9.0) 

0.6 
(0.4–0.8) 

Test dataset 1 Anteroposterior 0.751 
(0.685–0.809) 

72.7 
(57.2–85.0) 

81.2 
(74.1–87.0) 

52.5 
(43.1–61.6) 

91.2 
(86.5–94.4) 

3.9 
(2.7–5.6) 

0.34 
(0.2–0.5) 

Lateral 0.650 
(0.580–0.717) 

84.1 
(69.9–93.4) 

40.9 
(33.1–49.1) 

28.9 
(25.3–32.8) 

90.0 
(81.6–94.8) 

1.4 
(1.2–1.7) 

0.4 
(0.2–0.8) 

Anteroposterior and lateral 0.787 
(0.723–0.842) 

81.8 
(67.3–91.8) 

69.5 
(61.6–76.6) 

43.4 
(36.8–50.2) 

93.0 
(87.6–96.2) 

2.7 
(2.0–3.5) 

0.3 
(0.1–0.5) 

Test dataset 2 Anteroposterior 0.810 
(0.737–0.870) 

85.3 
(68.9–95.0) 

72.6 
(63.4–80.5) 

48.3 
(40.2–56.6) 

94.3 
(87.9–97.4) 

3.1 
(2.2–4.3) 

0.2 
(0.09–0.5) 

Lateral 0.629 
(0.545–0.707) 

50.0 
(32.4–67.6) 

74.3 
(65.3–82.1) 

37.0 
(27.0–48.1) 

83.2 
(77.6–87.6) 

2.0 
(1.2–3.1) 

0.7 
(0.5–1.0) 

Anteroposterior and lateral 0.732 
(0.652–0.801) 

64.3 
(50.4–76.6) 

72.5 
(62.2–81.4) 

59.0 
(49.4–67.9) 

76.7 
(69.4–82.7) 

2.4 
(1.6–3.4) 

0.5 
(0.3–0.7) 

Note: Statistical quantifications were demonstrated with 95% CI, when applicable. AUC, area under the receiver operating characteristic curve; DCCN, deep con
volutional neural network; PPV, positive predictive value; NPV, negative predictive value; PLR, positive likelihood ratio; NLR, negative likelihood ratio.  
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variability limited the broad applicability of this technique in its cur
rent state. MRI is a method that, while not providing information on 
BMD, provides some resolution on the internal structure of spongy bone 
[37]. MRI is currently used as an investigation tool due to high cost and 
complexity [38]. 

AI models are increasingly used in medicine. However, few studies 
have used these models to assess the risk of osteoporosis and fracture. 
Yoo TK et al. identified the risk of osteoporosis in postmenopausal 
women by machine learning algorithms and found better prediction 
results than conventional clinical decision tools [39]. Ferizi U et al. 
trained and validated 15 machine learning algorithms to predict fra
gility fractures from quantitative MRI data [40]. Atkinson EJ et al. as
sessed fracture risk using CT-based gradient boosting machine models 
[41]. Cruz AS et al. reviewed the main machine learning models to 
identify groups at risk for osteoporosis or fractures [42]. All the ana
lyzed studies predicted fracture risk based on clinical risk factors with 
or without considering BMD. 

Unlike traditional machine learning, deep learning does not require 
engineered features designed by human experts [22]. Rather, deep 
learning allows computational models that are composed of multiple 
processing layers to learn data representations with multiple levels of 
abstraction. Therefore, deep learning overpass traditional machine 
learning in an end-to-end way. We hypothesized that routine lumbar 
spine radiographs in clinical setting are good options for the opportu
nistic classification of BMD by deep learning. For the first time, we 
trained a cost-effective and highly available AI-aided tool to assess BMD 
in postmenopausal women. Conferred by the high speed of a GPU, the 
DCNN models have the advantage of learning imaging biomarkers of 
BMD by an automatic procedure. Although regression task has some 
advantages over classification task, such as less likely to divide patients 
who have similar BMD T-score (around the thresholds) into different 
categories (osteopenia vs osteoporosis) and could also apply classifi
cation after regression using the usual T-score thresholds, regression 
modelling has challenge in complex non-linear problem. In this study, 
the relationship between input X-ray images and BMD T-score was non- 
linear, therefore, we chose a new classification model to evaluate BMD 
T-score. Unlike common deep learning models based on binary classi
fication, our DCNN models were based on triple classification of the 
entire lumbar spine radiographs into normal, osteopenia, and osteo
porosis. The high sensitivity of DCNN models results in a low fraction of 
false-negative classifications and therefore osteoporotic subjects will 
potentially be identified, and consequently treated. However, sensi
tivity of our models was somewhat low, which may due to data im
balance, the ROI used for the X-ray images (excluding cortical bone) 
was different from that used in DXA (including cortical bone), and the 
inclusion of lumbar fractures. DXA including cortical bone will result in 

overestimation of BMD and therefore increasing the sensitivity of 
screening osteoporosis, while our models did not include cortical bone 
may lead to reduced sensitivity when using DXA as a reference. Rela
tively low sensitivity of DCNN models is not conducive to osteoporosis 
screening, thus the main direction for future study is to improve the 
sensitivity of the models. 

Our study also has some potential limitations. Firstly, the features 
and calculations that deep learning models used to make a classification 
are challenging to interpret. Therefore, when the judgment of physi
cians or radiologists differs from that of trained models, the discrepancy 
cannot be resolved by discussion. Secondly, patient positioning can lead 
to a significant variability on the BMD measurement for DXA analysis. 
In clinical practice, we have no effective methods to deal with this 
limitation except for using standard positioning. DXA measures BMD in 
a projectional image, the measurement is sensitive to degenerative 
changes of the spine and overlying structures such as aortic calcifica
tion, which will result in an overestimation of BMD. Similar to DXA, our 
DCNN models may also be affected by aortic, sclerotic, and osteophytic 
calcifications, and may produce falsely elevated BMD values. Moreover, 
lumbar spines exhibiting tumor, infection diseases, severe scoliosis, or 
deformation were also not suitable for the DCNN models. Thirdly, our 
study focused on women aged ≥50 years, the classification perfor
mance of DCNN models in women aged < 50 years or in men needs to 
be investigated in prospective studies. Fourthly, although we performed 
image normalization, the variability across images maybe not elimi
nated due to different X-ray scan settings. Finally, we could not for
mally evaluate the potential benefits and costs of the DCNN models, but 
we speculated increasing detection of osteopenia and osteoporosis with 
subsequent appropriate treatment to reduce fracture risk, combined 
with reducing the number of normal DXA studies, which is expected to 
yield substantial health care cost savings [43]. We are building a 
website or mobile application that will provide free access to the de
veloped DCNN models. Medical resources in urban and rural areas in 
China -and in many other countries in the world-are unbalanced; the 
deep learning system developed in our study could contribute to re
ducing barriers and providing a convenient way for community hos
pitals to screen osteopenia and osteoporosis, particularly in rural areas. 

In summary, we provided a deep learning model that achieves fa
vourable performance in clinical tasks on opportunistic BMD classifi
cation in postmenopausal women. Routine lumbar spine X-ray images 
obtained for other reasons can be applied to identify patients at risk of 
osteoporosis and osteopenia without additional radiation exposure or 
cost, which would improve screening and availability of BMD classifi
cation. Although the deep learning models could not replace DXA for 
BMD screening, it could be used in a scenario in which lumbar spine X- 
ray is readily available but DXA has not been performed. Before 

Fig. 5. The training processes of DCNN Model. (a) anteroposterior channel and (b) lateral channel. DCNN, deep convolutional neural network.  
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switching to prospective clinical trials, it might be necessary to use 
retrospective data to evaluate the ability of the proposed deep learning 
method in assessing fracture risk. 

Supplementary data to this article can be found online at https:// 
doi.org/10.1016/j.bone.2020.115561. 
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